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Abstract— We propose a definition of almost Toeplitz matri-
ces as matrices with off-diagonal decay that are close to begin
Toeplitz in their center columns and decrease in Toeplitzness
toward their first and last columns. We prove that such
matrices form an operator algebra under matrix addition and
multiplication. We use this framework to show that algebraic
Riccati equations with almost Toeplitz coefficient matrices have
almost Toeplitz solutions.

I. INTRODUCTION

Toeplitz matrices arise in many problems of engineering

and applied mathematics. For example, large-scale systems

composed of similar components are described by Toeplitz

matrices, as are finite-difference approximations to partial

differential operators.

It is well-known that the product of two biinfinite Toeplitz

matrices and the inverse of a biinfinite Toeplitz matrix are

again Toeplitz matrices. This is not true, however, in the

case of finite-dimensional Toeplitz matrices. Nonetheless,

for certain types of finite-dimensional Toeplitz matrices,

their products and inverses remain “very close to being

Toeplitz” or “almost Toeplitz” in their interior, i.e., if the

first few and last few columns of an almost Toeplitz matrix

are ignored the remaining columns resemble closely those

of a Toeplitz matrix.

An important motivation for this work has been to

show that the solution of a wide range of algebraic matrix

equations, whose coefficients are Toeplitz matrices, are

almost Toeplitz. Of particular interest are the algebraic

Lyapunov and Riccati equations, which arise in the analysis

and synthesis of linear systems. In this paper we show

that if the coefficient matrices A and Q are Toeplitz

then the solution P of the algebraic Riccati equation

A∗P + PA + Q − P 2 = 0 is almost Toeplitz.

Almost Toeplitz matrices have been the subject of

studies in the past; see [1], [2], [3], [4] and references

therein. References [1],[4, p. 137] characterize the “distance

from Toeplitzness” of an N ×N matrix P by the integer

dP = rank(PS − SP ), where S is the shift matrix. If

dP is small compared to N then P is almost Toeplitz.

Unfortunately this characterization is too rigid for the type of

applications of interest to us. For example, d increases under

matrix multiplication; dAB can be as large as 4 even though

dA = dB = 2 for any two Toeplitz matrices A, B that are

not diagonal or zero. More importantly, if P is the solution
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of the algebraic Riccati equation A∗P + PA + Q− P 2 = 0
with Toeplitz coefficients A, Q (dA = dQ = 2) then dP can

be of the same order as N . Thus, based on the definition

of almost Toeplitzness proposed by [1], [4], one would

conclude that the solution P is far from being Toeplitz.

However, simple numerical examples show that for a wide

class of Toeplitz matrices A, Q the solution P is indeed

very Toeplitz-like in its interior.

The definition of almost Toeplitzness that we propose

in this paper is based on selecting all possible pairs of

columns (Pr, Ps) of a matrix P , appropriately shifting them

to form the pairs (P̃r, P̃s), and placing bounds on the norms

‖P̃r − P̃s‖. The vectors P̃r, P̃s are formed by shifting the

elements of Pr, Ps in such a way that the element of Pr

that belongs on the diagonal of P becomes aligned with the

element of Ps that belongs on the diagonal of P . Clearly if

P is a biinfinite Toeplitz matrix then ‖P̃r − P̃s‖ = 0 for all

pairs of indices (r, s). If P is a finite-dimensional almost

Toeplitz matrix then ‖P̃r − P̃s‖ is large when |r − s| is

large, and ‖P̃r − P̃s‖ is small when both (i) |r − s| is small

and (ii) 1 ≪ r ≪ N , 1 ≪ s ≪ N (i.e., when neither Pr

nor Ps correspond to the first few or last few columns of P ).

We show that, under some additional conditions on the

off-diagonal decay rate of matrix elements, almost Toeplitz

matrices form an operator algebra A ; if A, B, Cn, n ≥ 0
belong to A then so do A+B, AB, and C, if Cn → C. This

gives us a powerful framework in which to analyze the so-

lution of matrix equations with almost Toeplitz coefficients.

In particular, we show how this framework can be utilized

to prove that the solution of an algebraic Riccati equation

with Toeplitz coefficients is almost Toeplitz. Furthermore,

we describe how this justifies the approximation of a large-

scale system with a spatially invariant one, for which Fourier

methods can be used to significantly simplify the problem of

optimal controller design.

II. THE OPERATOR ALGEBRA OF ALMOST TOEPLITZ

MATRICES

In this paper all vectors belong to C
(2N+1) and all

matrices belong to C
(2N+1)×(2N+1). We use the standard

Euclidean 2-norm for vectors and the induced 2-norm for

matrices. Omitted entries in sparse matrices are zero.

Definition 1 (Spatially Decaying Matrices): The matrix

A belongs to the space Qα of spatially decaying matrices
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with decay rate α if

|Aij | ≤ κ (1+ |i− j|)−α for all
1 ≤ i ≤ 2N+1
1 ≤ j ≤ 2N+1

(1)

for α > 1 and some constant κ > 0.

It is shown in [5], [6] that Qα forms an operator algebra

under matrix addition and multiplication.

Definition 2: The shift matrices Sn, −N ≤ n ≤ N are

defined as matrices with 1s on their nth subdigonal and

zeros elsewhere; we assume n > 0 corresponds to the lower

subdiagonals and that S0 is the identity matrix. The basis

vectors φm, −N ≤ m ≤ N are defined as the column vectors

φm = col {δN+1+m,j}, 1 ≤ j ≤ 2N+1.

Note that with the indexing convention used in the defini-

tion of φm we have φ0 =
[
· · · 0 1 0 · · ·

]T
, where

the 1 appears in the (N+1)st location, and

φ−N =
[

1 0 0 · · ·
]T

, φN =
[
· · · 0 0 1

]T
.

Definition 3 (Almost Toeplitz Matrices Tδ,ρ,α): The ma-

trix A belongs to the space Tδ,ρ,α of almost Toeplitz matrices

if the following two conditions hold.

(i) A satisfies the inequality

‖(ASn − SnA)φm‖ ≤ fδ,ρ(m, n) (2)

for all
−N ≤ m ≤ N
−2N ≤ n ≤ 2N

where

fδ,ρ(m, n)

= µ
(
(1+N+m)−δ + (1+N−m)−δ

)

+ η
(
(1+|N+m+n|)−ρ + (1+|N−m−n|)−ρ

)

for δ, ρ > 1, and some constants µ, η > 0;

(ii) A ∈ Qα for some α that satisfies α > δ+1, α > ρ+1.

It is important to note that µ and η are uniform constants

independent of N .

Let us elaborate on (2). The expression ‖(ASn −
SnA) φm‖ for n ≥ 0 (respectively n ≤ 0) takes the column

of A that is m columns removed from the center column,

shifts its entries down (respectively up) by n places, and

compares the resulting vector with the column of A that

is m + n columns removed from the center column. For

example, let

A =




−2 1

1 −2 1

1 −2 1

1 −2 1

1 −2




.

Then, for m = 0 and n = 1 we have

φ0 =




0
0
1
0
0


, S1φ0 =




0
0
0
1
0


, AS1φ0 =




0
0
1
−2
1


,

m

n

2N

−2N

−N N0

Fig. 1. Left: The rectangle encloses the domain in which m, n vary. The
bold lines highlight the neighborhood where ‖(ASn−SnA) φm‖ is largest.
Right: The values taken by ‖(ASn − SnA) φm‖ where A is the 11×11
(N = 5) version of the matrix A. The colors red and blue represent the
values 1 and 0, respectively.

Aφ0 =




0
1
−2
1
0


, S1Aφ0 =




0
0
1
−2
1


,

and thus ‖(AS1 − S1A) φ0‖ = 0. However, for m = 2 and

n = −1 we have

φ2 =




0
0
0
0
1


, S−1φ2 =




0
0
0
1
0


, AS−1φ2 =




0
0
1
−2
1


,

Aφ2 =




0
0
0
1
−2


, S−1Aφ2 =




0
0
1
−2
0


,

and thus ‖(AS−1 − S−1A) φ2‖ = 1.

If the interior columns of a matrix resemble those of a

Toeplitz matrix, then the value of ‖(ASn − SnA) φm‖ is

small when both |m| and |n| are small and increases as either

|m| or |m + n| approaches N ; see Figure 1. This can be

explained as follows: If A is Toeplitz-like in its interior, then

for small values of |n| the matrix ASn − SnA has small

entries on its interior columns, which means that (ASn −
SnA) φm has small norm for small values of |m|. As |n|
increases, large entries appear on the outer columns of ASn−
SnA, which means that (ASn−SnA) φm has large norm for

large values of |m|. Therefore, the bound fδ,ρ(·, ·) is chosen

to have the same behavior as a function of m, n as that just

described.

Notice that in the example given above even though A
is a Toeplitz matrix there exist values of m, n for which

‖(ASn − SnA) φm‖ 6= 0. In fact, according to Definition

3 only diagonal and biinfinite Toeplitz matrices are exactly

Toeplitz in the sense that ‖(ASn − SnA) φm‖ = 0 for all

m, n.

The following theorem constitutes the main result of this

paper.

Theorem 1 (Operator Algebra Tδ,ρ,α): The space Tδ,ρ,α

of almost Toeplitz matrices forms an operator algebra under

matrix addition and multiplication.
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Proof: We have to show that

(a) A + B ∈ Tδ,ρ,α for every A, B ∈ Tδ,ρ,α;

(b) AB ∈ Tδ,ρ,α for every A, B ∈ Tδ,ρ,α;

(c) Tδ,ρ,α is closed.

Proof of (a): Assume that A, B ∈ Tδ,ρ,α. We have

‖([A + B]Sn − Sn[A + B])φm‖

≤ ‖(ASn − SnA)φm‖ + ‖(BSn − SnB) φm‖

≤ (µA + µB)
(
(1+N+m)−δ + (1+N−m)−δ

)

+ (ηA + ηB)
(
(1+|N+m+n|)−ρ + (1+|N−m−n|)−ρ

)
.

Furthermore, since A, B ∈ Qα and Qα is an operator

algebra then A + B ∈ Qα, [5], [6]. Thus A + B ∈ Tδ,ρ,α.

Proof of (b): Assume that A, B ∈ Tδ,ρ,α. We have

‖(ABSn − SnAB) φm‖

= ‖(ABSn − ASnB)φm + (ASnB − SnAB)φm‖

≤ ‖A (BSn − SnB) φm‖ + ‖(ASn − SnA) B φm‖. (3)

We simplify each of the terms on the right of inequality (3)

separately. For the first term we have

‖A (BSn − SnB)φm‖

≤ ‖A‖µB

(
(1+N+m)−δ + (1+N−m)−δ

)

+ ‖A‖ ηB

(
(1+|N+m+n|)−ρ + (1+|N−m−n|)−ρ

)
.

For the second term we have

‖(ASn − SnA) B φm‖

≤

N−m∑

k=−N−m

[
‖(ASn − SnA) φm+k‖ |B(N+1+m+k)(N+1+m)|

]

≤
N−m∑

k=−N−m

[
µA

(
(1+N+m+k)−δ (4)

+ (1+N−m−k)−δ
)
κB (1+|k|)−α

+ ηA

(
(1+|N+m+k+n|)−ρ

+ (1+|N−m−k−n|)−ρ
)
κB (1+|k|)−α

]

≤ µ′

A

(
(1+N+m)−δ + (1+N−m)−δ

)

+ η′

A

(
(1+|N+m+n|)−ρ + (1+|N−m−n|)−ρ

)

where in the second inequality we have used the fact that

B ∈ Qα. µ′

A and η′

A are uniform constants independent of

N ; the expressions for these constants are derived in the

appendix. We have thus shown that

‖(ABSn − SnAB) φm‖

≤ (‖A‖µB + µ′

A)
(
(1+N+m)−δ + (1+N−m)−δ

)

+ (‖A‖ ηB + η′

A)
(
(1+|N+m+n|)−ρ

+ (1+|N−m−n|)−ρ
)
.

Finally, since A, B ∈ Qα and Qα is an operator algebra

then AB ∈ Qα, [5], [6]. Thus AB ∈ Tδ,ρ,α.

Proof of (c): We consider a sequence of matrices {Aq}q∈N

such that Aq ∈ Tδ,ρ,α for all q ≥ 0 and Aq → A as q → ∞.

Let

‖(AqSn − SnAq) φm‖

≤ µq

(
(1+N+m)−δ + (1+N−m)−δ

)

+ ηq

(
(1+|N+m+n|)−ρ + (1+|N−m−n|)−ρ

)
,

where {µq}q∈N and {ηq}q∈N are convergent sequences of

real numbers. Then, from continuity of the norm and the

convergence assumption on the sequence {Aq}q∈N, it follows

that

‖(ASn − SnA) φm‖

≤ µ
(
(1+N+m)−δ + (1+N−m)−δ

)

+ η
(
(1+|N+m+n|)−ρ + (1+|N−m−n|)−ρ

)
,

Furthermore, since Aq ∈ Qα and Qα is an operator algebra

then A ∈ Qα, [5], [6]. Thus Tδ,ρ,α is closed.

It is important to interpret the constants involved in

Definition 3 and those in the above theorem correctly.

For example, let A and B be Toeplitz matrices. Then one

can think of A and B as (2N +1)× (2N +1) truncations

of corresponding biinfinite Toeplitz matrices A and B. If

now N is increased, the independence of the constants

from N implies that ‖([A + B]Sn − Sn[A + B])φm‖ and

‖(ABSn − SnAB) φm‖ get smaller for fixed values of m
and n, which means that as N increases the matrices A+B
and AB increasingly resemble Toeplitz matrices in their

interior. Furthermore, the same decay properties continue

to hold as N increases. This is in the same spirit as the

operator algebra of spatially decaying matrices [7, Sec. 2].

III. APPLICATION: OPTIMAL CONTROL OF

LARGE-SCALE SYSTEMS

The algebraic Riccati equation

A∗P + PA + Q − PR−1P = 0 (5)

is of great importance in problems of optimal control. In this

section we use the operator algebra framework developed

above to prove that the solution P of an algebraic Riccati

equation whose coefficients A, A∗, Q,R−1 belong to Tδ,ρ,α

also belongs to Tδ,ρ,α.

The following theorem is from [6] (see also [8], [9]).

Theorem 2: Let A be an operator algebra. If

A, A∗, Q,R−1 ∈ A then the unique positive definite

solution P of the Riccati equation (5) satisfies P ∈ A .

The basic idea of the proof is to first replace (5) with the

differential Riccati equation

d

dt
X(t) = A∗X(t) + X(t)A + Q − X(t)R−1X(t),

whose solution is assumed to converge to P as t → ∞. We

then approximate the dX/dt term with a finite difference to

obtain

X(t + δt) = X(t)

+ δt
(
A∗X(t) + X(t)A + Q − X(t)R−1X(t)

)
.
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At t = 0 if X(0) ∈ Tδ,ρ,α then by closure of Tδ,ρ,α under

multiplication and addition it is clear that X(δt) ∈ Tδ,ρ,α.

Replacing X(δt) back into the above equation, we

obtain that X(2 δt) ∈ Tδ,ρ,α, and so on. We finally use

the property that Tδ,ρ,α is closed to conclude that the

convergent sequence X(n δ) ∈ Tδ,ρ,α, n ≥ 0 converges

to P ∈ Tδ,ρ,α. References [6], [8] make this argument

rigorous by using the Banach fixed point theorem. We have

thus shown that if A, A∗, Q,R−1 ∈ Tδ,ρ,α then the solution

P of the Riccati equation (5) satisfies P ∈ Tδ,ρ,α.

The importance of this result is that in certain cases it

allows us to use the Fourier transform to readily compute

an approximation P to the solution P of (5). We elaborate

on this statement:

Let A,A∗,Q,R−1 be spatially decaying biinfinite

Toeplitz matrices with common decay rate α ≫ 1,1 and let

P be the solution of

A∗P + PA + Q−PR−1P = 0.

Applying a Fourier transformation to these matrices yields

their Fourier symbols â, â∗, q̂, r̂−1, respectively. Thus the

Fourier symbol p̂ of P can be found from the parameterized

family of scalar equations

â(θ)∗ p̂(θ) + p̂(θ) â(θ) + q̂(θ) − p̂(θ) r̂(θ)−1 p̂(θ) = 0

where θ ∈ [0, 2π) is the Fourier parameter. An inverse

Fourier transformation of p̂ yields P .

Now let A, A∗, Q,R−1 be the (2N+1)×(2N+1) truncations

of A,A∗,Q,R−1, respectively. Then it is possible to find

0 < δ < α − 1, 1 < ρ < α − 1 such that A, A∗, Q,R−1 ∈
Tδ,ρ,α. Therefore P ∈ Tδ,ρ,α by Theorem 2. Furthermore,

from (2) we conclude that for a given m and n the value

of fδ,ρ(m, n) becomes smaller as N increases. This means

that the matrix P becomes more Toeplitz in its interior with

increasing N . As a result, for large enough N one can use P
as an approximation to P . This is beneficial since algebraic

Riccati equations are computationally expensive to solve for

large matrices P , whereas biinfinite Toeplitz solutions P are

easy to find using Fourier methods, as illustrated above.

IV. EXAMPLES

We illustrate the results of this paper with a few examples.

We choose a graphical way of demonstrating matrices,

which communicates well their almost Toeplitz structure.

Let A be the 21×21 (N = 10) version of the following

matrices

A1 =




−2 1

1 −2 1

1 −2 1

1 −2


, A2 =




−1 1

1 −2 1

1 −2 1

1 −1


,

1For example, if A,B,Q,R are banded biinfinite Toeplitz matrices then
α can take any positive value.

and let Q,R be the 21×21 version of the following matrices

Q =




1 −1/4

−1/4 1 −1/4

−1/4 1 −1/4

−1/4 1


, R =




1

1

1

1


.

Let P1, P2 be the solutions of the algebraic Riccati equations

corresponding to A1, A2, respectively. Figures 2, 3 show the

follwoing: the matrices Ai; the values taken by ‖(AiSn −
SnAi) φm‖ as m, n vary; the matrices Pi; the values taken by

‖(PiSn − SnPi) φm‖ as m, n vary. The figures demonstrate

that the solutions Pi maintain the almost Toeplitz structure

possessed by the coefficients Ai, Q,R−1.

V. APPENDIX: DERIVATION OF

EXPRESSIONS FOR µ′

A , η′

A

The right hand side of inequality (4) can be rewritten as

µA κB

(1+N+m)δ

N−m∑

k=−N−m

( 1

1+|k|

)α( 1+N+m

1+N+m+k

)δ

+
µA κB

(1+N−m)δ

N−m∑

k=−N−m

( 1

1+|k|

)α( 1+N−m

1+N−m−k

)δ

+
µA κB

(1+|N+m+n|)ρ

N−m∑

k=−N−m

( 1

1+|k|

)α( 1+|N+m+n|

1+|N+m+k+n|

)ρ

+
µA κB

(1+|N−m−n|)ρ

N−m∑

k=−N−m

( 1

1+|k|

)α( 1+|N−m−n|

1+|N−m−k−n|

)ρ

We now find uniform (independent of N ) bounds on each

of the sums in the above expression. We carry out the

computations in detail for the second and fourth sums;

the computations for the first and third sums will be very

similar and thus omitted.

For the second sum, we have

N−m∑

k=−N−m

( 1

1+|k|

)α ( 1+N−m

1+N−m−k

)δ

≤

0∑

k=−N−m

( 1

1−k

)α
(

1+N−m

1+N−m−k
)δ

+
N−m∑

k=0

( 1

1+k

)α
(

1+N−m

1+N−m−k
)δ

=

N+m∑

k=0

( 1

1+k

)α
(

1+N−m

1+N−m+k
)δ

+
N−m∑

k=0

( 1

1+k

)α
(

1

1− k
1+N−m

)δ

≤

N+m∑

k=0

( 1

1+k

)α
+

N−m∑

k=0

( 1

1+k

)α
(1+k)δ

≤

∞∑

k=0

( 1

1+k

)α
+

∞∑

k=0

( 1

1+k

)α−δ
.
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Fig. 2. a) The matrix A1. b) The values taken by ‖(A1Sn −SnA1) φm‖
as m, n vary in their respective domains. c) The solution P1 of the algebraic
Riccati equation corresponding to A1. d) The values taken by ‖(P1Sn −
SnP1) φm‖.
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Fig. 3. a) The matrix A2. b) The values taken by ‖(A2Sn −SnA2) φm‖
as m, n vary in their respective domains. c) The solution P2 of the algebraic
Riccati equation corresponding to A2. d) The values taken by ‖(P2Sn −
SnP2) φm‖.
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Therefore

N−m∑

k=−N−m

( 1

1+|k|

)α ( 1+N−m

1+N−m−k

)δ

≤

∞∑

k=0

( 1

1+k

)α
+

∞∑

k=0

( 1

1+k

)α−δ
.

Similarly it is possible to show that

N−m∑

k=−N−m

( 1

1+|k|

)α ( 1+N+m

1+N+m+k

)δ

≤

∞∑

k=0

( 1

1+k

)α
+

∞∑

k=0

( 1

1+k

)α−δ
.

For the fourth sum, we consider two scenarios based on

the sign of N−m−n.

Assume N−m−n ≥ 0, and define l := N−m−n. Then

N−m∑

k=−N−m

( 1

1+|k|

)α ( 1+|N−m−n|

1+|N−m−k−n|

)ρ

≤
0∑

k=−N−m

( 1

1−k

)α
(

1+l

1+|l−k|
)ρ

+

N−m∑

k=0

( 1

1+k

)α
(

1+l

1+|l−k|
)ρ

≤

N+m∑

k=0

( 1

1+k

)α
(

1+l

1+l+k
)ρ +

N−m∑

k=0

( 1

1+k

)α
(1+k)ρ

≤

N+m∑

k=0

( 1

1+k

)α
+

N−m∑

k=0

( 1

1+k

)α−ρ

≤

∞∑

k=0

( 1

1+k

)α
+

∞∑

k=0

( 1

1+k

)α−ρ
.

Assume N−m−n ≤ 0, and define l := −(N−m−n). Then

N−m∑

k=−N−m

( 1

1+|k|

)α ( 1+|N−m−n|

1+|N−m−k−n|

)ρ

≤
0∑

k=−N−m

( 1

1−k

)α
(

1+l

1+|l+k|
)ρ

+

N−m∑

k=0

( 1

1+k

)α
(

1+l

1+|l+k|
)ρ

=
N+m∑

k=0

( 1

1+k

)α
(1+k)ρ +

N−m∑

k=0

( 1

1+k

)α
(

1+l

1+l+k
)ρ

≤

N−m∑

k=0

( 1

1+k

)α−ρ
+

N+m∑

k=0

( 1

1+k

)α

≤

∞∑

k=0

( 1

1+k

)α−ρ
+

∞∑

k=0

( 1

1+k

)α
.

Therefore

N−m∑

k=−N−m

( 1

1+|k|

)α ( 1+|N−m−n|

1+|N−m−k−n|

)δ

≤

∞∑

k=0

( 1

1+k

)α−ρ
+

∞∑

k=0

( 1

1+k

)α
.

Similarly it is possible to show that

N−m∑

k=−N−m

( 1

1+|k|

)α ( 1+|N+m+n|

1+|N+m+k+n|

)δ

≤
∞∑

k=0

( 1

1+k

)α−ρ
+

∞∑

k=0

( 1

1+k

)α
.

Thus we choose

µ′

A = µA κB

( ∞∑

k=0

( 1

1+k

)α
+

∞∑

k=0

( 1

1+k

)α−δ)
,

η′

A = µA κB

( ∞∑

k=0

( 1

1+k

)α
+

∞∑

k=0

( 1

1+k

)α−ρ)
.

Note that µ′

A and η′

A are uniform constants independent of

N . The assumptions α > δ +1, α > ρ+1 are necessary for

the convergence of the infinite sums.
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