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Abstract— This work provides a general framework for the
analysis and synthesis of a class of linear networked dynamic
systems (NDS). We focus our attention on NDS where the
underlying connection topology couples the agents at their
outputs. A distinction is made between NDS with homogeneous
agent dynamics and NDS with heterogeneous agent dynamics.
In the homogeneous setting, the H2 norm expression reduces
to the Frobenius norm of the underlying connection topology
incidence matrix, E(G), scaled by the H2 norm of the agents
comprising the NDS. In the heterogeneous case, the H2 norm
becomes the weighted Frobenius norm of the incidence matrix,
where the weights appear on the nodes of the graph. The H2

norm characterization is then used to synthesize NDS with
certain H2 performance. Specifically, a semi-definite program-
ming solution is presented to design a local controller for each
agent when the underlying topology is fixed. A solution using
Kruskal’s algorithm for finding a minimum weight spanning
tree is used to design the optimal NDS topology given fixed
agent dynamics.

I. INTRODUCTION

Networked dynamic systems (NDS) are a collection of
multiple dynamic systems that are coupled together through
a network. These types of systems are found in a range
of applications that involve, for example, the coordination
of multiple space, air, and land vehicles [1], [2], [3], [4].
Studying system theoretic notions from the perspective of the
underlying topology can lead to interpretations that explicitly
characterize the effects of the network on the behavior of the
system.

For linear and time-invariant systems, all the essential sys-
tems theoretic properties can be derived from the quadruple
system matrices (A,B, C, D). When considering mutli-agent
systems, the underlying connection topology, G, can typically
be embedded into the system matrices. It is then enlightening
to consider how certain properties of the system explicitly
depend on that topology. Therefore, when studying linear
NDS, one should consider the quintuple (A,B, C,D,G)
and explicitly describe the dependance of the underlying
topology on the system properties. Recent examples of
such network-centric analysis include relating closed-loop
stability properties of NDS to the spectral properties of the
graph Laplacian [5], relating controllability in consensus
seeking systems to graph symmetry [6], and graph-centric
observability properties of relative sensing NDS [7].

In this work we focus on a class of linear NDS where
the underlying connection topology couples the agents at
their outputs. Such systems are prevalent in formation flying
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applications where relative sensing is used to measure inter-
agent distances [8].

The main contribution of this paper is a graph-centric
characterization of the system H2 norm for both analysis and
synthesis purposes. A distinction is made between NDS with
homogeneous agent dynamics and NDS with heterogeneous
agent dynamics. Although the homogenous case is actually
a subset of the heterogeneous case, it is more illuminating to
consider these cases separately due to the algebraic simplicity
of the former case.

For the synthesis portion of this paper we consider two
general design scenarios that can be akin to an inner-loop
control design for an NDS. In the first case, we focus on
the design of a local H2 controller for each agent when
the underlying connection topology is given and fixed. In
addition to satisfying local performance objectives (such as
those typically found in H2 synthesis), the proposed synthe-
sis procedure also satisfies a global NDS objective related to
the underlying connection topology. A semi-definite program
is derived as a solution method for this problem.

The second synthesis objective focuses on the design of
the connection topology that optimizes the H2 performance
of the NDS. Topology design can be considered a problem
in combinatorial optimization, which can be a prohibitively
hard to solve when the number of agents is large. The results
of this paper shows that the problem can be solved using
Kruskal’s minimum spanning tree algorithm. It should also
be noted that the design of the underlying topology in the
context of systems theoretic properties, such as the H2 norm,
has received little attention in the literature.

II. PRELIMINARIES AND NOTATIONS

A. Graphs and their Algebraic Representation

We make use of results from algebraic graph theory. The
reader is referred to [9] for a detailed treatment of the subject
and we present here only a minimal summary of relevant
constructs and results. An undirected (simple) graph G is
specified by a vertex set V and an edge set E whose elements
characterize the incidence relation between distinct pairs of
V .

We make extensive use of the |V| × |E| incidence matrix,
E(G), for a graph with arbitrary orientation. The columns of
E(G) are indexed by the edges, and the i-th row entry takes
the value one if it is the initial node of the corresponding
edge, negative one if it is the terminal node, and zero
otherwise. The degree of vertex i, di, is the cardinality
of the set of vertices adjacent to it. The diagonal matrix
Δ(G) contains the degree of each vertex on its diagonal.
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Fig. 1. Global NDS layer block diagram

The (graph) Laplacian of G,

L(G) := E(G)E(G)T = Δ(G) − A(G), (1)

is a rank deficient positive semi-definite matrix. The adja-
cency matrix, A(G), is the symmetric |V| × |V| matrix with
zero on the diagonal and one in the ij-th position if node i
is adjacent to node j.

B. Matrix Kronecker Products

Some important results on the Kronecker product are
presented here. The Kronecker product of two matrices A
and B is written as A ⊗ B.

Theorem 2.1 ([10]): Let A ∈ R
m×n and B ∈ R

p×q each
have a singular value decomposition of A = UAΣAV T

A and
B = UBΣBV T

B . The singular value decomposition of the
Kronecker product of A and B is then A ⊗ B = (UA ⊗
UB)(ΣA ⊗ ΣB)(V T

A ⊗ V T
B ).

An immediate consequence of Theorem 2.1 is the following
result on the matrix 2-norm, ‖A ⊗ B‖2 = ‖A‖2 ‖B‖2.
We also make extensive use of the following Kronecker
product matrix multiplication property, (A ⊗ B)(C ⊗ D) =
(AC ⊗ BD), where the matrices are all of commensurate
dimensions.

III. HOMOGENEOUS AND HETEROGENEOUS NDS

A NDS consists of two system layers. The first can be
considered as the local agent layer corresponding to the
dynamics of the individual agents in the ensemble. The
second layer is a global NDS layer that represents the
complete interconnected system. This section develops a
general linear model for NDS that includes both the local
and global layers.

We identify two classes of NDS in this paper: 1) homo-
geneous NDS, and 2) heterogeneous NDS. For both cases,
we will work with linear and time-invariant systems,

Σi :

⎧⎨
⎩

ẋi(t) = Aixi(t) + Biui(t) +Γiwi(t)
zi(t) = Cz

i xi(t) +Dz
i ui(t)

yi(t) = Cy
i xi(t),

(2)

where each agent is indexed by the sub-script i. Here,
xi(t) represents the state, ui(t) the control, wi(t) an
exogenous input (e.g. disturbances), zi(t) the controlled
variable, and yi(t) is the measured output. In the ho-
mogeneous case, it is assumed that each dynamic agent
in the NDS is described by the same set of lin-
ear state-space dynamics (e.g. (Ai, Bi, Γi, C

z
i , Dz

i , Cy
i ) =

(Aj , Bj , Γj , C
z
j , Dz

j , Cy
j ), for all i, j). When working with

homogeneous NDS, we drop the sub-script for all state-space
and operator representations of the system.

As we are focusing on the H2 properties of this system,
we assume no feedforward term of the control ui(t) and
no noises in the measurements (e.g. strictly proper system).
Additionally, we assume a minimal realization for each agent
with the outputs of each agent being compatible (e.g., system
outputs correspond to the same physical quantity). It should
be noted that in a heterogeneous system, the dimension of
each agent need not be the same. However, without loss of
generality we assume each agent to have the same dimension.

We denote the open-loop map from wi(t) to yi(t) as
Tw �→y

i , and the closed-loop map from wi(t) to zi(t) as
Tw �→z

i . The H2 synthesis problem for a local agent is to
design a feedback controller of the form ui(t) = Kiyi(t)
that minimizes the closed-loop system norm, ‖Tw �→z

i ‖2.
The parallel interconnection of all agents is described with

the following state-space description:

ẋ(t) = Ax(t) + Bu(t) + Γw(t)
z(t) = Czx(t) + Dzu(t) (3)
y(t) = Cyx(t),

with x(t), u(t), w(t), z(t), and y(t) denoting, respectively,
the concatenated state vector, control vector, exogenous input
vector, controlled vector, and output vector of all the agents
in the NDS. The matrices A, B, Γ, Cz , Dz , and Cy are
the block diagonal aggregation of each agent’s state-space
matrices.

The global NDS layer we examine for the duration of
this paper is motivated by the relative sensing problem. The
sensed output of the NDS is the vector yG(t) containing the
relative state information of each agent and its neighbors.
For example, the output sensed across an edge e = (i, i′)
would be of the form yi(t) − yi′(t). This can be compactly
written as

yG(t) = (E(G)T ⊗ I)y(t). (4)

The global layer is visualized in the block diagram in Figure
1.

When considering the analysis of the global layer, we are
interested in studying the map from the agent’s exogoneous
inputs to the NDS sensed output, which we denote by
the operator Tw �→G

hom for homogeneous NDS, and Tw �→G
het

for heterogeneous NDS. Using the above notations and the
Kronecker properties of §II-B, we can express the homoge-
neous and heterogeneous NDS in a compact form, shown in
equations (5) and (6).

IV. H2 SYSTEM NORM OF NDS

The H2 norm of a system is an important performance
metric in the analysis and design of feedback systems.
This section aims to explicitly characterize the affect of the
network on the H2 norm of the system.

The H2 norm of a system can be calculated in a variety of
ways. One description involves the observability grammian
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Σhom(G)

⎧⎪⎪⎨
⎪⎪⎩

ẋ(t) = (I|V| ⊗ A)x(t) + (I|V| ⊗ B)u(t) + (I|V| ⊗ Γ)w(t)
z(t) = (I|V| ⊗ Cz)x(t) + (I|V| ⊗ Dz)u(t)
y(t) = (I|V| ⊗ Cy)x(t)
yG(t) = (E(G)T ⊗ Cy)x(t)

(5)

Σhet(G)

⎧⎪⎪⎨
⎪⎪⎩

ẋ(t) = Ax(t) + Bu(t) + Γw(t)
z(t) = Czx(t) + Dzu(t)
y(t) = Cyx(t)
yG(t) = (E(G)T ⊗ I)Cyx(t)

(6)

of the system. The observability grammian for an individual
agent based on the dynamics in (2) is defined as

Y (i)
o =

∫ ∞

0

eAT
i t(Cy

i )T Cy
i eAitdt . (7)

The observability grammian can be calculated by solving
a system of linear equations, described by the Lyapunov
equation AT

i Y
(i)
o + Y

(i)
o Ai + (Cy

i )T Cy
i = 0.

Another description involves the controllability grammian
of the system. The controllability grammian for an individual
agent (from the exogenous input channel) based on the
dynamics in (2) is defined as

X(i)
c =

∫ ∞

0

eAitΓiΓT
i eAT

i tdt , (8)

with the corresponding Lyapunov equation AiX
(i)
c +

X
(i)
c AT

i + ΓiΓT
i = 0.

The H2 norm of each agent from the exogenous input
channel to the measured output can be expressed in terms of
the grammians as

‖Tw �→y
i ‖2 =

√
tr(ΓT

i Y
(i)
o Γi) =

√
tr(CiX

(i)
c CT

i ). (9)

Using the above description we can begin to understand
how the underlying network topology influences the system
norm. We separate our analysis into the homogeneous and
heterogeneous cases.

A. Homogeneous NDS H2 Norm

The H2 norm of the homogeneous NDS described in (5)
can be written in terms of the observability grammian. As
mentioned in §III, when examining the global NDS layer,
we consider the map Tw �→G

hom . Therefore, the expression for
the observability grammian of the global NDS layer in (5)
is

Yo =
∫ ∞

0

e(IN⊗A)T t(E(G)T⊗ Cy)T (E(G)T⊗ Cy)e(IN⊗A)tdt

= L(G) ⊗ Yo, (10)

where Yo represents the observability grammian of a single
agent in the network (described in (7)).

Using (10), we have the following characterization of the
H2 norm,

‖Tw �→G
hom ‖2 =

√
tr((IN ⊗ Γ)T (L(G) ⊗ Yo)(IN ⊗ Γ))

= ‖E(G)‖F ‖Tw �→y‖2, (11)

where ‖M‖F denotes the Frobenius norm of the matrix M .

The expression in (11) gives an explicit characterization of
how the network affects the overall gain of the NDS. In the
homogeneous case, we can focus our attention on how the
Frobenius norm of the incidence matrix changes with the
addition or removal of an edge. Recall that the Frobenius
norm of a matrix can be expressed as the sum of the vector
2-norm of each column.

In the case of the incidence matrix, each column, rep-
resenting a single edge of the graph, always has the same
structure. Therefore, the Frobenius norm of the incidence
matrix can be expressed in terms of the number of edges in
the graph, |E|, as ‖E(G)‖F = (2 |E|)1/2.

One immediate consequence of this description is that the
NDS H2 norm is only dependent on the number of edges
in the graph rather than the actual structure of the topology.
This makes intuitive sense, as more edges would correspond
to additional amplification of the disturbances entering the
system.

If we consider only connected graphs, then we have
immediate lower and upper bounds on the H2 norm of the
system,

‖Tw �→G
hom ‖2

2 ≥ 2 ‖Tw �→y‖2
2 (|V| − 1). (12)

The lower bound is attained with equality whenever the
underlying graph is a spanning tree. It is clear from the
definition of the Frobenius norm that the choice of tree is
inconsequential (e.g. a star or a path).

If we assume that all graphs are simple, that is they do not
have multiple edges between a single pair of nodes, then the
upper bound for the system norm is achieved by the complete
graph,

‖Tw �→G
hom ‖2

2 ≤ 2 ‖Tw �→y‖2
2 |V| (|V| − 1) (13)

B. Heterogeneous NDS H2 Norm

In the heterogeneous case, the NDS H2 norm can be
derived by using (9) as,

‖Tw �→G
het ‖2

2 = tr
{
(E(G)T⊗ I)CyXc(Cy)T (E(G)⊗ I)

}
,

(14)

where Xc denotes the block diagonal aggregation of each
agent’s controllability grammian, as definied in (8). First,
note that tr

{
CyXc(Cy)T

}
=

∑|V|
i=1 ‖Tw �→y

i ‖2
2. Using the

cycle property of the trace operator and exploiting the block
diagonal structure of the argument leads to the following
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identity simplification,

tr
{
CyXc(Cy)T ((Δ(G) − A(G))⊗I)

}
=

∑
i

tr
{

Cy
i X(i)

c (Cy
i )T (di⊗I)

}
=

∑
i

di ‖Tw �→y
i ‖2

2,

where di is the degree of the i-th agent in the graph.
This can now be used to obtain the following expression

for the H2 norm of the system,

‖Tw �→G
het ‖2 =

(∑
i

di ‖Tw �→y
i ‖2

2

)1/2

. (15)

An even further examination of the above term reveals that
it can be written as the Frobenius norm of a node-weighted
incidence matrix,

‖Tw �→G
het ‖2 = ‖

⎡
⎢⎣

‖Tw �→y
1 ‖2

. . .
‖Tw �→y

|V| ‖2

⎤
⎥⎦E(G)‖F .

(16)

When each agent has the same dynamics, (16) reduces to
the expression in (11). This characterization paints a very
clear picture of how the placement of an agent within a
certain topology affects the overall system gain. In order to
minimize the gain, it is beneficial to keep systems with high
norm in locations with minimum degree.

V. SYNTHESIS OF NDS

The results of §IV can be used to develop a performance
metric for the synthesis of NDS. The objective is to de-
sign a local controller Ki for each agent in the ensemble
that minimizes some local performance objective, ‖Tw �→z

i ‖2

while additionally minimizing the global NDS objective,
‖Tw �→G

het ‖2. This is visualized in the block diagram in Figure
2. It should be noted that this problem does not consider
the design of feedback controllers to achieve higher level
objectives for the network, such as formation control. Rather,
this procedure is analogous to an inner-loop control design,
whereas additional performance involving the network would
be likened to the outer-loop design of the system.

In this setting, we propose two scenarios for the synthesis
of NDS. In the first case, we consider designing the local
control for each agent when the underlying topology and the
placement of agents within that topology is given and fixed.
A semi-definite programming solution is developed to solve
this problem.

The second case examines how to design the optimal
topology and placement of agents within the topology,
assuming that each agent already has a local controller
designed. We cite a result from combinatorial optimization
and describe how it can be applied to this problem.

A. Local Agent Control for Fixed Topology

For this problem we will consider a heterogeneous NDS
with a given and fixed topology, E(G). Each agent, Σi, is
also assigned a fixed location within the network. From a

G
yG(t)

w1(t)

w|V|(t)

Σ1

K1

Σ|V|

K|V|

z|V|(t)

z1(t)

Fig. 2. H2 Synthesis of NDS

synthesis point of view, each agent behaves independently
and does not use information from the NDS for its control.

To simplify this discussion, we will assume that each agent
has full-state feedback available for its controller (Cy

i = I).
For this example, we also assume that the global NDS output
corresponds to a relative position measurement. Therefore,
the NDS output yG(t) will be described as

yG(t) = E(G)T ⊗ [
1T 0 · · · 0

]
= E(G)T ⊗ Cp ; (17)

here we have assumed the states corresponding to position
are the first p states of the state vector x(t).

The state-feedback optimal H2 control problem for a
single agent without considering the global NDS layer can
be formulated as an SDP [11].

min
Wi,Xi,Zi

tr[Wi] (18)

s.t. [
Ai Bi

] [
Xi

Zi

]
+

[
Xi ZT

i

] [
AT

i

BT
i

]
+ΓiΓT

i < 0[
Xi (Cz

i Xi + Dz
i Zi)T

(Cz
i Xi + Dz

i Zi) Wi

]
> 0;

the control gain can then be reconstructed as Ki = ZiX
−1
i .

From the above SDP, we have that ‖Tw �→z
i ‖2

2 = tr(Wi).
Here, we note that in the above SDP, the matrix Xi actually
corresponds to the controllability grammian of the closed-
loop system for agent i. That is, it is the controllability
grammian for a realization of the system Tw �→z

i .
The SDP in (18), however, does not incorporate the global

NDS performance objective into the problem. While each
agent can generate a solution to (18) independently of each
other, the addition of the global NDS layer couples the
design of each agent’s controller. To illustrate this, we should
examine the map Tw �→G

het in the context of Figure 2. This is
easily accomplished by considering the system in (6). We
will treat the NDS output yG(t) as an additional performance
variable, and rewrite the system as

ẋ(t) = Ax(t) + Bu(t) + Γw(t)[
z(t)
yG(t)

]
=

[
Cz

E(G)T ⊗ Cp

]
x(t) +

[
Dz

0

]
u(t)

y(t) = Ix(t).
(19)

Using the augmented state-space description in (19) we
have the following result for the synthesis of controllers for
each agent while incorporating the global NDS objecitve.
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Theorem 5.1: Given the NDS system described in (19), a
local state-feedback controller of the form ui(t) = Kixi(t)
that minimizes local performance objectives in addition to
the global NDS performance objective can be found by
solving

min
Wi,Xi,Zi,Vi

|V|∑
i

tr[Wi] + tr[Vi] (20)

s.t. [
Ai Bi

] [
Xi

Zi

]
+

[
Xi ZT

i

] [
AT

i

BT
i

]
+ΓiΓT

i ≤ 0 (21)[
Xi (Cz

i Xi + Dz
i Zi)T

(Cz
i Xi + Dz

i Zi) Wi

]
> 0 (22)[

Xi (CpXi)T

CpXi
1
di

Vi

]
> 0 (23)

where Ki = ZiX
−1
i .

Proof: Consider the system in (19) with a
control u(t) = Kx(t) implemented, where K =
diag(K1, . . . , K|V|). The closed-loop system becomes

Σcl

⎧⎨
⎩

ẋ(t) = (A + BK)x(t) + Γw(t)[
z(t)
yG(t)

]
=

[
Cz + DzK
E(G)T ⊗ Cp

]
x(t). (24)

To guarantee the stability of the closed loop system, we
require that A + BK be Hurwitz. This is guaranteed by
the LMI given in (21) by noting the block diagonal structure
of the matrix, and defining Zi = KiXi. In fact, when the
constraint (21) is satisfied at equality, we note that Xi is the
controllability grammian for the system in (24).

The H2 norm of (24) can be calculated as

‖Σcl‖2
2 = tr

{[
Cz + DzK
E(G)T ⊗ Cp

]
X

[
Cz + DzK
E(G)T ⊗ Cp

]T
}

= tr
{
(Cz + DzK)X(Cz + DzK)T

}
+

tr
{
(E(G)T ⊗ Cp)X(E(G)T ⊗ Cp)T

}
, (25)

where X = diag(X1, . . . , X|V|).
The first term on the right hand side corresponds precisely

to the H2 norm of the system in (3) with the feedback law
u(t) = Kx(t) implemented. The second term is the H2

norm of Tw �→G
het . Using the results from §IV we can express

the performance as

‖Tw �→G
het ‖2

2 = tr
{
(E(G)T⊗ Cp)X(E(G)⊗ Cp)

}
=

|V|∑
i

ditr
{
CpXiC

T
p

}
. (26)

The objective is to minimize ‖Σcl‖2, which can be ac-
complished by minimizing both terms in the right-hand side
of (25). Using the matrix Schur-complement, we note that
diCpXiC

T
p < Vi is equivalent to[

Xi (CpXi)T

CpXi
1
di

Vi

]
> 0. (27)

We now note that if diCpXiC
T
p < Vi, then

ditr{CpXiC
T
p } < tr{Vi}.

A similar derivation is used to arrive at the LMI in (22).

A striking feature of the SDP (20)-(23) is its structure.
Although the global NDS layer couples each agent, we see
that the coupling can be removed via the formulation of the
H2 norm. The SDP is therefore separable across each of the
agents which has implications for the parallelization of the
computation and decision-making process.

B. Topology Design and Agent Placement

In this section, we consider how to design the underlying
connection topology and where to place agents within that
topology. Recall from §IV that in terms of the H2 norm
objective, an optimal topology should always correspond to a
spanning tree. The design problem, therefore, is to determine
which spanning tree will achieve the smallest H2 norm for
the NDS.

We assume in this case that each agent has already
adopted a feedback controller for its operation. Using the
same relative position sensing model, the NDS state-space
description can be written as

ẋ(t) = Ax(t) + Γw(t)
yG(t) = (E(G)T ⊗ Cp)x(t). (28)

The design of the topology reduces to the design of the
incidence matrix, E(G). This problem is combinatorial in
nature, as there are only a finite number of graphs that
can be constructed from a set of N nodes. As the number
of agents in the NDS becomes large, solving this problem
becomes prohibitively hard. However, we find that with an
appropriate modification of the problem statement, results
from combinatorial optimization can be used, leading to a
polynomial-time algorithm.

Specifically, the minimum spanning tree (MST) problem
solves this problem. The MST can be efficiently solved using
Kruskal’s algorithm in O(|E| log |V|) time. The algorithm is
given below and a proof of its correctness can be found in
[12].

Algorithm 1: Kruskal’s Algorithm
Data: A connected undirected graph G(V, E) and

weights w : E �→ R.
Result: A spanning tree Gt of minimum weight.
begin

Sort the edges such that
w(e1) ≤ w(e2) ≤ · · · ≤ w(e|E|), where ei ∈ E
Set Gt := Gt(V, ∅)
for i := 1 to |E| do

if Gt + ei contains no cycle then
set Gt := Gt + ei

end

In order to apply the MST to the H2 synthesis problem we
must reformulate the original problem statement. To begin,
we first write the expression for the H2 norm of the system
in (28) as
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‖Tw �→G
het ‖2

2 =
|V|∑
i

ditr{CpXiC
T
p } =

|V|∑
i

di‖Tw �→p
i ‖2

2. (29)

We re-emphasize here that the NDS norm description is
related to the degree of each node in the network. Using
the weighted incidence graph interpretation of the norm, as
in (16), we see that the gain of each agent, ‖Tw �→p

i ‖2
2, acts

as a weight on the nodes.
As each agent is assumed to have fixed dynamics, the

problem of minimizing the NDS H2 norm reduces to finding
the degree of each agent while ensuring the resulting topol-
ogy is a spanning tree. This objective is related to properties
of the nodes of the graph. To use the MST results, we must
convert the objective from weights on the nodes to weights
on the edges.

Consider the graph G = (V, E) with fixed weights wi on
each node (i = 1, . . . , |V|). The node-weighted Frobenius
norm of the incidence matrix is

‖WE(G)‖2
F =

∑
i

diw
2
i ; W = diag(w1, . . . , w|V|). (30)

Next, consider the effect of adding an edge ê = (i, j) to E
in terms of the Frobenius norm of the augmented incidence
matrix,

‖W [
E(G) ê

] ‖2
F =

(∑
k

dkw2
k

)
+ w2

i + w2
j , (31)

where dk represents the degree of node k before adding
the new edge ê. This shows that each edge ê = (i, j)
contributes (w2

i +w2
j ) to the system norm. Therefore, weights

on the edges can be constructed by adding the node weights
corresponding to the nodes adjacent to each edge as

we = |E(G)T |w2
n. (32)

This result can be used to generate an equivalent norm
characterization to the one presented in (29)

‖Tw �→G
het ‖2

2 = ‖ |E(G)T |

⎡
⎢⎣

‖Tw �→p
1 ‖2

2
...

‖Tw �→p
|V| ‖2

2

⎤
⎥⎦ ‖1, (33)

where ‖x‖1 =
∑

i |xi|.
Using the above transformation from node weights to edge

weights, we arrive at the following result.
Theorem 5.2: The connection topology that minimizes

the H2 norm of (28) can be found using Kruskal’s MST
algorithm with input data G, and weights parameterized as
in (32), with wn corresponding to the H2 norm of each
agent.

Proof: The proof follows from (29) and the transforma-
tion of node weights to edge weights described in (30)-(32).

Lemma 5.3: When the input graph in Theorem 5.2 is
the complete graph, then the star graph with center node
corresponding to the agent with minimum norm is the (non-
unique) optimal topology.

Proof: The degree of the center node in a star graph is
N−1, and all other nodes have degree one. Assume the node
weights are sorted as w1 ≤ · · · ≤ wN , then the H2 norm of
the NDS is ‖Tw �→G

het ‖2
2 = (N − 1)w1 +

∑N
i=2 wi. Any other

tree can be obtained by removing and adding a single edge,
while ensuring connectivity. With each such operation, the
cost is non-decreasing, as any new edge will increase the
degree of node i > 1 and by assumption w1 ≤ wi.

Theorem 5.2 is especially useful if there are certain
communication or sensing constraints between agents. For
example, one may consider a scenario where agents are
initially randomly distributed and can only sense neighboring
agents within a specified range. The results of Theorem 5.2
can be used to determine the optimal spanning tree for that
initial network.

VI. CONCLUDING REMARKS

This paper focused on the analysis and synthesis of a class
of linear NDS based on a relative sensing model. The results
of this paper highlight an important connection between cer-
tain graph-theoretic concepts and systems-theoretic proper-
ties. Perhaps the most salient feature of this work pertains to
the application of the celebrated MST algorithm from combi-
natorial optimization for designing interconnection topology
for overall optimal H2 performance. This work also suggests
a close relationship between systems-theoretic properties and
graph properties in NDS which can be examined further in
the systems community. In fact, we believe that developing
efficient solution methods for the design of such systems
will involve connecting and interpreting results from graph
theory and combinatorial optimization in a systems-theoretic
context.
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