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Abstract— This paper focuses on uniform semistability and
uniform finite-time semistability for time-varying dynamical
systems. Semistability is the property whereby the solutions of
a dynamical system converge to Lyapunov stable equilibrium
points determined by the system initial conditions. Using these
results we develop a framework for designing semistable pro-
tocols in dynamical networks with time-dependent communica-
tion links. Specifically, we present distributed nonlinear time-
varying control architectures for multiagent network consensus
with dynamic communication links.

I. INTRODUCTION

Modern complex dynamical systems are highly intercon-

nected and mutually interdependent, both physically and

through a multitude of information and communication

networks. Distributed decision-making for coordination of

networks of dynamic agents involving information flow

can be naturally captured by graph-theoretic notions. These

dynamical network systems cover a very broad spectrum

of applications including cooperative control of unmanned

air vehicles (UAV’s) [1], autonomous underwater vehicles

(AUV’s) [2], distributed sensor networks [3], air and ground

transportation systems [4], swarms of air and space vehicle

formations [5], and congestion control in communication

networks [6], to cite but a few examples. Hence, it is

not surprising that a considerable research effort has been

devoted to control of networks and control over networks in

recent years.

Since communication links among multiagent systems are

often unreliable due to multipath effects and exogenous

disturbances, the information exchange topologies in network

systems are often dynamic. In particular, communication

links between different agents may be time-varying, which

results in a time-dependent communication topology. In this

case, the vector field defining the dynamical system is a

time-varying function, and hence, system stability should be

analyzed using Lyapunov theory for nonautonomous systems

involving concepts such as weak and strong invariance

notions, differential inclusions, and generalized gradients of

locally Lipschitz functions [7].

In many applications involving multiagent systems, groups

of agents are required to agree on certain quantities of

interest. In particular, it is important to develop information
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consensus protocols for networks of dynamic agents wherein

a unique feature of the closed-loop dynamics under any

control algorithm that achieves consensus is the existence

of a continuum of equilibria representing a state of equipar-

titioning or consensus. Under such dynamics, the limiting

consensus state achieved is not determined completely by

the dynamics, but depends on the initial system state as

well. For such systems possessing a continuum of equilibria,

semistability [8], [9], and not asymptotic stability, is the

relevant notion of stability. Semistability is the property

whereby every trajectory that starts in a neighborhood of

a Lyapunov stable equilibrium converges to a (possibly

different) Lyapunov stable equilibrium. From a practical

viewpoint, it is not sufficient to only guarantee that a network

converges to a state of consensus since steady state conver-

gence is not sufficient to guarantee that small perturbations

from the limiting state will lead to only small transient

excursions from a state of consensus. It is also necessary to

guarantee that the equilibrium states representing consensus

are Lyapunov stable, and consequently, semistable.

In this paper we develop uniform semistability and uni-

form finite-time semistability theory for nonautonomous dy-

namical systems. Using these results, we develop distributed

time-varying control algorithms for addressing consensus

problems for nonlinear multiagent dynamical systems with

time-dependent communication links. Unlike the results in

[10], which deal with discrete-time dynamical systems, here

we focus on continuous-time dynamical systems. The pro-

posed controller architectures are predicated on the recently

developed notion of system thermodynamics [11] resulting in

time-varying controller architectures involving the exchange

of information between agents that guarantee that the closed-

loop dynamical network is consistent with basic thermody-

namic principles.

II. LYAPUNOV-BASED SEMISTABILITY THEORY FOR

NONAUTONOMOUS DYNAMICAL SYSTEMS

The notation used in this paper is fairly standard. Specifi-

cally, R denotes the set of real numbers, R
n denotes the set

of n × 1 real column vectors, and (·)T denotes transpose.

For A ∈ R
n×m we write rankA to denote the rank of

A and S to denote the closure of the subset S ⊂ R
n.

Furthermore, we write ‖ · ‖ for the Euclidean vector norm,

Bε(α), α ∈ R
n, ε > 0, for the open ball centered at α

with radius ε, dist(p,M) for the distance from a point p
to the set M, that is, dist(p,M) , infx∈M ‖p − x‖, and

x(t) → M as t → ∞ to denote that x(t) approaches the
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set M, that is, for each ε > 0 there exists T > 0 such that

dist(x(t),M) < ε for all t > T .

Consider the time-varying dynamical system given by

ẋ(t) = f(t, x(t)), x(t0) = x0, t ≥ t0, (1)

where t ∈ R, x(t) ∈ R
q, and f : R × R

q → R
q

is a Carathéodory function [12], [13], that is, f(·, x) is

measurable for all x ∈ R
q , f(t, ·) is continuous for all t ∈ R,

and f is locally integrably bounded on compact sets; that

is, for every compact set C ⊂ R
q , there exists a Lebesgue

measurable function m(·) such that the function t 7→ ‖m(t)‖
is locally Lebesgue integrable and ‖f(t, x)‖ ≤ m(t) for all

t ∈ R and all x ∈ C. A locally absolutely continuous function

x : [t0, τ) → R
q is said to be a (Carathéodory) solution of

(1) on the interval [t0, τ) with initial condition x(t0) = x0

if x(t) satisfies (1) for almost all t ∈ [t0, τ), and every

solution can be maximally extended to a maximal interval

[t0, τ). Moreover, if x is maximal and τ < ∞, then x is

unbounded. A maximal solution x is called global if τ = ∞.

Let ω(x) denote the positive limit set (possibly empty) of a

global solution x and recall that, if x is a bounded maximal

solution, then τ = ∞ and ω(x) is a nonempty, compact,

connected set and is approached by x [7].

Let U denote the class of set-valued maps F(x) : R
q →

B(Rq) that are upper semicontinuous at every x ∈ R
q and

take nonempty convex compact values, where B(Rq) denotes

the collection of all subsets of R
q. We assume that f : R ×

R
q → R

q is weakly asymptotically autonomous in the sense

that there exists F ∈ U such that for all compact C ⊂ R
q

and all ε > 0, there exists T ≥ 0 such that for all x ∈ C,

ess sup
t≥T

dist(f(t, x),F(x)) < ε. (2)

If, in addition, F is singleton-valued, that is, F : x 7→ {g(x)}
for some continuous function g : R

q → R
q , then we say f

is asymptotically autonomous [7].

The Filippov solution [13], [14] of the differential inclu-

sion [15] given by

ẋ(t) ∈ F(x(t)), a. a. ∈ [0, τ ], (3)

is defined by an absolutely continuous function x : [0, τ ] →
R

q such that (3) holds almost everywhere for all t ∈ [0, τ ].
Since the set-valued map given by F is upper semicontinuous

with nonempty, convex, and compact values, and is also

locally bounded, it follows that Filippov solutions to (3) exist

[13]. We say that a set M ⊂ R
q is weakly invariant (resp.,

strongly invariant) with respect to (3) if for every x0 ∈ M,

M contains a maximal solution (resp., all maximal solutions)

of (3) [16], [17].

An equilibrium point of (3) is a point xe ∈ R
q such that

0 ∈ F(xe). It is easy to see that xe is an equilibrium point of

(3) if and only if the constant function x(·) = xe is a Filippov

solution of (3). We denote the set of equilibrium points of (3)

by E . Since the set-valued map F is upper semicontinuous,

it follows that E is closed. To develop Lyapunov-based

stability theory for nonautonomous dynamical systems of

the form given by (1), we need to introduce the notion

of generalized derivatives and gradients. Here we focus on

Clarke generalized derivatives and gradients [18].

Definition 2.1 ([18]): Let V : R
q → R be a locally

Lipschitz continuous function. The Clarke upper generalized

derivative of V (x) at x in the direction of v is defined by

V o(x, v) , lim sup
y→x,h→0+

V (y + hv) − V (y)

h
. (4)

The Clarke generalized gradient ∂V : R
q → B(Rq) of V (x)

at x is the set

∂V (x) , co
{

lim
i→∞

∇V (xi) : xi → x, xi 6∈ N ∪ S
}

, (5)

where “co” denotes the convex hull, ∇ denotes the nabla

operator, N is the set of measure zero points where ∇V
does not exist, and S is an arbitrary set of measure zero in

R
q .

The next definition introduces the notion of semistability

for Filippov dynamical systems. For this definition, Lya-

punov stability for the solution x(t) ≡ z to (3) can be found

in [13] and [17].

Definition 2.2 ([19]): Let D ⊆ R
q be an open strongly

invariant set with respect to the differential inclusion (3). An

equilibrium point z ∈ D of (3) is semistable with respect to

D if it is Lyapunov stable and there exists an open subset D0

of D containing z such that for all initial conditions in D0,

the Filippov solutions of (3) converge to a Lyapunov stable

equilibrium point. The system (3) is semistable with respect

to D if every equilibrium point in E is semistable with respect

to D. Finally, (3) is said to be globally semistable if (3) is

semistable and D = R
q.

Next, we introduce the definition of finite-time semistabil-

ity of (3).

Definition 2.3 ([19]): Let D ⊆ R
q be a strongly invariant

set with respect to the differential inclusion (3). An equilib-

rium point xe ∈ E of (3) is said to be finite-time-semistable if

there exist an open neighborhoodU ⊆ D of xe and a function

T : U\E → (0,∞), called the settling-time function, such

that the following statements hold:

i) For every x ∈ U\E and any Filippov solution ψ(t) of

(3) with ψ(0) = x, ψ(t) ∈ U\E for all t ∈ [0, T (x)),
and limt→T (x) ψ(t) exists and is contained in U ∩ E .

ii) xe is semistable.

An equilibrium point xe ∈ E of (3) is said to be globally

finite-time-semistable if it is finite-time-semistable with D =
U = R

q . The system (3) is said to be finite-time-semistable if

every equilibrium point in E is finite-time-semistable. Finally,

(3) is said to be globally finite-time-semistable if every

equilibrium point in E is globally finite-time-semistable.

The following result asserts that if f is weakly asymptoti-

cally autonomous and x is a bounded global solution of (1),

then the positive limit set ω(x) of x is weakly invariant with

respect to the associated autonomous differential inclusion

(3).

Lemma 2.1 ([7]): Let f : R×R
q → R

q be a Carathéodory

function and weakly asymptotically autonomous with some

F ∈ U . Let x0 ∈ R
q and assume that x is a global solution
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of (1). If x is bounded, then the positive limit set ω(x) of x
is nonempty, compact, connected, is approached by x, and

is weakly invariant with respect to (3).

Let D ⊆ R
q be a strongly invariant set with respect to

the differential inclusion (3). For x ∈ D, let ψ(·) denote the

Filippov solution to (3) with ψ(0) = x and let Ω(ψ) be the

positive limit set of ψ.

Lemma 2.2: Let D ⊆ R
q be a strongly invariant set with

respect to (3) and let x ∈ D. If z ∈ Ω(ψ) ∩ D is a

Lyapunov stable equilibrium point with respect to D, then

z = limt→∞ ψ(t) with ψ(0) = x and Ω(ψ) = {z}.

Combining Lemmas 2.1 and 2.2 yields the following

result.

Lemma 2.3: Let f : R × R
q → R

q be a Carathéodory

function and weakly asymptotically autonomous with F ∈
U . Let x0 ∈ R

q and assume that x is a global solution of

(1). If x is bounded and z ∈ ω(x) is a Lyapunov stable

equilibrium point, then z = limt→∞ x(t) and ω(x) = {z}.

Recall that an equilibrium point of (1) is a point xe ∈ R
q

such that f(t, xe) = 0 for all t ∈ R. We denote the set of

equilibrium points of (1) by En.

Lemma 2.4: Let f : R × R
q → R

q be a Carathéodory

function and weakly asymptotically autonomous with F ∈
U . Then E = En.

Lemma 2.5: Let f : R × R
q → R

q be a Carathéodory

function and weakly asymptotically autonomous with some

F ∈ U . Then (1) is uniformly (Lyapunov) stable if and only

if (3) is Lyapunov stable.

The following definition gives the notion of uniform

semistability for the nonautonomous dynamical system (1).

Definition 2.4: An equilibrium point xe ∈ En of (1) is

uniformly semistable if xe is uniformly Lyapunov stable and

there exists δ > 0 such that, for every x0 ∈ R
q satisfying

‖x0 − xe‖ ≤ δ, there exists a uniformly Lyapunov stable

equilibrium point zx0
∈ En such that every solution x(t),

t ≥ t0, with the initial condition x(t0) = x0 satisfies

limt→∞ x(t) = zx0
uniformly in t0 ∈ R, that is, for every

ε > 0, there exists T = T (ε) > 0 such that ‖x(t)−zx0
‖ < ε

for every t ≥ t0 + T (ε). The system (1) is uniformly

semistable if all the equilibrium points of (1) are uniformly

semistable.

The relationship between uniform semistability of (1) and

semistability of (3) is given by the following result.

Proposition 2.1: Let f : R×R
q → R

q be a Carathéodory

function and weakly asymptotically autonomous with some

F ∈ U . Then (1) is uniformly semistable if and only if (3)

is semistable.

Next, the notion of uniform finite-time semistability can

be defined by using uniform semistability and Definition 2.3.

Definition 2.5: Let D ⊆ R
q be nonempty and open.

Assume that all the global solutions x(t) satisfy x(t) ∈ D
for all t ≥ t0 and all x0 ∈ D. An equilibrium point

xe ∈ En of (1) is said to be uniformly finite-time-semistable

if there exist an open neighborhood U ⊆ D of xe and a

function T : U\En → (0,∞), called the uniform settling-

time function, such that the following statements hold:

i) For every x ∈ U\En and any global solution ψ(t) of (1)

with ψ(t0) = x, ψ(t) ∈ U\En for all t− t0 ∈ [0, T (x)),
and limt−t0→T (x) ψ(t − t0) < ∞ and is contained in

U ∩ En.

ii) xe is uniformly semistable.

An equilibrium point xe ∈ En of (1) is said to be globally

uniformly finite-time-semistable if it is finite-time-semistable

with D = U = R
q . The system (1) is said to be uniformly

finite-time-semistable if every equilibrium point in En is

finite-time-semistable. Finally, (1) is said to be globally

uniformly finite-time-semistable if every equilibrium point in

En is globally uniformly finite-time-semistable.

The following result gives a relationship between uniform

semistability of (1) and semistability of (3).

Proposition 2.2: Let f : R×R
q → R

q be a Carathéodory

function and weakly asymptotically autonomous with some

F ∈ U . Then (1) is uniformly finite-time-semistable if and

only if (3) is finite-time-semistable.

Now, we present a sufficient condition to guarantee uni-

form semistability of (1).

Theorem 2.1: Let f : R × R
q → R

q be a Carathéodory

function and weakly asymptotically autonomous with some

F ∈ U . Assume that all the global solutions x(t) of (1) are

bounded. Furthermore, assume there exist a locally Lipschitz

function V : R
q → R, an upper semicontinuous function

g : R
q → R, and a Lebesgue measurable function γ(·) with

Lebesgue integrable map t 7→ ‖γ(t)‖, such that

V o(z, f(t, z))− γ(t) ≤ g(z) ≤ 0, t ≥ t0, z ∈ R
q. (6)

If every point in the largest weakly invariant subset of g−1(0)
with respect to (3) is a Lyapunov stable equilibrium point of

(3), then (1) is uniformly semistable.

Corollary 2.1: Let f : R × R
q → R

q be a Carathéodory

function and weakly asymptotically autonomous with some

F ∈ U . Assume that all the global solutions x(t) of (1) are

bounded. Furthermore, assume there exist a locally Lipschitz

function V : R
q → R and an upper semicontinuous function

g : R
q → R such that

V o(z, f(t, z)) ≤ g(z) ≤ 0, t ≥ t0, z ∈ R
q. (7)

If (3) is Lyapunov stable, then (1) is uniformly semistable.

The following result gives a sufficient condition for uni-

form finite-time semistability. For this result, we need the

notion of homogeneity with respect to semi-Euler vector

fields, which can be found in [20].

Proposition 2.3: Let f : R×R
q → R

q be a Carathéodory

function and weakly asymptotically autonomous with some

F ∈ U . Assume that all the global solutions x(t) of (1) are

bounded. Furthermore, assume that F(x) = {g(x)}, where

g : R
q → R

q is continuous and homogeneous of degree

k < 0 with respect to a semi-Euler vector field ν(x). If (3) is

Lyapunov stable, then (1) is uniformly finite-time-semistable.

Example 2.1: Consider the nonlinear time-varying dy-
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Fig. 1. Solutions for Example 2.1

namical system given by

ẋ1(t) = [c+ h(t)][f(x2(t)) − g(x1(t))],

x1(0) = x10, t ≥ 0, (8)

ẋ2(t) = [c+ h(t)][g(x1(t)) − f(x2(t))],

x2(0) = x20, (9)

where x1, x2 ∈ R, f : R → R and g : R → R are Lipschitz

continuous, h : R → R is Lebesgue measurable, |h(t)|
is locally Lebesgue integrable, h(t) > −c for all t ∈ R,

dist(h(t), I) → 0 as t → ∞, I ⊂ R is a compact interval,

c > 0, f(x2) − g(x1) = 0 if and only if x1 = x2, and

(x1 − x2)(f(x2) − g(x1)) ≤ 0, x1, x2 ∈ R. Note that

En = {(x1, x2) ∈ R
2 : x1 = x2 = α, α ∈ R}.

Let

f̃(x1, x2) ,

[

f(x2) − g(x1)
g(x1) − f(x2)

]

. (10)

Clearly the function (t, z1, z2) 7→ [c + h(t)]f̃(z1, z2) is

a Carathéodory function and weakly asymptotically au-

tonomous with F ∈ U given by

F(z1, z2) , co{(c+ v)f̃(z1, z2) : v ∈ I}. (11)

To show that (8) and (9) is uniformly semistable, consider

the nonnegative function V (x1, x2) = 1
2x

2
1 + 1

2x
2
2. Now, it

follows that the derivative of V along the trajectory of (8)

and (9) is given by

V̇ (x1(t), x2(t))

= x1(t)[c+ h(t)][f(x2(t)) − g(x1(t))]

+x2(t)[c+ h(t)][g(x1(t)) − f(x2(t))]

= (c+ h(t))[x1(t) − x2(t)][f(x2(t)) − g(x1(t))]

≤ m[x1(t) − x2(t)][f(x2(t)) − g(x1(t))]

≤ 0, (x1(t), x2(t)) ∈ R × R, t ≥ 0, (12)

where 0 < m ≤ c + inft≥0 h(t), which implies that

(x1(·), x2(·)) is bounded.

Next, we consider the differential inclusion (3) where x ,

[x1, x2]
T ∈ R

2. Let vx be an arbitrary element of F(x)
and recall that the Clarke upper generalized derivative of

V (x− αe), e , [1, 1]T, along a vector vx ∈ F is given by

V o(x− αe, vx) = (x− αe)Tvx = xTvx. (13)

Now, consider maxV o(x − αe, vx) , maxvx∈F{x
Tvx}.

It follows from Theorem 1 of [21] and the definition

of a differential inclusion that maxV o(x − αe, vx) =
max co{(c + v)(x1 − x2)(f(x2) − g(x1)) : v ∈ I}. Note

that (x1 − x2)(f(x2) − g(x1)) ≤ 0, x ∈ R
2, it follows

that maxV o(x− αe, vx) cannot be positive, and hence, the

largest value maxV o(x−αe, vx) can achieve is zero. Thus,

V o(x − αe, vx) ≤ maxV o(x − αe, vx) ≤ 0 for all x ∈ R
2

and all vx ∈ F . Hence, it follows that x1 = x2 = α is

Lyapunov stable with respect to (3) for all α ∈ R.

Finally, note that it follows from (12) that

V o(z, f̃(t, z)) ≤ m(z1 − z2)[f(z2) − g(z1)]

≤ 0, z ∈ R
2, t ≥ 0, (14)

where z , [z1, z2]
T and f̃(t, z) , (c+ h(t))f̃(z1, z2). Now,

it follows from Corollary 2.1 that (8) and (9) is uniformly

semistable. Figure 1 shows the solutions of (8) and (9) for

f(x) = x, g(x) = x, h(t) = t
1+t2

, c = 1, I = {0}, x10 = 8,

x20 = −2, and t0 = 0, 1, 2, 3. △
Example 2.2: Consider the nonautonomous dynamical

system given by

ẋ1(t) = [c+ h(t)]f(x2(t) − x1(t)),

x1(0) = x10, t ≥ 0, (15)

ẋ2(t) = [c+ h(t)]f(x1(t) − x2(t)),

x2(0) = x20, (16)

where x1, x2 ∈ R, h : R → R is Lebesgue measurable,

|h(t)| is locally Lebesgue integrable, h(t) > −c for all t ∈
R, limt→∞ h(t) = 0, c > 0, f : R → R is continuous,

f(λz) = λ1+rf(z) for all z ∈ R and all λ > 0 with r < 0,

f(z) = −f(−z) for all z ∈ R, and f(z)z > 0 for all z 6= 0,

z ∈ R. Note that En = {(x1, x2) ∈ R
2 : x1 = x2 = α, α ∈

R}.

Let g(x1, x2) , [cf(x2 − x1), cf(x1 − x2)]
T. Clearly

the function (t, x1, x2) 7→ [1 + h(t)/c]g(x1, x2) is

a Carathéodory function and weakly asymptotically au-

tonomous with F ∈ U given by F(x) = {g(x)}, where x ,

[x1, x2]
T. Next, it follows from [22] that g is homogeneous

of degree r < 0 with respect to the semi-Euler vector field

ν(x) = (x1−x2)
∂

∂x1
+(x2−x1)

∂
∂x2

. Consider V (x1, x2) =
1
2 (x1−α)2 + 1

2 (x2−α)2, where α ∈ R. Now, it follows that

the Lyapunov derivative of V along the trajectories of (3) is

given by

V̇ (x1, x2) = (x1 − α)cf(x2 − x1)

+(x2 − α)cf(x1 − x2)

= x1cf(x2 − x1) + x2cf(x1 − x2)

= c(x1 − x2)f(x2 − x1)

≤ 0, (x1, x2) ∈ R × R, (17)

4053



0 1 2 3 4 5 6 7 8 9 10
−2

−1

0

1

2

3

4

5

6

7

8

Time

S
ta

te
s

x
1

x
2

Fig. 2. Solutions for Example 2.2

which implies that x1 = x2 = α is Lyapunov stable with

respect to (3). Now, it follows from Proposition 2.3 that (15)

and (16) is uniformly finite-time-semistable. Figure 2 shows

the solutions of (15) and (16) for f(x) = x
1
3 , h(t) = t

1+t2
,

c = 1, x10 = 8, x20 = −2, and t0 = 0, 1, 2, 3. △

III. CONSENSUS PROBLEMS IN DYNAMICAL NETWORKS

In this section, we develop a thermodynamically motivated

information consensus framework for multiagent nonlinear

systems that achieve semistability and state equipartition.

Specifically, consider q continuous-time integrator agents

with dynamics

ẋi(t) = ui(t), xi(0) = xi0, t ≥ 0, (18)

where for each i ∈ {1, . . . , q}, xi(t) ∈ R denotes the

information state and ui(t) ∈ R denotes the information

control input for all t ≥ 0. The general consensus protocol

is given by

ui(t) =

q
∑

j=1,j 6=i

φij(xi(t), xj(t)), (19)

where φij(·, ·), i, j = 1, . . . , q, are locally Lipschitz con-

tinuous. Note that (18) and (19) describe an interconnected

network with a graph topology G where information states

are updated using a distributed nonlinear controller involving

neighbor-to-neighbor interaction between agents. The follow-

ing assumptions are needed for the main results of the paper.

Assumption 1: For the connectivity matrix1 C ∈ R
q×q

associated with the multiagent dynamical system G defined

by

C(i,j) ,

{

0, if φij(xi, xj) ≡ 0,
1, otherwise,

i 6= j, i, j = 1, . . . , q, (20)

1The negative of the connectivity matrix, that is, −C, is known as the
Laplacian of the directed graph G in the literature.

and

C(i,i) , −

q
∑

k=1, k 6=i

C(i,k), i = 1, . . . , q, (21)

rank C = q − 1, and for C(i,j) = 1, i 6= j, φij(xi, xj) = 0 if

and only if xi = xj .

Assumption 2: For i, j = 1, . . . , q, (xi−xj)φij(xi, xj) ≤
0, xi, xj ∈ R.

The fact that φij(xi, xj) = 0 if and only if xi = xj , i 6= j,
implies that agents Gi and Gj are connected, and hence can

share information; alternatively, φij(xi, xj) ≡ 0 implies that

agents Gi and Gj are disconnected and hence cannot share

information. Assumption 1 implies that if the energies or

information in the connected agents Gi and Gj are equal,

then energy or information exchange between these agents

is not possible. This statement is reminiscent of the zeroth

law of thermodynamics, which postulates that temperature

equality is a necessary and sufficient condition for thermal

equilibrium. Furthermore, if C = CT and rankC = q−1, then

it follows that the connectivity matrix C and the adjacency

matrix A are irreducible, which implies that for any pair of

agents Gi and Gj , i 6= j, of G there exists a sequence of

information connectors (information arcs) of G that connect

Gi and Gj . Assumption 2 implies that energy or information

flows from more energetic or information rich agents to less

energetic or information poor agents and is reminiscent of

the second law of thermodynamics, which states that heat

(energy) must flow in the direction of lower temperatures.

For further details, see [11].

Proposition 3.1 ([20]): Consider the multiagent dynami-

cal system (18) and (19) and assume that Assumptions 1 and

2 hold. Then fi(x) = 0 for all i = 1, . . . , q if and only if

x1 = · · · = xq . Furthermore, αe, α ∈ R, is an equilibrium

state of (18) and (19).

IV. APPLICATIONS TO NETWORK CONSENSUS WITH

TIME-DEPENDENT COMMUNICATION LINKS

Communication links among multiagent systems are often

time-varying due to multipath effects and exogenous dis-

turbances leading to dynamic information exchange topolo-

gies. In this section, we develop a time-varying consensus

protocol to achieve agreement over a network with time-

dependent communication links. First, we design a time-

varying nonlinear consensus protocol for (18). Specifically,

consider q mobile agents with the dynamics Gi given by (18).

Furthermore, consider the time-varying controller Gsi given

by

ui(t) =

q
∑

j=1,j 6=i

[cij + aij(t)]φij(xi(t), xj(t)), (22)

where aij : R → R+ is Lebesgue measurable, |aij(t)| is

locally Lebesgue integrable, aij(t) > −cij for all t ∈ R,

dist(aij(t), Iij) → 0 as t → ∞, Iij ⊂ R is compact, aij =
aji for all i, j = 1, . . . , q, i 6= j, cij = cji > 0 for all i, j =
1, . . . , q, i 6= j, and φij : R × R → R is locally Lipschitz
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continuous and satisfies Assumptions 1 and 2. Furthermore,

we assume that C = CT in Assumption 1.

Proposition 4.1: Consider the multiagent dynamical sys-

tem (18) and (22) and assume that Assumptions 1 and 2 hold.

Then ui ≡ 0 for all i = 1, . . . , q if and only if x1 = · · · = xq .

Furthermore, αe, α ∈ R, is an equilibrium state of (18) and

(22).

Theorem 4.1: Consider the closed-loop system G̃ given by

the multiagent dynamical system (18) and the time-varying

controller (22). Assume that Assumptions 1 and 2 hold.

Furthermore, assume that C = CT in Assumption 1. Then

for every α ∈ R, x1 = · · · = xq = α is a uniformly

semistable state of G̃. Furthermore, xi(t) →
1
q

∑q
i=1 xi0 and

1
q

∑q

i=1 xi0 is a uniformly semistable equilibrium state.

Note that Example 2.1 serves as a special case of The-

orem 4.1. In [20], the authors prove that the consensus

protocol given by the form

ui =

q
∑

j=1,j 6=i

C(i,j)sign(xj − xi)|xj − xi|
α (23)

is a finite-time consensus protocol for 0 < α < 1. Next, we

show that

ui(t) =

q
∑

j=1,j 6=i

[1 + aij(t)]C(i,j)sign(xj(t) − xi(t))

·|xj(t) − xi(t)|
α (24)

is a uniformly finite-time consensus protocol for 0 < α <
1, where aij : R → R+ is Lebesgue measurable, |aij(t)|
is locally Lebesgue integrable, aij(t) ≥ 0 for all t ∈ R,

limt→∞ aij(t) = 0, aij = aji for all i, j = 1, . . . , q, i 6= j.

Theorem 4.2: Consider the closed-loop system G̃ given by

the multiagent dynamical system (18) and the time-varying

controller (24). Assume that Assumptions 1 and 2 hold.

Furthermore, assume that C = CT in Assumption 1. Then

for every α ∈ R, x1 = · · · = xq = α is a uniformly finite-

time-semistable state of G̃. Furthermore, xi(t) = 1
q

∑q
i=1 xi0

for t ≥ T (x10, . . . , xq0) and 1
q

∑q
i=1 xi0 is a uniformly

semistable equilibrium state.

Note that Example 2.2 serves as a special case of Theo-

rem 4.2.

V. CONCLUSION

This paper extends the notions of semistability and finite-

time semistability to nonlinear time-varying dynamical sys-

tems. In particular, Lyapunov theorems for uniform semista-

bility and uniform finite-time semistability are established.

These results are used to develop and analyze information

consensus algorithms in dynamical networks with time-

dependent communication links.
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