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Abstract—We study decentralized stabilization of discrete-
time linear time invariant (LTI) systems subject to actuator sat-
uration, using LTI controllers. The requirement of stabilization
under both saturation constraints and decentralization impose
obvious necessary conditions on the open-loop plant, namely
that its eigenvalues are in the closed unit disk and further
that the eigenvalues on the unit circle are not decentralized
fixed modes. The key contribution of this work is to provide
a broad sufficient condition for decentralized stabilization
under saturation. Specifically, we show through an iterative
argument that stabilization is possible whenever 1) the open-
loop eigenvalues are in the closed unit disk, 2) the eigenvalues
on the unit circle are not decentralized fixed modes, and 3)
these eigenvalues on the unit circle have algebraic multiplicity
1.

I. INTRODUCTION

The result presented here contributes to our ongoing
study of the stabilization of decentralized systems subject
to actuator saturation. The eventual goal of this study is the
design of controllers for saturating decentralized systems that
achieve not only stabilization but also high performance.
As a first step toward this design goal, we are currently
looking for tight conditions on a decentralized plant with
input saturation, for the existence of stabilizing controllers.
Even this check for the existence of stabilizing controllers
turns out to be extremely intricate: we have yet to obtain
necessary and sufficient conditions for stabilization, but have
obtained a broad sufficient condition in our earlier work [4].
This article further contributes to the study of the existence
of stabilizing controllers, by describing a analogous sufficient
condition for discrete-time decentralized plants.
To motivate and introduce the main result in the article,

let us briefly review foundational studies on both decen-
tralized control and saturating control systems. We recall
that a necessary and sufficient condition for stabilization of
a decentralized system using LTI state-space controllers is
given in Wang and Davison’s classical work [5]. They obtain
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that stabilization is possible if and only if all decentralized
fixed modes of a plant are in the open left half plane, and
give specifications of and methods for finding these de-
centralized fixed modes. Numerous further characterizations
of decentralized stabilization (and fixed modes) have been
given, see for instance the work of Corfmat and Morse [2].
In complement, for centralized control systems subject to
actuator saturation, not only conditions for stabilization but
also practical designs have been obtained, using the low-
gain and low-high-gain methodology. For a background on
the results for centralized systems subject to input saturation
we refer to two special issues [1], [3]. Of importance here,
we recall that a necessary and sufficient condition for semi-
global stabilization of LTI plants with actuator saturation is
that their open-loop poles are in the closed left half plane.
Combining this observation with Wang and Davison’s result,
one might postulate that that stabilization of a saturating
linear decentralized control system is possible if and only of
1) the open-loop plant poles are in the closed left half plane
(respectively, closed unit disk, for discrete-time systems), and
2) the poles on the imaginary axis (respectively, unit circle)
are not decentralized fixed modes. The necessity of the two
requirements is immediate, but we have not yet been able
to determine whether the requirements are also sufficient.
As a first step for continuous-time plants, we showed in [4]
that decentralized stabilization under saturation is possible
when 1) the plant’s open-loop poles are in the CLHP with
imaginary axis poles non-repeated, and 2) the imaginary axis
poles are not decentralized fixed modes. Here, we develop
an analogous result for discrete-time plants, in particular
showing that decentralized stabilization under saturation is
possible if 1) the plant’s open-loop poles are in the closed
unit disk with unit-circle poles non-repeated, and 2) the unit-
circle poles are not decentralized fixed modes.

II. PROBLEM FORMULATION

Consider the LTI discrete-time systems subject to actuator
saturation,

Σ :

⎧⎪⎨
⎪⎩

x(k + 1) = Ax(k) +
ν∑

i=1

Bisat(ui(k))

yi(k) = Cix(k), i = 1, . . . , ν,

(1)

where x ∈ Rn is state, ui ∈ Rmi , i = 1, . . . , ν are control
inputs, yi ∈ Rpi , i = 1, . . . , ν are measured outputs, and
’sat’ denotes the standard saturation element.
Here we are looking for ν controllers of the form,

Σi :
{

zi(k + 1) = Kizi(k) + Liyi(k), zi ∈ Rsi

ui(k + 1) = Mizi(k) + Niyi(k). (2)
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Problem 1: Let the system (1) be given. The semi-global
stabilization problem via decentralized control is said to
be solvable if for all compact sets W and S1, . . . , Sν there
exists ν controllers of the form (2) such that the closed loop
system is asymptotically stable with the set

W × S1 × · · · × Sν

contained in the domain of attraction.
The main objective of this paper is to develop necessary

and sufficient conditions such that the semi-global stabi-
lization problem via decentralized control is solvable. This
objective has not yet been achieved. However, we obtain
necessary conditions as well as sufficient conditions which
are quite close.

III. REVIEW OF DISCRETE-TIME LTI DECENTRALIZED
SYSTEMS AND STABILIZATION

Before we tackle the problem introduced in Section II,
let us first review the necessary and sufficient conditions for
the decentralized stabilization of the linearized model of the
given system Σ,

Σ̄ :

⎧⎪⎨
⎪⎩

x(k + 1) = Ax(k) +
ν∑

i=1

Biui(k)

yi(k) = Cix(k), i = 1, . . . , ν,

(3)

The decentralized stabilization problem for Σ̄ is to find LTI
dynamic controllers Σi, i = 1, . . . , ν, of the form (2) such
that the poles of the closed loop system are in the desired
locations in the open unit disc.
Given system Σ̄ and controllers Σi, defined by (3) and

(2) respectively, let us first define the following matrices in
order to provide an easier bookkeeping:

B = [ B1 · · · Bν ], C = [ C′
1 · · · C′

ν ]′

K = diag[K1, . . . , Kν ], L = diag[L1, . . . , Lν ]
M = diag[M1, . . . , Mν ], N = diag[N1, . . . , Nν ]

Definition 1: Consider system Σ̄, λ ∈ C is called a
decentralized fixed mode if for all block diagonal matrices
H we have

det(λI − A − BHC) = 0
We look at eigenvalues that can be moved by static decen-

tralized controllers. However, it is known that if we cannot
move an eigenvalue by static decentralized controllers then
we cannot move the eigenvalue by dynamic decentralized
controllers either.
Lemma 1: Necessary and sufficient condition for the ex-

istence of a decentralized feedback control law for the system
Σ̄ such that the closed loop system is asymptotically stable
is that all the fixed modes of the system be asymptotically
stable (in the unit disc).
Proof: We first establish necessity.
Assume local controllers Σi together stabilize Σ̄ then for

any |λ| ≥ 1 there exists a δ such that (λ+δ)I−K is invertible
and the closed loop system replacing K with K − δI is
still asymptotically stable. This choice is possible because
if λI − K is invertible obviously we can choose δ = 0. If

λI − K is not invertible, by small enough choice of δ we
can make sure that (λ+ δ)I −K is invertible and the closed
loop system replacing K with K − δI is still asymptotically
stable. But the closed loop system when K − δI is in the
loop is asymptotically stable. In particular, it can not have a
pole in λ. So

det(λI − A − B[M(λI − (K − δI))−1L + N ]C) �= 0

Hence the block diagonal matrix

S = M(λI − (K − δI))−1L + N

has the property that

det(λI − A − BSC) �= 0

thus λ is not a fixed mode. Since this argument is true for
any λ on or outside the unit disc, this implies that all the
fixed modes must be inside the unit disc. This proves the
necessity of the Lemma 1.
Next, we establish sufficiency. The papers [2], [5] showed

that if the decentralized fixed modes of a strongly connected
system are stable, we can find a stabilizing controller for the
system. However, these papers are based on continuous-time
results. For completeness we present the proof for discrete-
time which is a straightforward modification of [5]. We first
claim that decentralized fixed modes are invariant under
preliminary output injection. But this is obvious from our
necessity proof since a trivial modification shows that no
dynamic controller can move a fixed mode. To prove that
we can actually stabilize the system, we use a recursive
argument. Assume the system has an unstable eigenvalue
in μ. Since μ is not a fixed mode there exists Ni such that

A +
ν∑

i=1

BiNiCi

no longer has an eigenvalue in μ. Let k be the smallest
integer such that an unstable eigenvalue of A is no longer
an eigenvalue of

A +
k∑

i=1

BiNiCi

while Ni can be chosen small enough not to introduce
additional unstable eigenvalues. Then for the system(

A +
k−1∑
i=1

BiNiCi, Bk, Ck

)

an unstable eigenvalue is both observable and controllable.
But this implies that there exists a dynamic controller which
moves this eigenvalue in the open unit disc without introduc-
ing new unstable eigenvalues. Through a recursion, we can
move all eigenvalues one-by-one in the open unit disc and
in this way find a decentralized controller which stabilizes
the system. This proves the sufficiency of the lemma 1.
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IV. MAIN RESULTS

In this section, we present the main results of this paper.
Theorem 1 Consider the system Σ. There exists non-

negative integers s1, · · · , sν such that for any given collec-
tion of compact sets W ⊂ Rn and Si ⊂ Rsi , i = 1, · · · , ν,
there exists ν controllers of the form (2) such that the origin
of the resulting closed loop system is asymptotically stable
and the domain of attraction includes W × S1 × · · · × Sν

only if
• All fixed modes are in the open unit disc.
• All eigenvalues of A are in the closed unit disc.
Proof: There exists an open neighborhood containing the

origin for the closed loop system of Σ with the controllers
Σi is identical to the closed loop system of Σ̄ with the
controllers Σi. Hence asymptotic stability of one closed
loop system is equivalent to asymptotic stability of the other
closed loop system. But then it is obvious from Lemma 1
that the first item of Theorem 1 is necessary for the existence
of controllers of the form (2) for Σ̄ such that the origin of
the resulting closed loop system is asymptotically stable.
To prove the necessity of the second item of Theorem 1,

assume that λ is an eigenvalue of A outside the unit disc
with associated left eigenvector p. We obtain:

px(k + 1) = λpx(k) + v(k)

where

v(k) :=
ν∑

i=1

pBisat(ui(k)).

Because of the saturation elements, there exists an M̃ > 0
such that |v(k)| ≤ M̃ for all k ≥ 0. But then we have

px(k) = λkpx(0)+
k−1∑
i=0

λk−1−iv(i) = λk(px(0)+Sk), (4)

where Sk =
∑k−1

i=0
v(i)
λi+1 . We find that

|Sk| ≤ M̃

k∑
i=1

1
|λ|i = M̃ ·

1 − 1
|λ|k

|λ| − 1
<

M̃

|λ| − 1

and then from (4) we find

|px(k)| > |λ|k
(

|px(0)| − M̃
|λ|−1

)
∀k ≥ 1.

Hence |px(k)| does not converge to zero independent of our
choice for a controller if we choose the initial condition
x(0) such that |px(0)| > M̃

|λ|−1 because of the fact that
|λ| > 1. However, the system was semi-globally stabilizable
and hence there exists a controller which contains this initial
condition in its domain of attraction and hence |px(k)| → 0
which yields a contradiction. This proves the second item of
Theorem 1.
We now proceed to the next theorem which gives a suf-

ficient condition for semi-global stabilizability of (1) when
the set of controllers given by (2) are utilized.
Theorem 2 Consider the system Σ. There exists non-

negative integers s1, · · · , sν such that for any given collec-
tion of compact sets W ⊂ Rn and Si ⊂ Rsi , i = 1, · · · , ν,

there exists ν controllers of the form (2) such that the origin
of the resulting closed loop system is asymptotically stable
and the domain of attraction includes W × S1 × · · · × Sν if

• All fixed modes are in the open unit disc,
• All eigenvalues of A are in the closed unit disc with
those eigenvalues on the unit circle having algebraic
multiplicity equal to one.

To prove this theorem we will exploit the following lemma
which follows directly from classical results of eigenvalues
and eigenvectors and the results of perturbations of the matrix
on those eigenvalues and eigenvectors.
Lemma 2: Let Aδ ∈ Rn×n be a sequence of matrices

parametrized by δ and a matrix A ∈ Rn×n such that Aδ → A
as δ → 0. Let A be a matrix with all eigenvalues in the closed
unit disc and with p eigenvalues on the unit disc with all of
them having multiplicity 1. Also assume that Aδ has all its
eigenvalues in the closed unit disc. Let matrix P > 0 be
such that A′PA − P ≤ 0 is satisfied. Then for small δ > 0
there exists a family of matrices Pδ > 0 such that

A′
δPδAδ − Pδ ≤ 0

and Pδ → P as δ → 0
Proof: We first observe that there exists a matrix S such

that

S−1AS =
(

A11 0
0 A22

)
where all eigenvalues of A11 are on the unit circle while the
eigenvalues of A22 are in the open unit disc. Since Aδ → A
and the eigenvalues of A11 and A22 are distinct, there exists
a parametrized matrix Sδ such that for sufficiently small δ

S−1
δ AδSδ =

(
A11,δ 0

0 A22,δ

)
where Sδ → S, A11,δ → A11 and A22,δ → A22 as δ → 0.
Given a matrix P > 0 such that A′PA − P ≤ 0. Let us

define

P̄ = S′PS =
(

P̄11 P̄12

P̄ ′
12 P̄22

)
with this definition we have(

A′
11 0
0 A′

22

)
P̄

(
A11 0
0 A22

)
− P̄ ≤ 0 (5)

Next given an eigenvector x1 of A11, i.e. A11x1 = λx1 with
|λ| = 1, we have(

x1

0

)∗ [(
A′

11 0
0 A′

22

)
P̄

(
A11 0
0 A22

)
− P̄

](
x1

0

)
= 0

Using (5), the above implies that[(
A′

11 0
0 A′

22

)
P̄

(
A11 0
0 A22

)
− P̄

](
x1

0

)
= 0

Since all the eigenvalues on the unit disc of A11 ∈ R
p×p are

distinct we find that the eigenvectors of A11 span Rp and
hence [(

A′
11 0
0 A′

22

)
P̄

(
A11 0
0 A22

)
− P̄

](
I
0

)
= 0
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This results in(
A′

11 0
0 A′

22

)
P̄

(
A11 0
0 A22

)
− P̄ =

(
0 0
0 V

)
≤ 0

This implies that A′
11P̄12A22−P̄12 = 0 and since eigenvalues

of A11 are on the unit disc and eigenvalues of A22 are inside
the unit disc, we find that P̄12 = 0 because

A′
11P̄12A22 = P̄12 ⇒ (A′

11)
kP̄12A

k
22 = P̄12

where k is an arbitrary positive integer. Note that (A′
11)k

remains bounded while Ak
22 → 0 as k → ∞, This means

that for k → ∞, P̄12 → 0 and because P̄12 is independent
of k, we find that P̄12 = 0. Next, since A22 has all its
eigenvalues in the open unit disc, there exists a parametrized
matrix Pδ,22 such that for δ small enough

A′
δ,22Pδ,22Aδ,22 − Pδ,22 = V ≤ 0

while Pδ,22 → P22 as δ → 0.
Let A11 = WΛAW−1 with ΛA a diagonal matrix. Be-

cause the eigenvectors of A11 are distinct and A11,δ → A11,
the eigenvectors of A11,δ depend continuously on δ for δ
small enough and hence there exists a parametrized matrix
Wδ such that Wδ → W while A11,δ = WδΛAδ

W−1
δ with

ΛAδ
diagonal. The matrix P̄11 satisfies

A′
11P̄11A11 − P̄11 = 0

This implies that ΛP = W ∗P̄11W satisfies

Λ∗
AΛP ΛA − ΛP = 0

The above equation then shows that ΛP is a diagonal matrix.
We know that

ΛAδ
→ ΛA.

We know that ΛAδ
is a diagonal matrix the diagonal elements

of which have magnitude less or equal to one while ΛP is
a positive definite diagonal matrix.
Using this, it can be verified that we have

Λ∗
Aδ

ΛP ΛAδ
− ΛP ≤ 0

We choose P̄11,δ as

P̄11,δ = (W ∗
δ )−1ΛP (Wδ)−1

We can see that this choice of P̄11,δ satisfies

A′
11,δP̄11,δA11,δ − P̄11,δ ≤ 0

It is easy to see that P̄11,δ → P̄11 as δ → 0. Then

Pδ = (S−1
δ )′

(
P̄11,δ 0

0 P̄22,δ

)
S−1

δ

satisfies the condition of the lemma. This completes the proof
of Lemma 2.
We now show a recursive algorithm that at each step

moves at least one eigenvalue on the unit circle in a decen-
tralized fashion while preserving the stability of other modes
in the open unit disc in a way that the magnitude of each
decentralized feedback control is assured never to exceed
1/n. The algorithm will consist of at most n steps, and

therefore the overall decentralized inputs will not saturate
for an appropriate choice of the initial state.
Algorithm:
• Step 0: We initialize algorithm at this step. Let A0 :=

A, B0,i := Bi, C0,i := Ci, ni,0 := 0, N0
i,ε := 0, i =

1, . . . , ν and x0 := x. Also let us define P ε
0 := εP ,

where P > 0 and satisfies A′PA − P ≤ 0.
• Step m: For the system Σ, we want to design ν
parametrized decentralized feedback control laws,

Σm,ε
i :

{
pm

i (k + 1) = Km
i,εp

m
i (k) + Lm

i,εyi(k)
ui(k) = Mi,εp

m
i (k) + Nm

i,εyi(k) + vm
i (k).

where pm
i ∈ Rni,m and if ni,m = 0:

Σm,ε
i :

{
ui(k) = Nm

i,εyi(k) + vm
i (k)

The closed loop system consisting of the decentralized
controller and the system Σ can be written as

Σm,ε
cl :

{
xm(k + 1) = Aε

mxm(k) +
∑ν

i=1 Bm,iv
m
i (k)

yi(k) = Cm.ixm(k), i = 1, · · · , ν

where xm ∈ Rnm with nm = n +
∑ν

i=1 ni,m is given
by

xm =

⎛
⎜⎜⎜⎝

x
pm
1
...

pm
ν

⎞
⎟⎟⎟⎠

we can rewrite ui as

ui = Fm
i,εxm + vm

i

for some appropriate matrix Fm
i,ε.

Our objective here is to design the decentralized sta-
bilizers in such a way that they satisfy the following
properties:

1) MatrixAε
m has all its eigenvalues in the closed unit

disc, and eigenvalues on unit circle are distinct.
2) Aε

m has less eigenvalues on the unit circle than
Aε

m−1.
3) There exists a family of matrices P ε

m such that
P ε

m → 0 as ε → 0 and

(Aε
m)′P ε

mAε
m − P ε

m ≤ 0

Furthermore, there exists an ε∗ such that for ε ∈
(0, ε∗] and νm

i = 0 we have ‖ui(k)‖ ≤ m
n for all

states with x′
m(k)P ε

mxm(k) ≤ n − m + 1.
• Terminal Step: There exists a value for m, say l ≤ n,
such that Aε

l has all its eigenvalues in the open unit
disc, and also property 3 above is satisfied, which means
that for ε small enough, ‖ui‖ ≤ 1 for all states with
x′

lP
ε
l xl ≤ 1. The decentralized control laws Σl,ε

i , i =
1, . . . , l together construct our decentralized feedback
law for system Σ.

Finally, we show that for an appropriate choice of ε, this
recursive algorithm provides a set of decentralized feedbacks
which satisfy the requirements of Theorem 2. We will first
prove properties 1, 2 and 3 listed above by induction. It

2542



is easy to see that the initialization step satisfies these
properties. We assume that the design in the step m can
be done, and then we must show that the design in the step
m + 1 can be done.
Now assume that we are in step m + 1. The closed loop

system Σm,ε
cl has properties (1), (2) and (3). Let λ be an

eigenvalue on the unit disc of Aε
m. We know that λ is not a

fixed mode of the closed loop system. Thus there exist K̄i

such that

Aε
m +

ν∑
i=1

Bm,iK̄iCm,i

has no eigenvalue at λ. Therefore the determinant of the
matrix λI−Aε

m−δ
∑ν

i=1 Bm,iK̄iCm,i, seen as a polynomial
in δ, is non-zero for δ = 1, which implies that it is non-zero
for almost all δ > 0. This means that for almost all δ > 0

Aε
m + δ

ν∑
i=1

Bm,iK̄iCm,i

has no eigenvalue at λ. Let j be the largest integer such that

Aε,δ
m = Aε

m + δ

j∑
i=1

Bm,iK̄iCm,i

has λ as an eigenvalue and the same number of eigenvalues
on the unit disc as Aε

m for small enough δ. This implies that
Aε,δ

m still has all its eigenvalues in the closed unit disc.
Using Lemma 2, we know that there exists a P̄ ε,δ

m such
that

(Aε,δ
m )′P̄ ε,δ

m Aε,δ
m − P̄ ε,δ

m ≤ 0

while P̄ ε,δ
m → P ε

m as δ → 0. Hence for small enough δ

x′
m(k)P ε,δ

m xm(k) ≤ n−m+
1
2

⇒ x′
m(k)P ε

mxm(k) ≤ n−m+1

and also for small enough δ we have

‖δK̄ixm‖ ≤ 1
2n

∀xm such that x′
mP ε,δ

m xm ≤ n−m+
1
2

We choose δ = δε small enough such that the above two
properties hold. Define Kε

i = δεK̄i, P̄ ε
m = P̄ ε,δε

m and

Āε
m := Aε

m +
j∑

i=1

Bm,iK
ε
i Cm,i

By the definition of j, we know that

Aε
m +

j+1∑
i=1

Bm,iK
ε
i Cm,i

either does not have λ as an eigenvalue or has less eigenval-
ues on the unit circle. This means that

(Āε
m, Bm,j+1, Cm,j+1)

has a stabilizable and detectable eigenvalue on the unit circle.
Let V be such that

V V ′ = I and kerV = ker〈Cm,j+1|Āε
m〉.

Since we might not be able to find a stable observer for the
state xm we actually construct an observer for the observable

part of the state V xm. Because our triplet has a stabilizable
and detectable eigenvalue on the unit disc, the observable
part of the state V xm must contain at least one eigenvalue
on the unit circle that can be stabilized. This motivates the
following decentralized feedback law:

vm
i (k) = Kε

i xm(k) + vm+1
i (k), i = 1, · · · , j,

p(k + 1) = Aε
sp(k) + V Bm,j+1v

m
j+1(k)

+ K(Cm,j+1V
′p(k) − yj+1(k))

vm
j+1(k) = Fρp(k) + vm+1

j+1 (k)

vm
i (k) = vm+1

i (k), i = j + 2, · · · , ν.

Here p ∈ Rs and Aε
s is such that Aε

sV = V Āε
m and K is

chosen such that Aε
s + KCm,j+1V

′ has all its eigenvalues
in the open unit disc and does not have any eigenvalues in
common with Āε

k . Furthermore Fρ is chosen in a way that
Āε

m + Bm,j+1FρV has at least one less eigenvalue on the
unit disc than Aε

m and still all of its eigenvalues are in the
closed unit disc and also Fρ → 0 as ρ → 0. Defining

x̄m+1 =
(

xm

p − V xm

)
,

we have

x̄m+1(k + 1) =(
Āε

m + Bm,j+1FρV Bm,j+1Fρ

0 Aε
s + KCm,j+1V

′

)
x̄m+1(k)

+
ν∑

i=1

B̄m+1,iv
m+1
i (k) (6)

yi(k) = C̄m+1,ix̄m+1(k) i = 1, · · · , ν.

where

B̄m+1,i =
(

Bm,i

−V Bm,i

)
, C̄m+1,i =

(
Cm,i 0

)
for i �= j + 1 and

B̄m+1,j+1 =
(

Bm,j+1

0

)
, C̄m+1,j+1 =

(
Cm,j+1 0

V I

)
It is easy to check that the above feedback laws satisfy the
properties (1) and (2). What remains is to show that they
satisfy property (3). Also we need to show that the control
laws can be written in the form mentioned in step m for step
m + 1.
For any ε there exists a Rε

m > 0 with

(Aε
s + KCm,j+1V

′)′Rε
m(Aε

s + KCm,j+1V
′) − Rε

m < 0

such that Rε
m → 0 as ε → 0. Because Fρ → 0 as ρ → 0,

for each ε, for small enough ρ we have

‖Fρe‖ <
1
2n

∀e | e′Rε
me ≤ n − m + 1

2 .

Note that Āε
m +Bm,j+1FρV has at least one less eigenvalue

on the unit disc than Āε
m and has all its eigenvalues in the

close unit disc. Applying Lemma (2), for small ρ we have

(Āε
m + Bm,j+1FρV )′P̄ ε

ρ (Āε
m + Bm,j+1FρV ) − P̄ ε

ρ ≤ 0
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with P̄ ε
ρ → P̄ ε

m as ρ → 0
Now note that Āε

m and Aε
s + KCm,j+1V

′ have disjoint
eigenvalues we find that for small ρ, the matrices Āε

m +
Bm,j+1FρV and Aε

s+KCm,j+1V
′ have disjoint eigenvalues

since Fρ → 0 as ρ → 0. But then there exists a Wε,ρ such
that

Bm,j+1Fρ + (Āε
m + Bm,j+1FρV )Wε,ρ

− Wε,ρ(Aε
s + KCm,j+1V

′) = 0

while Wε,ρ → 0 as ρ → 0. Now if we define P̄ ε,ρ
m+1 to be

P̄ ε,ρ
m+1 =

(
I 0

−W ′
ε,ρ I

)(
P̄ ε

ρ 0
0 Rε

m

)(
I −Wε,ρ

0 I

)
We define

Āε,ρ
m+1 =

(
Āε

m + Bm,j+1FρV Bm,j+1Fρ

0 Aε
s + KCm,j+1V

′

)
We will have the following properties

(Āε,ρ
m+1)

′P̄ ε,ρ
m+1Ā

ε,ρ
m+1 − P̄ ε,ρ

m+1 ≤ 0

and

lim
ρ→0

P̄ ε,ρ
m+1 =

(
P̄ ε

m 0
0 Rε

m

)
Now consider x̄m+1 such that

x̄′
m+1P̄

ε,ρ
m+1x̄m+1 ≤ n − m

Then with small enough choice of ρ we can have

x′
mP̄ ε

mxm ≤ n − m +
1
2
and

(p − V xm)′Rε
m(p − V xm) ≤ n − m +

1
2

Next for each ε we choose ρ = ρε such that the above holds
and we have

‖FρV xm‖ <
1
2n

∀xm | x′
mP̄ ε

mxm ≤ n − m +
1
2

Next we must check the bounds on the inputs in step m+1.
For i = 1, . . . , j, we have

‖ui‖ = ‖Fm
i,εxm + Kε

i xm‖ ≤ m

n
+

1
2n

≤ m + 1
n

For i = j + 1. we have:

‖ui‖ = ‖Fm
i,εxm + Fρεp‖

= ‖Fm
i,εxm + FρεV xm + Fρε(p − V xm)‖

≤ m

n
+

1
2n

+
1
2n

=
m + 1

n

Finally, for i = j + 2, . . . , ν, we have:

‖ui‖ = ‖Fm
i,εxm‖ ≤ m

n
≤ m + 1

n

Now for i �= j + 1 we set ni,m+1 = ni,m and for i = j + 1
we set ni,m+1 = ni,m + s.
If ni,m > 0 we choose

pm+1
i =

(
pm

i

p

)

and if ni,m = 0 we choose pm+1
i = p. Now we are

able to the system in terms of xm+1. We introduce a basis
transformation Tm+1 such that x̄m+1 = Tm+1xm+1. Next,
we define

P ε
m+1 = T ′

m+1P̄
ε,ρε

m+1Tm+1.

Now for i = 1, . . . , ν depending on the value of ni,m+1

we can rewrite the control laws in the desired form and
subsequently the properties (1), (2) and (3) are obtained.
We know that there exists a value of m, say � ≤ n, such

that Aε
� has all its eigenvalues in the open unit disc. We

set ν�
i = 0 for i = 1, 2, 3, . . . , �. Then the decentralized

control laws Σ�,ε
i , i = 1, 2, 3, . . . , � together represent a

decentralized semi global feedback law for the system Σ.
In other words, we claim that for any given compact sets
W ⊂ Rn and Si ⊂ Rni,� for i = 1, 2, 3, . . . , �, there exists
an ε∗ such that the origin of the closed loop system is
exponentially stable for any 0 < ε < ε∗ and the compact
set W × S1 × · · ·Sν is within the domain of attraction.
Furthermore for all initial conditions within W ×S1×· · ·Sν ,
the closed loop system behaves like a linear system, that is
the saturation is not activated.
We know that for ε small enough, the set

Ωε
1 := {x� ∈ R

n� |x′
�P

ε
� x� ≤ 1}

is inside the domain of attraction of the equilibrium point
of the closed loop system comprising the given system Σ
and the decentralized control laws Σ�,ε

i , i = 1, 2, 3, . . . , �
because for all initial conditions within Ωε

1, it is obvious that
‖ui‖ ≤ 1, i = 1, 2, 3, . . . , � which means that the closed loop
system behaves like a linear system, that is the saturation is
not activated. Furthermore since all of the eigenvalues of Aε

�

are in the open unit disc, this linear system is asymptotically
stable. In addition because of the fact that P ε

� → 0 as ε → 0,
we find that W × S1 × · · · Sν is inside Ωε

1 for ε sufficiently
small. This concludes that the decentralized control laws
Σ�,ε

i , i = 1, 2, 3, . . . , � are semi-globally stabilizing.
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