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Abstract— A neuroadaptive output feedback control architec-
ture for nonlinear nonnegative dynamical systems with input
amplitude constraints is developed. Specifically, the neuroad-
aptive controller guarantees that the imposed amplitude and
integral input constraints are satisfied and the physical system
states remain in the nonnegative orthant of the state space.
The proposed approach is used to control the infusion of the
anesthetic drug propofol for maintaining a desired constant
level of depth of anesthesia for noncardiac surgery in the face
of infusion rate constraints and a drug dosing constraint over
a specified period.

I. INTRODUCTION

Actuator nonlinearities arise frequently in practice and can
severely degrade closed-loop system performance, and in
some cases drive the system to instability, if not accounted
for in the control design process. These effects are even more
pronounced for adaptive controllers which continue to adapt
when the feedback loop has been severed due to the presence
of actuator saturation causing unstable controller modes to
drift, which in turn leads to severe windup effects leading
to unacceptable transients after saturation. Direct adaptive
controllers for adaptive tracking of multivariable nonlinear
uncertain systems with amplitude saturation constraints have
been developed in the literature (see [1] and the references
therein).

The presence of control rate saturation may further ex-
acerbate the problem of control amplitude saturation. To
address amplitude and rate saturation constraints the authors
in [1] construct a reference system (governor or supervisor)
to address tracking and regulation in the face of actuator
constraints by deriving adaptive update laws that guarantee
that the error system dynamics are asymptotically stable and
the adaptive controller gains are Lyapunov stable. In the
case where the actuator amplitude and rate are limited, the
adaptive control signal to the reference system is modified
to effectively robustify the error dynamics to the saturation
constraints, and hence, guaranteeing asymptotic stability of
the error states.

Even though adaptive and neuroadaptive controllers for
drug delivery systems have been developed in the literature
[2]–[6], adaptive control for drug dosing with actuator satu-
ration effects is rather limited [7]. An implicit assumption
inherent in most adaptive control frameworks for clinical
pharmacology is that the adaptive control law is implemented
without any regard to actuator amplitude and rate saturation
constraints. Of course, any electromechanical control actu-
ation device (e.g., infusion pump) is subject to amplitude
and/or rate constraints leading to saturation nonlinearities
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enforcing limitations on control amplitudes and control rates.
More importantly, in physiological applications, drug infu-
sion rates can vary from patient to patient, and, to avoid
overdosing, it is vital that the infusion rate does not exceed
patient-specific threshold values. As a consequence, actuator
constraints (e.g., infusion pump rate constraints) need to be
accounted for in drug delivery systems.

Nonnegative and compartmental systems are essential in
capturing the behavior of a wide range of dynamical systems
involving dynamic states whose values are nonnegative [8].
While nonnegative and compartmental systems have wide
applicability in biology and medicine, their use in the specific
field of pharmacokinetics is essential in developing models
for closed-loop control drug administration [8]. In this paper,
we develop a neuroadaptive control framework for nonnega-
tive dynamical systems with actuator amplitude and control
integral constraints. Specifically, building on the work of [6]
we develop an output feedback neural network controller
that operates over a tapped delay line (TDL) of available
input and output measurements. The neuroadaptive laws for
the neural network weights are constructed using a linear
observer for the nominal normal form system error dynamics.

The proposed approach is applicable to a specific class
of nonlinear nonnegative dynamical systems with control
amplitude saturation constraints as well as control integral
constraints. In addition, since in pharmacological applica-
tions involving active drug administration control inputs
as well as the system states need to be nonnegative, the
proposed neuroadaptive output feedback controller also guar-
antees that the control signal as well as the physical system
states remain nonnegative. Using an electroencephalogram
(EEG) measurement as an objective, quantitative measure of
consciousness, the proposed framework is used to control
the infusion of an anesthetic drug for maintaining a desired
constant level of depth of anesthesia during surgery in the
face of infusion rate constraints and a drug dosing constraint
over a specified time interval.

II. MATHEMATICAL PRELIMINARIES

In this section, we introduce notation, several definitions,
and some key results concerning nonlinear nonnegative dy-
namical systems [8] that are necessary for developing the
main results of this paper. Specifically, for x ∈ R

n we write
x ≥≥ 0 (resp., x >> 0) to indicate that every component
of x is nonnegative (resp., positive). In this case, we say
that x is nonnegative or positive, respectively. Likewise,
A ∈ R

n×m is nonnegative or positive if every entry of A
is nonnegative or positive, respectively, which is written as

A ≥≥ 0 or A >> 0, respectively. Let R
n

+ and R
n
+ denote the

nonnegative and positive orthants of R
n, that is, if x ∈ R

n,

then x ∈ R
n

+ and x ∈ R
n
+ are equivalent, respectively, to

x ≥≥ 0 and x >> 0. Furthermore, we write (·)T to denote
transpose, tr(·) for the trace operator, λmin(·) to denote the
minimum eigenvalue of a Hermitian matrix, and ‖ · ‖ for a
vector norm in R

n.

Definition 2.1: Let T > 0. A real function u : [0, T ] →
R

m is a nonnegative (resp., positive) function if u(t) ≥≥ 0
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(resp., u(t) >> 0) on the interval [0, T ].

The following definition introduces the notion of essen-
tially nonnegative vector fields.

Definition 2.2: Let f = [f1, . . . , fn]T : D ⊆ R
n

+ → R
n.

Then f is essentially nonnegative with respect to x̂ =
[x1, . . . , xr]

T
, r ≤ n, if fi(x) ≥ 0 for all i = 1, . . . , r and

x ∈ R
n

+ such that xi = 0, i = 1, . . . , r, where xi denotes the
ith component of x. f is essentially nonnegative if fi(x) ≥ 0
for all i = 1, . . . , n and x ∈ R

n

+ such that xi = 0.

Note that if f(x) = Ax, where A ∈ R
n×n, then f

is essentially nonnegative if and only if A is essentially
nonnegative, that is, A(i,j) ≥ 0, i, j = 1, ..., n, i 6= j, where
A(i,j) denotes the (i, j)th entry of A.

III. NEUROADAPTIVE OUTPUT FEEDBACK CONTROL

WITH ACTUATOR CONSTRAINTS

In this section, we consider the problem of characterizing
neuroadaptive dynamic output feedback control laws for
nonlinear uncertain dynamical systems with actuator ampli-
tude constraints to achieve reference model output tracking.
Specifically, consider the controlled nonlinear uncertain dy-
namical system G given by

ẋ(t) = A0x(t) +BΛ [h(u(t)) + f(x(t), z(t), û(t))] ,

x(0) = x0, t ≥ 0, (1)

ż(t) = fz(x(t), z(t)), z(0) = z0, (2)

y(t) = Cx(t) +WT
y σy(ŷ(t), û(t)), (3)

where x(t) ∈ R
r, t ≥ 0, is the state vector, u(t) ∈ R

m,
t ≥ 0, is the control input, y(t) ∈ R

m, t ≥ 0, is the sys-

tem output, û(t) , [u(t− τu), u(t− 2τu), . . . , u(t− pτu)]
is a vector of p-delayed values of the control in-

put with p ≥ 1 and τu > 0 given, ŷ(t) ,
[ y(t− τy), y(t− 2τy), . . . , y(t− qτy)] is a vector of q-
delayed values of the system output with q ≥ 1 and τy > 0
given, A0 ∈ R

r×r is a known Hurwitz and essentially
nonnegative matrix, B ∈ R

r×m is a known nonnegative input
matrix, Λ ∈ R

m×m is an unknown nonnegative and positive-

definite matrix, h(u(t)) = [h1(u1(t), . . . , hm(um(t))]
T

is
the constrained control input given by

hi(ui) ,























0, if ui ≤ 0,

u∗i , if ui ≥ u∗i ,

ui, otherwise,

i = 1, . . . , m, (4)

where u∗i > 0, i = 1, . . . , m, are given constants, f : R
r ×

R
n−r × R

mp → R
m is Lipschitz continuous, bounded, and

essentially nonnegative with respect to x for all z ∈ R
n−r

and û ∈ R
mp but otherwise unknown, that is, f(·, ·) is such

that fi(x, û) ≥ 0 if xi = 0, i = 1, . . . , n, for all z ∈ R
n−r

and û ∈ R
mp, fz : R

r × R
n−r → R

n−r is such that (2) is
input-to-state stable for all z ∈ R

n−r with x(t) viewed as
the input, C ∈ R

m×r is a known output matrix, Wy ∈ R
l×m

is an unknown matrix, and σy : R
mq×R

mp → R
l is a known

Lipschitz continuous function that is bounded on R
mq×R

mp.

In order to achieve output tracking, we construct a refer-
ence nonnegative dynamical system Gref given by

ẋref(t) = Arefxref(t) +Brefr(t), xref(0) = xref0 , t ≥ 0, (5)

yref(t) = Cxref(t), (6)

where xref(t) ∈ R
r, t ≥ 0, is the reference state vector,

r(t) ∈ R
d, t ≥ 0, is a bounded piecewise continuous

nonnegative reference input, Aref ∈ R
r×r is a Hurwitz

and essentially nonnegative matrix, and Bref ∈ R
r×d is a

nonnegative matrix.

As discussed in the Introduction, control (source) inputs
of drug delivery systems for physiological and pharmaco-
logical processes are usually constrained to be nonnegative
as are the system states. Hence, in this paper we develop
neuroadaptive dynamic output feedback control laws for
nonnegative systems with nonnegative control inputs. In
addition, to account for infusion rate constraints we develop
neuroadaptive control laws with actuator constraints. Specif-
ically, for the reference model output tracking problem our
goal is to design a nonnegative control input u(t), t ≥ 0,
predicated on the system measurement y(t), t ≥ 0, such that
‖y(t) − yref(t)‖ < γ for all t ≥ T , where ‖ · ‖ denotes
the Euclidean vector norm on R

m, γ > 0 is sufficiently

small, and T ∈ [0,∞), x(t) ≥≥ 0, t ≥ 0, for all x0 ∈ R
n

+,
and the control input u(·) in (1) is restricted to the class
of admissible controls consisting of measurable functions
u(t) = [u1(t), . . . , um(t)]T, t ≥ 0, such that (4) holds and

ηi(t) ,

∫ t

t−τs

hi(ui(s))ds ≤ η∗i , i = 1, . . . , m, t ≥ 0, (7)

where τs > 0 and η∗i > 0, i = 1, . . . , m, are given constants,
and ui(t) ≡ 0 for all t ∈ [−τs, 0] and i = 1, . . . , m. Note
that ηi(t), i = 1, . . . , m, t ≥ 0, given by (7) satisfies

η̇i(t) = hi(ui(t)) − hi(ui(t− τs)), ηi(0) = 0, t ≥ 0. (8)

Here, we assume that the function f(x, z, û) can be
approximated over a compact set Dx ×Dz ×Dû by a linear
in parameters neural network up to a desired accuracy. In
this case, there exists ε̂ : R

r × R
n−r × R

mp → R
m such

that ‖ε̂(x, û)‖ < ε̂∗ for all (x, z, û) ∈ Dx ×Dz ×Dû, where
ε̂∗ > 0, and

f(x, z, û) = WT
f σ̂(x, z, û) + ε̂(x, z, û),

(x, z, û) ∈ Dx ×Dz ×Dû, (9)

where Wf ∈ R
s×m is an optimal unknown (constant) weight

that minimizes the approximation error over Dx ×Dz ×Dû,
σ̂ : R

r × R
n−r × R

mp → R
s is a vector of basis functions

such that each component of σ̂(·, ·, ·) takes values between
0 and 1, and ε̂(·, ·, ·) is the modeling error. Note that s
denotes the total number of basis functions or, equivalently,
the number of nodes of the neural network.

In order to develop an output feedback neuroadaptive
controller, we use the approach developed in [9] for recon-
structing the system states via the system delayed inputs and
outputs. Specifically, we use a memory unit as a particular
form of a tapped delay line that takes a scalar time series
input and provides an (2mn− r)-dimensional vector output
consisting of the present values of the system outputs and
system inputs, and their 2(n−1)m− r delayed values given
by

ζ(t) , [y(t), y(t− d), . . . , y(t− (n− 1)d), . . . ,

y(t), y(t− d), . . . , y(t− (n− 1)d);

u1(t), u1(t− d), . . . , u1(t− (n− r1 − 1)d), . . . ,

um(t), um(t− d), . . . , um(t− (n− rm − 1)d)]T,

t ≥ 0, (10)

where ri denotes the relative degree of G with respect to the
output yi, i = 1, . . . ,m.
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The following matching conditions are needed for the
main result of this paper.

Assumption 3.1: There exist Ky ∈ R
m×m and Kr ∈

R
m×d such that A0 +BKyC = Aref and BKr = Bref .

Using the parameterization Λ = Λ̂ + ∆Λ, where ∆Λ ∈
R

m×m is an unknown symmetric matrix, the dynamics in
(1) can be rewritten as

ẋ(t) = A0x(t) +BΛ̂h(u(t)) +B [Λf(x(t), z(t), û(t)),

+∆Λh(u(t))] , x(0) = x0, t ≥ 0. (11)

Define W ,
[

WT
1 ,W

T
2

]T
∈ R

(s+m)×m, where W1 , WfΛ

and W2 , ∆ΛT. Using (9), (11) can be rewritten as

ẋ(t) = A0x(t) +BΛ̂u(t) +BWTσ(ζ(t), h(u(t)))

+BΛ̂∆h(t) +BΛε̂(x(t), z(t), û(t))

+BWT
1 [σ̂(x(t), z(t), û(t)) − σζ(ζ(t))] ,

x(0) = x0, t ≥ 0, (12)

where

σ(ζ(t), h(u(t))) ,
[

σT
ζ (ζ(t)), hT(u(t))

]T
, t ≥ 0, (13)

σζ : R
2mn−r → R

s is a vector of basis functions such that
each component of σζ(·) takes values between 0 and 1, and

∆h(u(t)) , h(u(t)) − u(t), t ≥ 0.

Next, consider a sequence of positive numbers {ρi}
∞

i=1
such that limi→∞ ρi = 0 and define the time-dependent set
Ωt,i and saturation impact times τ∗i (t) by

Ωt,i , {τ ≥ 0 : ηi(τ) = η∗i and there exists N > 0

such that for all i ≥ N, ηi(τ − ρi) < η∗i } ,
t ≥ 0, i = 1, . . . , m, (14)

τ∗i (t) ,







θi + max {τ : τ ∈ Ωt,i} , if Ωt,i 6= ∅,

0, otherwise,

t ≥ 0, i = 1, . . . , m, (15)

where θi > 0, i = 1, . . . , m, are design parameters.

Now, consider the control input u(t), t ≥ 0, given by

u(t) = Φ(η(t))ψ(t), t ≥ 0, (16)

where Φ(η(t)) , diag [φ1(η1(t)), . . . , φm(ηm(t))], t ≥ 0,
and

φi(ηi(t)) ,






















1, if 0 ≤ ηi(t) ≤ η∗i − δi and t ≥ τ∗i (t),

1
δi

(η∗i − ηi(t)), if η∗i − δi ≤ ηi(t) ≤ η∗i and t ≥ τ∗i (t),

0, otherwise,

t ≥ 0, i = 1, . . . , m, (17)

0 < δi < η∗i , i = 1, . . . , m, are design constant parameters
(chosen to be sufficiently small), and ψ(t) ∈ R

m, t ≥ 0, is
given by

ψ(t) = ψn(t) − ψad(t), t ≥ 0, (18)

where

ψn(t) = Λ̂−1[Kyy(t) +Krr(t)], t ≥ 0, (19)

ψad(t) = Λ̂−1
[

ŴT(t)σ(ζ(t), h(u(t)))

+KyŴ
T
y (t)σy(ŷ(t), û(t))

]

, t ≥ 0, (20)

and Ŵ (t) ∈ R
(s+m)×m, t ≥ 0, and Ŵy(t) ∈ R

l×m, t ≥ 0,
are update weights. Note that for all t ≥ 0 and i = 1, . . . , m,
0 ≤ φi(ηi(t)) ≤ 1. Furthermore, if ηi(t̂) = η∗i for every

t̂ ≥ 0, then hi(ui(t̂)) = 0, and hence, it follows from (8)
that the integral constraint (7) is satisfied.

Remark 3.1: The choice of φi(ηi), i = 1, . . . , m, is not
limited to the piecewise linear continuous function given by
(17). In particular, on the interval η∗i − δi ≤ ηi ≤ η∗i , φi(ηi)
can be any decreasing continuous function such that φi(η

∗

i −
δi) = 1 and φi(η

∗

i ) = 0.

Defining the tracking error state e(t) , x(t) − xref(t),
t ≥ 0, and using (16), (18)–(20), and Assumption 3.1, the
error dynamics are given by

ė(t) = Arefe(t) +BW̃T(t)σ(ζ(t), h(u(t)))

+BKyW̃
T
y (t)σy(ŷ(t), û(t)) +BΛ̂∆h(u(t)) + ε(t),

e(0) = x0 − xref0 , t ≥ 0, (21)

where

ε(t) , BΛ̂(Φ(t) − Im)ψ(t) +BΛε̂(x(t), z(t), û(t))

+BWT
1 [σ̂(x(t), z(t), û(t)) − σζ(ζ(t))] , t ≥ 0,

W̃ (t) , W−Ŵ (t), t ≥ 0, and W̃y(t) , Wy−Ŵy(t), t ≥ 0.

Next, to remove the effects due to saturation on the error
state e(t), t ≥ 0, consider the dynamical system given by

ės(t) = Arefes(t) +BΛ̂∆h(u(t)), es(0) = es0, t ≥ 0, (22)

ys(t) = Ces(t), (23)

where es(t) ∈ R
r, t ≥ 0, and define the augmented error

state ẽ(t) , e(t) − es(t), t ≥ 0. Now, it follows from (21)
and (22) that

˙̃e(t) = Aref ẽ(t) +B
[

KyW̃
T
y (t)σy(ŷ(t), û(t))

+W̃T(t)σ(ζ(t), h(u(t)))
]

+ ε(t), ẽ(0) = 0, t ≥ 0.

(24)

For the statement of our main result, define the projection

operator Proj(W̃ , Y ) by

Proj(W̃ , Y ) ,











Y, if µ(W̃ ) < 0,

Y, if µ(W̃ ) ≥ 0 and µ′(W̃ )Y ≤ 0,

Y − µ′T(W̃ )µ′(W̃ )Y

µ′(W̃ )µ′T(W̃ )
µ(W̃ ), otherwise,

where W̃ ∈ R
s×m, Y ∈ R

n×m, µ(W̃ ) ,
tr W̃TW̃−w̃2

max

εW̃

,

w̃max ∈ R is the norm bound imposed on W̃ , and εW̃ > 0.

Consider the update laws given by

˙̂
W (t) = ΓW Proj[Ŵ (t), σ(ζ(t), h(u(t)))ξTc (t)PB],

Ŵ (0) = Ŵ0, t ≥ 0, (25)

˙̂
Wy(t) = ΓyProj[Ŵy(t), σy(ŷ(t), û(t))ξTc (t)(PBKy

+P̃L)], Ŵy(0) = Ŵy0, (26)

where ΓW ∈ R
(s+m)×(s+m) and Γy ∈ R

l×l are positive
definite matrices, P ∈ R

r×r is a positive-definite solution of
the Lyapunov equation

0 = AT
refP + PAref +R, (27)
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where R > 0, and P̃ ∈ R
nξ×nξ is a positive-definite solution

of the Lyapunov equation

0 = (Â− LĈ)TP̃ + P̃ (Â− LĈ) + R̃, (28)

where R̃ > 0, Â ∈ R
nξ×nξ is Hurwitz, L ∈ R

nξ×m,
Ĉ ∈ R

m×nξ , and ξc(t) ∈ R
nξ , t ≥ 0, is the solution to

the estimator dynamics

ξ̇c(t) = Âξc(t) + L [y(t) − yref(t) − yc(t) − ys(t)] ,

ξc(0) = ξc0, t ≥ 0, (29)

yc(t) = Ĉξc(t) + ŴT
y (t)σy(ŷ(t), û(t)). (30)

Note that since h(u) is bounded for all u ∈ R
m and

f(x, z, û) is bounded for all (x, z, û) ∈ R
r × R

n−r × R
mp,

it follows that x(t), t ≥ 0, is bounded for all t ≥ 0,
and hence, ψn(t) is bounded for all t ≥ 0. Now, since
the projection operator used in the update laws (25) and

(26) guarantees the boundness of the update weights Ŵ (t),
t ≥ 0, and Ŵy(t), t ≥ 0, it follows that there exist u∗ > 0
and δ∗ > 0 such that ‖u(t)‖ ≤ u∗ and ‖∆h(u(t))‖ ≤
δ∗ for all t ≥ 0. Furthermore, note that there exists
ε∗ > 0 such that ‖ε(t)‖ ≤ ε∗ for all t ≥ 0 such that
(x(t), z(t), û(t)) ∈ Dx×Dz×Dû. Finally, there exist α1 > 0
and α2 > 0 such that ‖W̃T(t)σ(ζ(t), h(u(t)))‖ ≤ α1 and

‖W̃T
y (t)σy(ŷ(t), û(t))‖ ≤ α2 for all t ≥ 0.

For the statement of the main result of this paper, let ‖·‖∗ :
R

nξ×nξ → R be the matrix norm equi-induced by the vector
norm ‖ · ‖∗∗ : R

nξ → R.

Theorem 3.1: Consider the nonlinear uncertain dynamical
system G given by (1)–(3) with u(t), t ≥ 0, given by
(16) and reference model Gref given by (5) and (6) with
tracking error dynamics given by (21). Assume Assumption

3.1 holds, λmin(R) > 1, and λmin(R̃) > ‖P̃LĈ‖∗2. Then
there exists a compact positively invariant set Dα ⊂ R

r ×
R

r ×R
nξ ×R

(s+m)×m ×R
l×m such that (0, 0, 0,W,Wy) ∈

Dα, where W ∈ R
(s+m)×m and Wy ∈ R

l×m, and

the solution (e(t), es(t), ξc(t), Ŵ (t), Ŵy(t)), t ≥ 0, of
the closed-loop system given by (1)–(3), (16), (22), (23),
(25), (26), (29) and (30) is ultimately bounded for all

(e(0), es(0), ξc(0), Ŵ (0), Ŵy(0)) ∈ Dα with ultimate bound
‖y(t)−yref(t)‖ < γ, t ≥ T , where γ > 0. Furthermore, u(t),
t ≥ 0, satisfies (7) for all t ≥ 0, h(u(t)) ≥≥ 0, t ≥ 0, and

x(t) ≥≥ 0, t ≥ 0, for all x0 ∈ R
n

+.

A block diagram showing the neuroadaptive control archi-
tecture given in Theorem 3.1 is shown in Figure 1.

Remark 3.2: To apply Theorem 3.1 to the set-point reg-

ulation problem, let xe ∈ R
r

+ and r(t) ≡ r∗ be such that
0 = Arefxe + Brefr

∗ and yref(t) ≡ yd = Cxe, where

yd ∈ R
m

+ is a given desired set-point. In this case, the
controller signal is given by (16) and (18) with ψn(t) ≡ 0.

IV. NEUROADAPTIVE OUTPUT FEEDBACK CONTROL FOR

GENERAL ANESTHESIA WITH DRUG INFUSION

CONSTRAINTS

To illustrate the application of the neuroadaptive control
framework presented in Section III for general anesthesia
we develop a model for the intravenous anesthetic propofol.
The pharmacokinetics of propofol are described by the three
compartment model [8] shown in Figure 2, where x1 denotes
the mass of drug in the central compartment, which is the
site for drug administration and is generally thought to be
comprised of the intravascular blood volume (blood within

1

�




Plant (2)–(4)

−

∫

Observer (31), (32)

y

NN Controller
TDL

ξc

ζ

(17)–(21)

h(u)u

r
Ref. model (6), (7)

yref

+

System (24), (25)

ys

Neuroadaptive controller

η

Fig. 1. Block diagram of the closed-loop system.

arteries and veins) as well as highly perfused organs (organs
with high ratios of blood flow to weight) such as the heart,
brain, kidney, and liver. These organs receive a large fraction
of the cardiac output. The remainder of the drug in the body
is assumed to reside in two peripheral compartments, one
identified with muscle and one with fat; the masses in these
compartments are denoted by x2 and x3, respectively. These
compartments receive less than 20% of the cardiac output.

A mass balance of the three-state compartmental model
yields

ẋ1(t) = −[a11(c(t)) + a21(c(t)) + a31(c(t))]x1(t)

+a12(c(t))x2(t) + a13(c(t))x3(t) + h(u(t)),

x1(0) = x10, t ≥ 0, (31)

ẋ2(t) = a21(c(t))x1(t) − a12(c(t))x2(t),

x2(0) = x20, t ≥ 0, (32)

ẋ3(t) = a31(c(t))x1(t) − a13(c(t))x3(t),

x3(0) = x30, t ≥ 0, (33)

where c(t) = x1(t)/Vc, Vc is the volume of the central
compartment (about 15 l for a 70 kg patient), aij(c), i 6= j,
is the rate of transfer of drug from the jth compartment to
the ith compartment, a11(c) is the rate of drug metabolism
and elimination (metabolism typically occurs in the liver),
and h(u(t)), t ≥ 0, is the constrained infusion rate of the
anesthetic drug propofol into the central compartment. The
transfer coefficients are assumed to be functions of the drug
concentration c since it is well known that the pharmacoki-
netics of propofol are influenced by cardiac output [8] and,
in turn, cardiac output is influenced by propofol plasma
concentrations, both due to venodilation (pooling of blood
in dilated veins) and myocardial depression.

Experimental data indicate that the transfer coefficients
aij(·) are nonincreasing functions of the propofol con-
centration [8]. The most widely used empirical models
for pharmacodynamic concentration-effect relationships are
modifications of the Hill equation [8]. Applying this almost
ubiquitous empirical model to the relationship between trans-
fer coefficients implies that

aij(c) = AijQij(c), Qij(c) = Q0C
αij

50,ij/(C
αij

50,ij + cαij ),

where, for i, j ∈ {1, 2, 3}, i 6= j, C50,ij is the drug
concentration associated with a 50% decrease in the transfer
coefficient, αij is a parameter that determines the steepness
of the concentration-effect relationship, and Aij are positive
constants. Note that both pharmacokinetic parameters are
functions of i and j, that is, there are distinct Hill equations
for each transfer coefficient. Furthermore, since for many
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Fig. 2. Pharmacokinetic model for drug distribution during anesthesia

drugs the rate of metabolism a11(c) is proportional to the
rate of transport of drug to the liver we assume that a11(c)
is also proportional to the cardiac output so that a11(c) =
A11Q11(c).

To illustrate the neuroadaptive control of propofol, we
assume that C50,ij and αij are independent of i and j. Also,
since decreases in cardiac output are observed at clinically-
utilized propofol concentrations we arbitrarily assign C50 a
value of 4 µg/ml since this value is in the mid-range of
clinically utilized values. We also assign α a value of 3
[10]. This value is within the typical range of those observed
for ligand-receptor binding (see the discussion in [11]). The
nonnegative transfer and loss coefficients A12, A21, A13,
A31, and A11, and the parameters α > 1, C50 > 0, and
Q0 > 0, are uncertain due to patient gender, weight, pre-
existing disease, age, and concomitant medication.

Even though propofol concentration levels in the blood
plasma will lead to the desired depth of anesthesia, they
cannot be measured in real-time during surgery. Furthermore,
we are more interested in drug effect (depth of hypnosis)
rather than drug concentration. Hence, we consider a model
involving pharmacokinetics (drug concentration as a function
of time) and pharmacodynamics (drug effect as a function
of concentration) for controlling consciousness. Specifically,
we use an electroencephalogram (EEG) signal as a measure
of hypnotic drug effect of anesthetic compounds on the
brain [12]. Since electroencephalography provides real-time
monitoring of the central nervous system activity, it can
be used to quantify levels of consciousness, and hence, is
amenable for feedback control in general anesthesia.

The Bispectral Index (BIS), an EEG indicator, has been
proposed as a measure of hypnotic effect. This index quan-
tifies the nonlinear relationships between the component fre-
quencies in the electroencephalogram, as well as analyzing
their phase and amplitude. The BIS signal is related to drug
concentration by the empirical relationship

BIS(ceff(t)) = BIS0

(

1 −
cγeff(t)

cγeff(t) + ECγ
50

)

, (34)

where BIS0 denotes the baseline (awake state) value and,
by convention, is typically assigned a value of 100, ceff is
the propofol concentration in µg/ml in the effect-site com-
partment (brain), EC50 is the concentration at half maximal
effect and represents the patient’s sensitivity to the drug,
and γ determines the degree of nonlinearity in (34). Here,
the effect-site compartment is introduced to account for
finite equilibration time between the central compartment
concentration and the central nervous system concentration.

The effect-site compartment concentration is related to the
concentration in the central compartment by the first-order
model ([8])

ċeff(t) = aeff(c(t) − ceff(t)), ceff(0) = c(0), t ≥ 0, (35)

where aeff in min−1 is an unknown positive time constant.
In reality, the effect-site compartment equilibrates with the

central compartment in a matter of a few minutes. The
parameters aeff , EC50, and γ are determined by data fitting
and vary from patient to patient. BIS index values of 0 and
100 correspond, respectively, to an isoelectric EEG signal
(no cerebral electrical activity) and an EEG signal of a fully
conscious patient; the range between 40 and 60 indicates a
moderate hypnotic state.

Next, using a globally defined diffeomorphism we trans-
form the system given by (31)–(33) and (35) into the normal
form given by (1)–(3) and consider a set-point regulation
problem with a desired level of hypnosis corresponding to
BISTarget = 50. In the following simulation involving the
infusion of the anesthetic drug propofol we set EC50 =
5.6 µg/ml, γ = 2.39, and BIS0 = 100. Here, we use the neu-
roadaptive output feedback controller u(t) = φ(η(t))ψ(t),
t ≥ 0, where

φ(η(t)) =






















1, if 0 ≤ η(t) ≤ η∗ − δ and t ≥ τ∗(t),

1
δ
(η∗ − η(t)), if η∗ − δ ≤ η(t) ≤ η∗ and t ≥ τ∗(t),

0, otherwise,

t ≥ 0, (36)

η(t) =

∫ t

t−τs

h(u(s))ds, t ≥ 0, (37)

h(u(t)) =























0, if u(t) ≤ 0,

u∗, if u(t) ≥ u∗,

u(t), otherwise,

t ≥ 0, (38)

δ = 0.005, η∗ = 0.15 g, τs = 10 sec, θ = 5 sec, and
u∗ = 0.32 g/min. Note that (38) guarantees an infusion rate
constraint of 0.32 g/min, whereas (37) ensures a drug dosing
constraint of 0.15 g over a period of 10 seconds.

Next, let
ψ(t) = ψn(t) − ψad(t), (39)

where ψn(t) ≡ 0 and ψad(t) = ŴT(t)σ(ζ(t)), t ≥ 0, where

ζ(t) = [BISf(t− d),BISf(t− 2d), h(u(t− d)),

h(u(t− 2d))]T, (40)

d > 0, and

˙̂
W (t) = QBISProj[Ŵ1(t), σ(ζ(t))ξTc (t)PB], Ŵ (0) = Ŵ0,

t ≥ 0, (41)

where QBIS is a positive constant and ξc(t) ∈ R
2, t ≥ 0, is

the solution to the estimator dynamics

ξ̇c(t) = Âξc(t) + L(BIS(t) − BISTarget − yc(t) − ys(t)),

ξc(0) = ξc0, t ≥ 0, (42)

yc(t) = Ĉξc(t), (43)

where Â ∈ R
2×2, L ∈ R

2×1, Ĉ ∈ R
1×2, and ys(t), t ≥ 0,

is the output of the dynamical system

ės(t) = A0es(t) +B∆h(u(t)), es(0) = es0, t ≥ 0, (44)

ys(t) = Ces(t). (45)

Here, we assume that Wy = 0 so that Ŵ (t) ≡ 0.
Now, it follows from Theorem 3.1 that there exist positive
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constants γ and T such that |BIS(t) − BIStarget| ≤ γ,
t ≥ T , where BIS(t) is given by (34), for all nonnegative
values of the pharmacokinetic transfer and loss coefficients
A12, A21, A13, A31, A11 as well as all nonnegative coeffi-
cients α, C50, and Q0.

For our simulation we assume Vc = (0.228 l/kg)(M
kg), where M = 70 kg is the mass of the patient,
A21Q0 = 0.112 min−1, A12Q0 = 0.055 min−1, A31Q0 =
0.0419 min−1, A13Q0 = 0.0033 min−1, AeQ0 =
0.119 min−1, aeff = 3.4657 min−1, α = 3, and C50 =
4 µg/ml [10]. Note that the parameter values for α and C50
probably exaggerate the effect of propofol on cardiac output.
They have been selected to accentuate nonlinearity but they
are not biologically unrealistic. Furthermore, to illustrate the
efficacy of the proposed neuroadaptive controller we switch
the pharmacodynamic parameters EC50 and γ, respectively,
from 5.6 µg/ml and 2.39 to 7.2 µg/ml and 3.39 at t = 15 min
and back to 5.6 µg/ml and 2.39 at t = 30 min. Here,
we consider noncardiac surgery since cardiac surgery often
utilizes hypothermia which itself changes the BIS signal.

With B = [1, 0, 0]T, C = [1, 0, 0], Â =

[

0 1
−1 −1

]

,

L = [0, 1]T, Ĉ = [1, 0], QBIS = 2.0 × 10−4 g/min2, d =
0.005, and initial conditions x1(0) = x2(0) = x3(0) = 0 g,
ceff(0) = 0 g/ml, ξc(0) = [0, 0]T, es0 = [0, 0, 0]T, and

Ŵ (0) = 1×10−3[−312×1, 112×1]
T, Figure 3 shows the con-

centrations in the central and effect-site compartments versus
time. Note that the effect-site compartment equilibrates with
the central compartment in a matter of several minutes.
Figure 4 shows the BIS signal versus time and the amount
of propofol delivered over a 10-second window versus time.
Note that during the controller operation η(t) is far below
the clinical critical value η∗. Finally, Figure 5 shows the
constrained h(u(t)) and unconstrained u(t) propofol infusion
rate versus time.
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