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Abstract— Model-predictive control algorithms are applied to
a high capacity reverse osmosis (RO) membrane desalination
process simulation that utilizes feed flow-reversal in order to
prevent and/or reverse scale crystal formation on the membrane
surface. A dynamic non-linear model which incorporates feed
concentration and membrane properties is used for simulation
and demonstration of optimally controlled feed flow reversal.
Before flow reversal can take place on a high capacity RO
plant, the flow into the membrane unit must be carefully
reduced to eliminate the risk of membrane module damage and
unnecessary energy consumption. A cost-function is formulated
for the transition between the normal high flow steady-state
operating point to a low flow steady-state operating point where
it is safe to reverse the flow direction. Open-loop and closed-loop
simulations demonstrate non-linear model-predictive control
strategies that induce transition from the high-flow to low-flow
steady-states in an optimal way.

I. INTRODUCTION

Reverse osmosis (RO) membrane desalination has

emerged as one of the leading methods for water desalination

due to the low cost and energy efficiency of the process [19].

Lack of fresh water sources has necessitated further devel-

opment of these desalination plants, especially in areas with

dry climates. In many reverse osmosis processes, particularly

with brackish water feeds or processes running at a high level

of recovery, dissolved ions can precipitate out of solution

and crystallize on the membrane surface in a process called

scaling. Scale formation on the membrane surface will lead

to decreased permeate productivity [9], as well as permanent

membrane damage if scaling is allowed to progress past its

initial stages.

Several methods are currently used to prevent scale forma-

tion; addition of anti-scalant chemicals to the feed or flushing

the membrane units with low-TDS (total dissolved solids)

permeate water. These current methods of scale mitigation

have several disadvantages. Anti-scalants are only useful to a

degree, and if added in excess, may actually promote scaling

or fouling [20]. The cost of the anti-scalant compounds

is also an important consideration [4]. In the case of the

permeate flush, this process will require the reverse osmosis

operation to stop for a substantial amount of time to allow for

the flushing cycle, eliminating any permeate production (even

using up some of the previously produced permeate water).

To deal with these issues, a novel technique called feed
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flow reversal has been developed, which can prevent scale

formation without the addition of expensive chemicals or

extensive periods of system down-time [18]. This technique

uses a system of solenoid valves around the membrane

modules configured specifically so that the direction of the

feed flow through the membrane units can be reversed (see

Fig. 1). This reversal of the feed flow also reverses the axial

salt concentration profile [8] at the surface of the membrane,

effectively “resetting the induction clock”, where induction

refers to the amount of time before scale crystals begin to

form on the membrane surface [18]. The reversal, if activated

after crystals have already been formed, also allows the

dissolution of a substantial portion of scale deposited on the

membrane surface.

It is imperative to operate the flow reversal process for

the correct length of time; switching back to normal flow

too quickly may leave scale crystals on the membrane (and

in the case where scale crystals have not formed yet, the

induction clock will not “reset”), while operating the flow

reversal for too long may cause scale to form on the outlet

end of the membrane surface. Several techniques can be

employed to determine if scale has formed; measurements

of the permeate flow can be monitored to determine if flux

decline has occurred, or a novel method such as the EX-situ

Scale Observation Detector (EXSOD) system can be used

[21]. With the latter method, scale crystals can be detected

before flux decline occurs via automated image analysis

software (currently under development by the authors); this

algorithm is also able to trigger the switch between normal

flow and flow reversal mode.

When operating a system that utilizes feed flow reversal, it

is important to carry out the mode switching (from forward

flow to reverse flow) in a manner which will not cause

water hammer. The phenomenon of water hammer takes

place when fluid moving at a moderate to high velocity (

velocity > 1.5m
s

for the example in this work) suddenly en-

counters a blockage in the pipe (for instance, when a solenoid

valve is instantly closed). The fluid’s inertia causes it to

slam into the blockage, causing a pressure wave and often

wear/damage to the process equipment [10]. The Joukowski

formula [17] can be used to estimate the magnitude of

the pressure wave caused by water hammer for a given

system configuration, and it is seen that this problem can

be especially prominent in large systems with a high feed

flow rate.

For example, consider the system presented in Fig. 2. Ini-

tially solenoid valves s2 and s3 are closed and s1 and s4 are

open. Furthermore, the velocity entering the membrane unit,
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Fig. 1. An expanded view of the flow reversal configuration surrounding the spiral-wound unit

vfr, is 10 m
s

. When flow reversal is initiated, solenoid valves

s2 and s3 are opened and assuming similar flow resistance in

each path, the flow splits approximately evenly through the

three possible paths. The stream velocities through s2, s3,

and the membrane unit are approximately 3.3 m
s

. However,

the stream velocities going through s1 and s4 are approx-

imately 6.7 m
s

. With a maximum velocity threshold of 1.5
m
s

, none of these flow velocities are low enough to enable

the closure of a solenoid valve without the possibility of

causing component damage through water hammer. From

this example, it is clear that with the configuration seen in

Fig. 2, water hammer is of concern when the velocity into

the membrane units is approximately 1.5 times the water

hammer threshold.

Motivated by these considerations, the goal of this work

is to use model-predictive control (MPC) to determine the

optimal switching path from normal operating conditions to

a condition where the stream velocity entering the mem-

branes is much lower; preventing water hammer during

solenoid valve closure while avoiding pressure fluctuations

and decreased process performance during the transition.

Alleviating these phenomena will prolong equipment life-

span and help to maximize the productivity of the RO system.

The formulation presented in this work is specific to the

system presented in Fig. 2, but it is important to note that

these MPC algorithms can be adapted to any flow-reversal

equipped reverse osmosis system where the operator is able

to control the stream velocity entering the membrane units.

Model-predictive control has not been employed for use with

the feed flow reversal technique, but has been evaluated for

the overall control of RO desalination processes [1]. It is

noted that in a recent work [12], Lyapunov-based non-linear

control systems and model-based monitoring schemes were

designed for fault-tolerant control of RO processes in the

presence of actuator faults without dealing with the issue of

optimization of the feed flow reversal process. Optimization

with MPC requires the use of a RO desalination system

model, which has been derived based on mass and energy

balances [13]. A cost function that takes into account control

action, stream velocities, and system pressure is proposed,

along with several hard process constraints which represent

physical limitations of the system. The model, cost function,

and constraints are arranged into a non-linear optimization

problem which is solved through the use of a numerical op-

timization algorithm. Closed-loop simulations with MPC are

performed in this work to demonstrate the mode switching

dynamics.

II. RO SYSTEM MODEL

As seen in Fig. 2, feed water enters the system and

is pressurized by the high-pressure pump. The pressurized

stream is split into a bypass stream (with velocity vb) and

the stream which enters the spiral-wound membrane unit(s)

(vfr). Two streams also exit the membrane module, the

retentate (or brine) stream, with velocity vr, and the permeate

stream.

The model derivation is based on an overall mass balance

and local energy balances around the valves of the system

[13]. In the model derivation, it is assumed that the water

is incompressible, all components are operated on the same

plane (potential energy terms due to gravity are neglected),

and the density of the water is assumed to be constant. It is

also assumed that the effective concentration in the RO unit

is a weighted average of the feed and retentate concentrations

(Eq. 4).

The model derivation results in two non-linear ordinary

differential equations (ODEs), along with an algebraic ex-

pression for system pressure. An equation for the osmotic

pressure based on the temperature and effective concentration

in the membrane unit was developed in [11], and is used as

an estimate for various solutions. Specifically, the model has

the following form:

dvb

dt
=

A2
p

AmKmV
(vf −vb −vr)+

Ap

ρV
∆π−

1

2

Apevbv
2
b

V
(1)

dvr

dt
=

A2
p

AmKmV
(vf −vb−vr)+

Ap

ρV
∆π−

1

2

Apevrv
2
r

V
(2)
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Fig. 2. Overall reverse osmosis system diagram

∆π = δCeff (T + 273) (3)

Ceff = Cf (a + (1 − a)(
(1 − R) + R(vf − vb)

vr

)) (4)

Psys =
ρAp

AmKm

(vf − vb − vr) + ∆π (5)

where ρ is the fluid density, V is the system volume, vf is the

feed velocity, Ap is the pipe cross-sectional area, Am is the

membrane area, Km is the membrane overall mass transfer

coefficient, Cf is the amount of total dissolved solids (TDS)

in the feed, Ceff is the effective average concentration at the

membrane surface, a is an effective concentration weighting

coefficient, ∆π is the difference in osmotic pressure between

the feed side of the membrane and the permeate side, δ is a

constant relating effective concentration to osmotic pressure,

vb is the bypass flow velocity, vr is the retentate flow

velocity, Psys is the system pressure, R is the fractional

salt rejection of the membrane, evb is the bypass valve

resistance, and evr is the retentate valve resistance. Using

these dynamic equations, various control techniques can be

applied using the valve resistance values as the manipulated

inputs (evb,evr). As the valve resistance goes to zero, the

valve behaves as an open pipe; as the valve resistance

approaches infinity, the valve behaves as a total obstruction

and the flow velocity goes to zero [3].

In order to accurately model the valve dynamics and obtain

practical constraints, the concept of valve Cv is used. The

definition of Cv for a valve in a water system is presented

in Eq. 6, where Q is the volumetric flow rate through the

valve.

Cv =
Q

√

Psys

(6)

Using a simplified energy balance around one valve:

dv

dt
=

PsysAp

ρV
−

1

2

Apevv2

V
(7)

Steady state is assumed, and the simplified energy balance

is rearranged to yield:
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Fig. 3. Valve resistance values (ev) vs. valve position

Cv =
1

Ap

√

1

2
ρev

(8)

Depending on the type of valve and its flow characteristics,

it is assumed that the Cv value (and in turn, the ev values

from the model) can be related to the valve position (per-

centage open) through the following empirical logarithmic

relation based on commercially available valve data:

Op = µ ln





1

Ap

√

1

2
ρev



 + φ (9)

where µ and φ are constants depending on the valve

properties. For the model presented in this paper, the curve

relating valve position (Op) to resistance value (ev) is shown

in Fig. 3. It can be seen in Fig. 3 that as the valve position

goes to zero (fully closed), the valve resistance values begin

to grow at an increasing rate; and as the valve approaches the

fully-open position, the resistance values change slowly. This

treatment of the valve characteristics allows for constraints

based on valve actuator speed to be incorporated into the RO

system model and into the controller calculations.

III. MODEL PREDICTIVE CONTROL OF FLOW REVERSAL

When switching the system into flow-reversal mode, it

is desired to bring the feed velocity into the membranes

(vfr) below the velocity threshold; where the flow will not

cause significant water hammer when the solenoid valves

are closed. In order to decrease the membrane feed velocity

(vfr), it will be necessary to open the bypass valve. It is

desired to keep the system pressure constant while decreasing

the velocity so that the membrane and system components

will not be damaged. This can be done by closing the
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TABLE I

PROCESS PARAMETERS AND NORMAL MODE STEADY–STATE VALUES

(nss)

ρ = 1000 kg/m3

V = 0.04 m3

vf = 10 m/s
Ap = 1.27 cm2

Am = 30 m2

Km = 9.218 × 10−9 s/m
Cf = 10000 mg/L
a = 0.5
T = 25 ◦C
R = 0.993
µ = 24.270
φ = 153.554
δ = 0.2641 Pa/(ppm ∗ K)
vnss

b
= 1.123 m/s

vnss
r = 4.511 m/s

P sp
sys = 457.51 psi

enss
vb

= 5000

enss
vr = 310

retentate valve while the bypass valve is being opened,

in such a fashion that the system pressure fluctuates less

than a pre-defined tolerance. MPC is used to complete this

transition in an optimal way.

When reversing the flow, the solenoid valves (si), arranged

as seen in Fig. 1, are opened/closed in a specific sequence.

First, valves s2 and s3 are opened, then valves s1 and s4 are

closed. After these actions are completed, the retentate and

bypass valves can be manipulated to return the process to the

desired steady state. The normal steady state operating point

is used as the initial condition for the mode switching. To

determine the final state after mode switching, the procedure

is as follows: Using the normal steady state operating point,

the pressure set point is calculated using Eq. 5. In this case,

P sp
sys = 457.51 psi. Second, setting the bypass velocity to

vf − 1.5m
s

(equivalent to setting vfr = 1.5m
s

) and using the

desired pressure set point, the low-flow steady state operating

point value for vlss
r can be determined. With the steady state

values of vlss
r , vlss

b , and the pressure set point P sp
sys, the

model equations can be solved for the valve resistance values

elss
vb and elss

vr corresponding to the low-flow operating point.

Following this procedure, the low-flow steady state operating

point is known, but the optimal path taken to get there from

the initial operating steady state is not.

While it is desired to complete this flow direction switch-

ing with minimal impact on the system pressure, and in the

shortest time possible, it is also necessary to factor in several

system parameters such as pressure variation allowed, the

bypass stream velocity as compared to the water hammer

threshold, and the amount of control energy expended. To

account for these issues, an optimization cost function is

first proposed:

C(x, x0, u) =

nc+N
∑

i=nc

[α(
Psys(i)

P
sp
sys

− 1)2 + β(
vfr(i)

vwh

− 1)2

+γ((
evb(i)

elss
vb

− 1)2 + (
evr(i)

elss
vr

− 1)2)]

(10)

where nc is the current time-step, nc + N is the current

time-step plus the prediction horizon, and vwh is the water

hammer threshold velocity. The prediction horizon, N , is

defined such that the optimization is performed from the

current time-step to N time-steps in the future (i.e., from

t = tcurrent to t = tcurrent + Ntstep).

The values of the cost function of Eq. 10 depend on the

initial state of the system (x0) and the state of the system

between t(nc) and t(nc + N) (the state, x, is comprised of

vb and vr). The cost function also depends heavily on the

control actions used (u), and weights given to the individual

terms by the weighting coefficients α, β, and γ. As the opti-

mization procedure is carried out, the optimization algorithm

allows for a set of non-linear constraints to be employed. In

this formulation, the following two hard actuator constraints

are enforced:

Opi > 0 (11)

|
dOpi

dt
| ≤ Rmax

valve (12)

The first constraint forces the valve position values to be

positive, since negative values of this variable would be phys-

ically meaningless. The second constraint sets a maximum

rate of opening/closing for the valves, Rmax
valve. Additional

constraints can be added; constraints on maximum system

pressure or other system variables may be desirable for

certain types of RO operations.

In order to optimize the constrained transition from normal

flow to low-flow and incorporate feedback into the calcu-

lation of the control action, a non-linear model-predictive

control (MPC) formulation is implemented [5], [6], [15],

[16], [7], [14]. In this method, a time frame for the transition

is chosen, t = 0 to t = tf , along with an optimization

time-step tstep and a prediction horizon N . Using these

optimization parameters and the constraints along with the

RO system model (with full state feedback) and the cost

function weighting parameters α, β, and γ, the MPC control

scheme can determine an optimal pair of control inputs, evb

and evr, for each time-step.

The MPC optimization involves the following procedure:

1) The initial state vector and initial control value guesses

are passed to a non-linear optimization algorithm based

on sequential quadratic programming;

2) The optimization algorithm numerically integrates the

model equations from t = tcurrent to t = tcurrent +
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Ntstep using the initial state vector and control value

guesses;

3) The resulting state vector is used to calculate the value

of the cost function;

4) A new set of control inputs are determined, and steps

2-4 are repeated until a minimum cost value is found

(i.e., minevb,evr
C(x, x0, u)) subject to the constraints

of Eqs. 11 and 12;

5) Optimal control inputs for each tstep are made avail-

able to the controller and actuators;

6) Only the first of the optimal control inputs, u(tcurrent),
is applied; the system of Eqs. 1 and 2 is numerically

integrated for one time-step (from t = tcurrent to t =
tcurrent + tstep) using the first optimal control value

to yield a new initial state for the next optimization;

7) The remaining optimal control values for the prediction

horizon are used as an initial guess for the computation

of the control values in the next step;

8) All steps are repeated for each optimization time-step

from t = 0 to t = tf − tstep.

As implicitly stated above, all control values are applied

in a sample-and-hold fashion; that is, a control value used

in the integration on the interval [tstepn−1
tstepn

) is held

constant over the entire interval, and then a new control value

is determined by the optimization for the interval [tstepn

tstepn+1
).

IV. SIMULATION RESULTS

A. Overview

In order to test the feasibility of MPC for feed flow

reversal in a reverse osmosis desalination system, several

simulation studies were carried out. Initially, it was desired to

examine the effect of using the model-predictive controller to

switch between steady states when the process conditions are

identical to the nominal plant model. Using a sampling time

approximately one tenth of the system step response time, the

model-predictive control formulation is applied to the system

with various prediction horizons. These simulations are sub-

sequently compared to an “open-loop manually controlled”

transition where the control inputs are manipulated to their

final values at the maximum rate allowed by the constraints,

as well as the case where the transition is controlled using

proportional-integral (PI) control. It was also desired to

simulate the switching between steady states in the presence

of a plant-model mismatch on the feed TDS value. The

controller receives state feedback from the plant model at

the end of each time-step (i.e., measurements of vb and

vr), but an offset in system pressure and stream velocity is

observed due to the mismatched MPC controller. Simulations

are conducted at several prediction horizons, and an integral

control input is applied after the MPC reaches steady state

in order to bring the system pressure back to the nominal

pressure set point. The results of these simulations can be

found in the journal paper [2].

TABLE II

OPTIMIZATION PARAMETERS AND LOW-FLOW MODE STEADY–STATE

VALUES (lss)

t0 = 0 s
tstep = 0.1 s
α = 10000
β = 100
γ = 200
vwh = 1.5 m/s
vi

b
= 1.123 m/s

vi
r = 4.511 m/s

Cc
feed

= 10000 ppm

Rmax = 10 %/s
vlss

b
= 8.5 m/s

vlss
r = 0.267 m/s

P sp
sys = 457.51 psi

elss
vb

= 87.322

elss
vr = 88592
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Fig. 4. Steady-state switching using MPC in the absence of plant-model
mismatch: system pressure vs. time for N=1 (solid line), N=3 (dashed line),
and N=5 (dotted line), including pressure set point (horizontal line)

B. Optimal Mode Transition Without Plant-Model Mismatch

As described in the overview, the first simulations demon-

strate the switching to low-flow mode using model-predictive

control (MPC) in the case where the controller model and

plant model are identical. The controller uses measurements

of the retentate and bypass stream velocities (system states)

and manipulates the valve resistance values. In these sim-

ulations, the optimization parameters were set as shown

in Table II. Additionally, the system was simulated for 10

seconds (tf ), and the prediction horizon, N, was varied in

each simulation. The results are presented in Figs. 4 - 6.

It can be seen that in the valve position and stream velocity

plots (Figs. 5 - 6), only a small difference is observed

between simulations with various prediction horizons. Even

though the difference in control action is slight, a large effect
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mismatch: retentate and bypass stream velocities vs. time for N=1 (solid
line), N=3 (dashed line), and N=5 (dotted line)
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Fig. 6. Steady-state switching using MPC in the absence of plant-model
mismatch: valve positions vs. time for N=1 (solid line), N=3 (dashed line),
and N=5 (dotted line)

is seen on the system pressure, seen in Fig. 4. In the case of

the smallest prediction horizon (N = 1), the system pressure

drops by approximately 55 psi before returning to the set

point. It is seen that as the prediction horizon increases,

the maximum deviation from the system pressure set point

decreases, showing that the model-predictive control horizon

is instrumental in minimizing pressure fluctuations.

The benefits of implementing MPC on the system pressure

can be seen even more clearly when the optimized cases are

compared to the “open-loop manually controlled” pressure in

Fig. 7, where the valves are adjusted to their final steady state

at the maximum rate allowable by the constraints. The 100+

psi pressure variation caused by the “open-loop manually

controlled” operation should be avoided.

It was also desired to compare the performance of the

MPC to proportional-integral (PI) control. Two PI loops

were implemented, one loop measuring the bypass stream

velocity and using the bypass valve resistance to bring the

bypass stream velocity to the water hammer threshold, and
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Fig. 7. Steady-state switching using MPC in the absence of plant-model
mismatch: system pressure vs. time for “open-loop manually controlled”
case (solid line), N=1 (dashed line), and N=5 (dotted line), including
pressure set point (horizontal line)

another loop measuring the system pressure while adjusting

the retentate valve to maintain the system pressure at the set

point. These two loops can be represented as follows:

ur
PI = Kr(Psys − P sp

sys) +
1

τr

∫ tc

0

(Psys − P sp
sys)dt (13)

ub
PI = Kb(vb − vlss

b ) +
1

τb

∫ tc

0

(vb − vlss
b )dt (14)

Numerous closed-loop simulations were carried out under

various PI controller tunings in order to determine the

best achievable closed-loop responses. The best achievable

closed-loop responses under two different approaches are

presented: in the first approach, the PI parameters (Kr =
−30, Kb = 1000, τr = −30, τb = 1000) were chosen so

that the transition is accomplished in a comparable amount

of time to the MPC controlled case. It is observed that this

case has a poor transient closed-loop performance, due to

the presence of large oscillations. It is also noted that the

integral term of the PI controller is switched off when the

control action is saturated (reaches maximum rate constraint

or valve position reaches 100%) to mitigate the effect of

integrator wind-up in the closed loop system. In the second

tuning approach, the PI parameters (Kr = −5, Kb = 800,

τr = −20, τb = 500) were chosen in order to conduct the

fastest response that does not exhibit any oscillations during

the transition between the original and final steady states. In

this case, the pressure drops significantly more than any of

the MPC cases, and takes a much longer time to converge

back to the steady state. The results can be seen in Figs.

8 - 9. The comparisons of MPC with PI demonstrate that
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model mismatch: pressure vs. time for first PI approach (dashed line), second
PI approach (solid line), N=1 (dotted line), and N=5 (dash-dotted line),
including pressure set point (horizontal line)
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Fig. 9. Steady-state switching using MPC and PI in the absence of plant-
model mismatch: valve positions vs. time for first PI approach (dashed line),
second PI approach (solid line), N=1 (dotted line), and N=5 (dash-dotted
line)

under the MPC formulation, the pressure will deviate from

the set point less than the PI controlled case regardless of

the PI tuning parameters. The MPC also provides a smoother

transition which is accomplished in less time.

In Fig. 10 , it can be observed that the values of the

cost function decrease with increasing prediction horizon.

The cost of these MPC controlled transitions fall between

a lower and upper bound; if the pressure weighting in the

cost function is set to zero (that is, the pressure is allowed

to deviate with no penalty) and transition speed becomes

the only factor in switching steady states, then the valves

will be opened and closed as fast as possible (equivalent
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Fig. 10. Total optimization cost vs. prediction horizon with upper and
lower bounds based on maximum transition speed

to the ”open-loop manually controlled” case). This situation

leads to a lower bound on the achievable cost since all of the

MPC controlled cases are penalized by pressure fluctuations.

In the opposite situation, the MPC controlled cases should

perform better than the maximum speed transition (again, the

“open-loop manually controlled” case) where the pressure is

weighted equivalently to the MPC controlled cases. It can

be seen in Fig. 10 that all of the MPC controlled cases at

various prediction horizons fall between these two bounds. It

is also noted that the magnitudes of the cost function values

depend on the individual weighting on each term, but the

trend will be independent of term weighting.

V. CONCLUSIONS

In this work, a model-predictive control strategy for

switching between the normal flow operating steady state

and the feed flow reversal steady state (where flow into the

membrane units is slow enough to prevent water hammer

when solenoid valves are closed) was developed. First, a

dynamic model of the process was developed as a func-

tion of the process parameters, feed concentration, and the

bypass/retentate valve resistance values. Using these valve

resistance values as control inputs, a non-linear optimization

problem was formulated. Solving this optimization through

a model-predictive control framework, it was seen that a

feedback-based model-predictive controller allowed the sys-

tem to make the transition between steady states with a much

smaller variation in system pressure. The MPC framework

was also shown to have a smaller pressure fluctuations and

shorter transition time than several well-tuned PI controllers.

Non-linear MPC was also shown to be beneficial in the

presence of plant-model mismatch. The feedback-based MPC

algorithm also improved the speed at which the stream ve-

locities reached the feed flow reversal steady state, decreased

the offset between the actual final steady state and the desired

final steady state, and damped oscillations in the control

action.
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