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Abstract— This paper first formally defines a general class of
three dimensional rectifier systems which capture the essential
aspects of animal locomotion, then formulates an optimal gait
problem, and finally solves an approximation of the problem
to obtain a globally optimal solution. The approximation
assumes small-amplitude harmonic oscillations of mechanical
joints about a nominal posture. The problem is formulated
as a minimization of a quadratic cost function subject to an
average velocity constraint, which is solved with an additional
amplitude constraint in a Pareto-optimal fashion to ensure
that the solution to the approximate problem is valid for the
original. The solution method is fast and numerically stable,
using generalized eigenvalues and eigenvectors of a pair of
Hermitian matrices, and is able to easily handle underactuated
or hyper-redundant systems. We provide case studies of a chain
of links representing a radially symmetric jellyfish-like animal,
or two limbs pushing a central body forward. It is demonstrated
that our method enables determination of various gaits through
optimization of such cost functions as input power, rate of shape
change, and torque derivative.

I. INTRODUCTION

Currently, there are many situations in which existing

vehicular machines are poorly suited, due to their limited

ability to adapt to varying terrain and maneuver in confined

spaces. Many animals possess a high degree of adaptability

and maneuverability, and the mechanisms they employ to

locomote may provide a framework for designing highly

functional mobile robots. We view animal locomotion as

mechanical rectification, a process that converts a rhythmic

gait into a biased velocity through interaction with the

environment. A fundamental problem is the determination

of a gait for a given mechanical rectifier which achieves a

desired velocity while minimizing a given criterion. It is also

essential to ensure achievability of the gait with the given set

of actuators in the solution process.

There are many approaches for determining optimal gaits

for robotic locomotors in literature. Some parameterize a

gait observed in biology and use gridding with simulation

to minimize a given criterion. This approach has been used

to determine gaits for human walking [1], snake crawling

[2], and anguilliform swimming [3]. Gridding and sim-

ulation are slow, however, and a parameterized set may

exclude “unnatural” gaits having better performance than

those observed in biology. Others find optimal gaits based

on standard formulations of optimal control problems and

various combinations of existing optimization methods. One

such method is to reduce the problem to a parametric
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optimization by expanding the signals over a finite set of

basis functions. This approach has been used to determine

gaits for eel swimming [4] and biped walking [5]. Some

use the calculus of variations to reduce the problem to a

two-point boundary-value problem. This approach has been

used for nonholonomic locomotion systems [6], a seven-link

biped robot [7], and shape actuated locomotion systems [8].

The main limitation of the current methods is their locally

optimal nature, which may generate a solution far from the

global optimum depending on choice of initial conditions.

In this paper, we provide a fast and numerically stable

method to determine a globally optimal solution to an ap-

proximate locomotion problem, instead of providing a locally

optimal solution to the general problem. The method also

ensures achievability and can be easily applied to underac-

tuated or hyper-redundant systems. We will first formally

define a class of multibody rectifier systems that capture

the essential aspects of animal locomotion, then formulate

a general optimal gait problem. The problem is approxi-

mated assuming small-amplitude harmonic oscillations about

a nominal posture, and then finally solved using generalized

eigenvalues and eigenvectors of a pair of Hermitian matrices.

The present paper extends our previous result [9] in

several aspects. While we considered planar motion of rigid

body rectifiers earlier, the class of rectifier systems is now

described in three dimensional space and includes those with

flexible joints. The stiffness of the body broadens the set of

possible nominal postures by providing the force required

to balance out the average environmental force during lo-

comotion. The quadratic cost function for the optimal gait

problem is also generalized to include dynamic (as opposed

to constant) weighting matrices, encompassing an extended

list of performance indices. We show how an efficiency

measure can be minimized under an additional constraint

on the amplitude of oscillation to ensure that the solution to

the approximate system is valid. Case studies are given for

a chain of flexible links representing a radially symmetric

jellyfish-like animal. It is demonstrated that our method

enables determination of various gaits through optimization

of such cost functions as input power, rate of shape change,

and torque derivative.

II. RECTIFIER SYSTEMS

The following sections describe the general equations of

motion for rectifier systems and their approximations.
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A. Rectifier Equations of Motion

Consider a general multi-body mechanical system, actu-

ated at selected flexible joints, that interacts with a surround-

ing environment through the motion of its bodies. We call

such systems mechanical rectifiers when periodic motion of

the body can result in locomotion (bulk displacement of the

center of mass of the system). We restrict our attention to

systems that continually interact with the environment. This

excludes systems such as walking robots but still includes a

wide range of other animal locomotions, such as swimming,

crawling (such as in snakes), and flying. The swimming

limbed animal depicted in Fig. 1 is one such example.
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Fig. 1. Multilink swimming system

The general equations of motion are given by

Jθ θ̈ + Gθ,θ̇ θ̇ + dθ̇ + kθ + RT

θγ(Rθ θ̇ + Nθv) = Bu,

mv̇ + N T

θγ(Rθ θ̇ + Nθv) = 0,
(1)

where θ(t) ∈ R
n are the generalized coordinates for the body

shape and orientation, v(t) ∈ R
k is the velocity of the center

of mass, u(t) ∈ R
ℓ are the torque inputs at selected joints,

and k =1, 2, or 3 is the number of spacial dimensions. The

subscripts indicate dependence of the matrices and vectors on

the variables. The terms Jθ θ̈+Gθ,θ̇ θ̇ and mv̇ are the inertial

torques and forces, and dθ̇ + kθ is the joint torques due to

damping and stiffness. Rθ and Nθ are position dependent

matrices that transform the global velocity components into

local body coordinates. The function γ : R
p → R

p is a

possibly nonlinear mapping that generates the forces and

torques (in local body coordinates) resulting from the relative

motion of the system with the environment. Typically, γ
satisfies the sector condition yixi ≥ 0 for each entry of the

input/output pair y = γ(x). The quantity RT

θγ(Rθ θ̇ + Nθv),
therefore, is the vector of forces and torques in the global

frame as a function of the link velocities (Rθ θ̇+Nθv) in the

body coordinates relative to the environment.

B. Nominal Posture and Bilinear Approximation

We assume that a rectifier system possesses a nominal

posture, θ(t) ≡ η ∈ R
n, which is a set of shape variables

that, given a specific velocity vo of the center of mass,

simultaneously maintain the direction of motion (but not

magnitude) and body shape in the absence of any actu-

ating input u. In other words, actuation is not required

to maintain body shape and orientation if the system is

moving at velocity vo. Actuation is needed to counter bulk

environmental drag and maintain the velocity at vo, however.

More specifically, we expect that periodic body motion about

η will produce the necessary thrust for the system to remain

moving at the average velocity vo in the steady state. A

nominal posture must therefore satisfy

RT

ηγ(Nηvo) + kη = 0, N T

ηγ(Nηvo) ∈ V, (2)

where V is the straight line in R
k that is parallel to vo

and passes through the origin, indicating the direction of

locomotion. Throughout the paper, we choose the global

coordinate frame so that its first axis is aligned with V, that

is, vo = vxe1 for some vx ∈ R where ei ∈ R
k is the vector

whose ith entry is one and the others are zero.

To gain insight into the problem, we attempt to analyze

the behavior of the rectifier system through the simplest

approximate model that captures the essential dynamics of

rectification. Thus, we restrict our attention to those systems

for which it is reasonable to approximate the interactive

force by a linear function (through such methods as standard

linearization and describing function), i.e., γ(x) ∼= Γx for a

constant matrix Γ. Furthermore, we consider small amplitude

oscillations about the nominal posture ϑ := θ − η at an

average steady state velocity. We use the approximations

N T

θΓNθ = Cϑ + O(ϑ3), Jθ = J + O(ϑ),
RT

θΓRθ = D1 + O(ϑ), kθ = kη + Kϑ + O(ϑ2),

RT

θΓNθ = Eϑ + O(ϑ2), dθ̇ = D2ϑ̇ + O(ϑ̇2)

where J , D1, D2, and K are constants, Eϑ is affine in ϑ, and

Cϑ is quadratic in ϑ. Assuming that v(t) ≈ vo, we obtain

Jϑ̈ + Dϑ̇ + Kϑ + Lϑv = Bu,

mv̇ + ET

ϑϑ̇ + Cϑv = 0,
(3)

where D := D1 + D2 and Lϑ := Eϑ − E0. We linearized

the first equation in (1) in terms of ϑ and kept terms up to

the second order in ϑ in the second equation as the essential

mechanism for rectification would have otherwise been lost.

III. OPTIMAL LOCOMOTION

In this section, we formulate an optimal locomotion prob-

lem for the mechanical rectifier (3) and provide a solution.

A. Problem formulation

We consider the optimal locomotion problem of mini-

mizing a quadratic cost function over the set of T -periodic

signals ST , subject to the constraint that the average speed

of locomotion is vo:

min
T ∈ R+

v, ϑ, u ∈ ST

1

T

∫ T

0

[

ϑ
u

]

T

Π

[

ϑ
u

]

dt

s.t.















1

T

∫ T

0

vdt = vo,

Jϑ̈ + Dϑ̇ + Kϑ + Lϑv = Bu,

mv̇ + ET

ϑϑ̇ + Cϑv = 0.

(4)

where Π is a linear time invariant operator represented by its

transfer function Π̂(s). Without loss of generality, we assume

vo = vxe1 for some vx ∈ R.

The objective function is quadratic in ϑ and u, and through

the choice of Π, derivatives of ϑ and u may also be captured,
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TABLE I

OBJECTIVE FUNCTIONS SPECIFIED BY Π

Quantity Objective Integral Π̂(jω)

Perturbation from η 1

T

∫ T

0
‖ϑ‖2dt

[

I 0
0 0

]

Joint Deflection 1

T

∫ T

0
‖φ‖2dt

[

W TW 0
0 0

]

Bending Rate 1

T

∫ T

0
‖φ̇‖2dt

[

ω2W TW 0
0 0

]

Input Torque 1

T

∫ T

0
‖u‖2dt

[

0 0
0 I

]

Input Torque Rate 1

T

∫ T

0
‖u̇‖2dt

[

0 0
0 ω2I

]

Input Power 1

T

∫ T

0
θ̇TBudt 1

2

[

0 −jωB
jωBT 0

]

representing many physical quantities such as input power.

Table I provides a short list of such quantities and their

associated Π̂(jω) values, where φ := Wθ is the vector of

joint angles specified by W . The average value over one

period is taken for input power, and mean-square values for

the other quantities.

For tractability, we shall reformulate the problem in (4)

by restricting the underlying class of periodic signals. In

particular, the search for the optimal gait is confined to

the class of T -periodic, unbiased, harmonic signals HT .

Assuming that v ≈ vo and averaging the third constraint

in (4), we obtain
∫ T

0

(

(ai + ϑTCiϑ)vx + ϑ̇TΛiϑdt
)

= 0, (5)

for i = 1, ..., k, where ai, Ci, and Λi are specified by

Lϑei = Λiϑ, eT

iCϑe1 = ai + bT

iϑ + ϑTCiϑ.

Let us now define the following problem:

min
T ∈ R+

ϑ, u ∈ HT

1

T

∫ T

0

[

ϑ
u

]

T

Π

[

ϑ
u

]

dt

s.t.











∫ T

0

(

(a1 + ϑTC1ϑ)vx + ϑ̇TΛ1ϑdt
)

= 0,

Jϑ̈ + Dϑ̇ + Kϑ + vxΛ1ϑ = Bu.

(6)

We expect that a solution to this problem will automatically

satisfy the remaining omitted acceleration constraints, i.e.,

(5) for i = 2, . . . , k, on the grounds that acceleration in a

direction normal to V would require a larger objective value

and would hence be eliminated. This is also what we have

observed in all of our numerical studies.

B. Harmonic solution

This section presents an exact solution to the problem

in (6). The following lemma reduces the problem to a

constrained quadratic optimization.

Lemma 1: Consider the problem in (6). Define

Xω :=

[

Pω

I

]∗

Π̂(jω)

[

Pω

I

]

,

Yω := P ∗

ω (j(ω/vo)(Λ1 − ΛT

1) − 2C1)Pω/(4a1),
Pω := (vxΛ1 + K + jωD − ω2J)−1B.

(7)

Then the problem is equivalent to

min
ω∈R, û∈Cℓ

{ û∗Xωû : û∗Yωû = 1 }. (8)

Proof: The problem in (6) can be rewritten in terms of

phasors as follows:

min
ω ∈ R

ϑ̂ ∈ Cn, û ∈ Cℓ

[

ϑ̂
û

]∗

Π̂(jω)

[

ϑ̂
û

]

s.t.

{

(2a1 + ϑ̂∗C1ϑ̂)vx + ℜ[(jωϑ̂)∗Λ1ϑ̂] = 0,

(−ω2J + jωD + K + vxΛ1)ϑ̂ = Bû.

The second constraint can be solved for ϑ̂ = Pωû. Using

this expression for ϑ in the objective function, the second

constraint can be eliminated to yield (8).

In (8), the vector û is the phasor of the input signal u(t).
Hence, once (8) is solved for a minimizer (ω, û), the optimal

sinusoidal input for (6) can be found as u(t) = ℜ[ûejωt].
To solve the problem in (8), one may optimize over û for

a fixed ω, and repeat this process for various values of ω,

numerically sweeping the frequency axis. In this case, each

problem for a given ω is a static quadratic optimization,

which is nonconvex in general because Xω and Yω are

possibly indefinite. Nonconvex optimizations are often hard

to solve, but for this particular problem, we have a complete

solution as shown in [9].

Lemma 2: Let Hermitian matrices X and Y be given

and consider

min
q∈Cℓ

{ q∗Xq : q∗Y q = 1 }. (9)

The constraint is feasible if and only if the largest eigenvalue

of Y is positive. In this case, the objective function is

bounded below on the feasible set if and only if the following

(convex) set is nonempty:

L := { λ ∈ R : X ≥ λY }.

The largest element λo of L is well defined and is a

generalized eigenvalue of (X,Y ). The minimum value of (9)

is equal to λo. An optimizer qo is given by an eigenvector of

the pair (X,Y ) associated with the generalized eigenvalue

λo, normalized so that q∗oY qo = 1.

Based on Lemma 2, a solution to (9) can be found by

computing the generalized eigenvalues of (X,Y ). If the

constraint is feasible and objective function is bounded,

then one (or more) of the generalized eigenvalues must be

real and satisfy X ≥ λY . The largest of such generalized

eigenvalues is λo. If λo is not repeated, then it has one-

dimensional eigenspace. In this case, every eigenvector qo

satisfies q∗oY qo > 0 and hence can be normalized so that

q∗oY qo = 1. This qo is an optimizer of (9). If λo is repeated,

then the dimension of the eigenspace is more than one and

q∗oY qo can be nonpositive for some eigenvector. However,

Lemma 2 guarantees that at least one of them gives positive

q∗oY qo and hence is a solution after the normalization.

Combining Lemmas 1 and 2, we have the following result

that solves the problem in (6).
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Theorem 1: Consider the rectifier system given in (3)

and the optimal locomotion problem in (6). Define Xω , Yω ,

and Pω by (7). Let γ be the optimal value of the objective

function. Then we have

γ = min
ω∈R

max
λ∈R

{ λ : Xω ≥ λYω } . (10)

Let ωo and λo be the optimizers. Then, the optimal period

is T = 2π/ωo, and the optimal input and body angles are

given by

u(t) = ℜ[qoe
jωot], ϑ(t) = ℜ[Pωo

qoe
jωot],

where qo ∈ C
ℓ is an eigenvector of the pair (Xωo

, Yωo
)

associated with the generalized eigenvalue λo, normalized

to satisfy q∗oYωo
qo = 1.

The problem in (10) can be solved by generalized eigen-

value computation plus a line search. For a fixed ω, the

optimal solution is obtained from the maximization of λ,

which is given in terms of a generalized eigenvalue of

(X,Y ).

C. Some ideas on implementation

Most animals have a body symmetric about an axis (or a

plane), and the direction of locomotion is often chosen to be

aligned with the axis of symmetry. A robotic locomotor may

be designed to have this property. In this case, feasible gaits

may be restricted to be symmetric about the V line, at the

expense of potential increase in the cost function value. A

benefit is that the symmetry can be exploited to make the gait

optimization simpler. A symmetric gait would automatically

lead to locomotion along the V line due to the balance of

forces. The equations of motion (3) can then be given in

terms of a reduced number of independent variables. For

an example, the locomotor in Fig. 1 could be reduced to

the system shown in Fig. 2. The reduction in the size of the

optimization problem (the dimension of Xω) would generally

lead to more efficient and reliable computation.

x

y

Fig. 2. Symmetric reduction of multilink system

For the quadratic cost function with an arbitrary weighting

Πo, the solution to (6) may generate a gait with a large

amplitude oscillation of ϑ, violating the small amplitude as-

sumption imposed to derive the bilinear equations of motion

in (3). Such gait may not be appropriate for the original

equations of motion (1) and may not make physical sense.

To remedy this situation, one can penalize the amplitude of

ϑ by setting

Π = (1 − β)Πamp + βΠo,

where Πamp corresponds to the first entry in Table I, and β
is a weighting parameter satisfying 0 ≤ β ≤ 1. When Πamp

and Πo define competing objectives, the amplitude of optimal

ϑ would be a nondecreasing function of β. The largest value

of β is thus found so as to satisfy a hard constraint on the

amplitude of ϑ. This type of Pareto-optimal approach has

been used for multiobjective H2 control with a proof of

convergence [10].

IV. CASE STUDIES

In this section, we illustrate the optimal locomotions

for a specific example. We consider planar motion of a

single chain of links in water, modeled by (1) and (3) with

definitions given in the appendix. The precise values of the

parameters are not important, however we use measured data

of a medium size leech to keep the model realistic. The leech

has mass m = 1.1 g and length ℓ = 107.3 mm, and swims by

undulating its slender body like snakes at speed around 0.15
m/s. The leech body is modeled by a chain of n identical

links where n = 18, with all n − 1 joints actuated.

For the chain of links, there can be multiple nominal

postures around which body oscillations occur. One choice

is a straight chain η = 0 for undulatory locomotion as in

leeches. This configuration qualifies as a nominal posture

for any locomotion speed with or without joint stiffness,

and has been considered in our previous study [9]. Another

choice would be a “U” shaped bend, which can be thought

of as two flagella pushing a central body forward, or a

radially symmetric jellyfish-like animal. This is the nominal

posture we consider here. Assuming an average velocity of

vx = −0.1 m/s (negative sign indicates swimming to the

left), the joint stiffness function kθ has been determined so

that kθ = BKBTθ for some diagonal K with nominal posture

η given by ηi linearly decreasing from η1 = π − 0.068 to

ηn = 0.068 rad.

We have solved the optimal gait problem in (6) for vx =
−0.1 m/s with some objective functions from Table I. For

each case, the problem is reformulated as in (8), with an

additional hard constraint on the amplitude ‖ϑ̂‖2 ≤ 10. The

problem is then solved using the Pareto-optimal approach

described in Section III-C.

We examine three cases: minimum power, bending rate,

and rate of input torque, as specified in Table I. Power is

often important in robot design, and one would expect it to

probably be minimized in biological animals. If there is a

very high cost associated with the rate of joint deflection

(high joint damping for example), the rate of bending would

be minimized. Finally, biology inspires us to examine the

rate of input torque, based on the idea that this correlates to

the intent to move, which might capture expensive chemical

processes in muscle activation and deactivation. The results

of the three optimizations are summarized in terms of ϕ :=
BTϑ, which are the joint angle deflections from the nominal

posture. Numerical simulations are then used to examine

the effects of approximations associated with the equations

of motion and the optimal gait problem. Unless otherwise

noted, the second equation in (3) is simulated by enforcing

the calculated optimal gait θ(t) as the input.
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Figure 3 shows the phase and amplitude of ϕ for the

three optimal gaits whose frequencies are summarized in

Table II. We see that the phase is maximum at or around

the center and decreases toward both ends. This means that

all three gaits possess some degree of traveling waves down

each arm. However, the minimum bending rate motion has

a much smaller phase variation than the power or torque

rate case, indicating that it has a much lower number of

waves expressed along the body. It should be noted that

the rate of input torque generated an asymmetric result.

After checking this result against the optimal gait under

the symmetry constraint, we found that the asymmetric gait

did indeed have a strictly smaller minimum objective value.

Among the three cases, the average amplitude over the body

tends to be smaller if the phase variation is smaller. This

is because small, relatively in-phase, joint angle amplitudes

add up to produce a large overall motion which maintains

the desired velocity. Interestingly, the torque rate case does

not bend at all at the center joint (only rotates), retaining its

initial nominal bend at all times.
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∠
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e
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Fig. 3. Optimal gaits

Figure 4 shows five snapshots of simulated optimal loco-

motion for each case, taken 1.2 periods apart. The optimal

motion calculated for minimum power and bending rate

are symmetric about the direction of locomotion (horizontal

axis). The asymmetry is clearly visible for the torque rate

case. The horizontal axis scales are different in each figure

due to the differing optimal frequencies calculated for each

motion; for example the bending rate motion moves much

further in five periods than the torque rate motion, although

the locomotion speeds are about the same.

Figure 5 shows the simulated velocity, where the time

responses are colored in the same way as Fig. 3 for each case.

−0.1 −0.05 0
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0
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0.06
Bending Rate

−0.1 −0.05 0

−0.04
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Power

−0.06 −0.04 −0.02 0 0.02
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−0.02

−0.01

0

0.01

0.02

0.03

Torque Rate

Fig. 4. Snap shots of locomotion

We see that vy is exactly zero for the symmetric motions, and

oscillating closely about zero for the asymmetric case. The

oscillation of vx is small in the power and torque rate cases,

but is much larger in the bending rate case due to the large

stroking motion of the arms. The non-sinusoidal shape in the

bending rate case results from higher frequency components

which can be explained by thinking of a flipping fish tail:

for one period of motion the tail produces two thrusts. The

varying vx magnitude results from the alternating high and

low drag associated with the arms being extended out or

folded back during the stroke. In general, the higher the wave

number and frequency a motion possesses, the smaller the

perturbation about the average velocity.

Finally, average velocities are summarized in Table II.

The nonlinear and bilinear velocities are simulated from the

second equation in (1) and (3), respectively. For the bilinear

case, the simulated average velocities are close to vx = −0.1
m/s at which the optimal gaits are calculated, despite the

fact that oscillations of vx around this value are ignored

during the optimization. On the other hand, the higher order

nonlinearity tends to reduce the actual swim speed.
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Fig. 5. Simulated CG velocity

TABLE II

OPTIMAL FREQUENCIES [rad/s] AND SIMULATED VELOCITIES [mm/s]

Quantity Optimal ω Nonlinear vx Bilinear vx

Power 39.7 -69.8 -100.7

Bending Rate 30.5 -82.8 -107.9

Torque Rate 83.9 -67.4 -100.3

V. CONCLUSION

This paper has extended a previous paper [9] to include

a more general class of three dimensional rectifier systems

and nominal postures. First, an optimal locomotion problem

was formulated as minimization of a quadratic cost function

subject to an average velocity constraint. A globally optimal

solution was then obtained for an approximation of the

problem where we assumed small perturbations about a

nominal posture and a restriction to harmonic variables. The

solution satisfied an additional amplitude constraint through

the choice of objective function in a Pareto-optimal fashion

to ensure that the solution to the approximate system was

valid. The solution was reduced to calculation of generalized

eigenvalues and eigenvectors of a pair of Hermitian matrices

as frequency was varied, resulting in a very fast and numer-

ically stable method capable of handling underactuated and

hyper-redundant systems while ensuring achievability.

The case studies have shown that the quadratic optimiza-

tion can produce gaits that closely resemble those seen in

biology. Most optimal gaits were found to be symmetric,

agreeing with our intuition based on biological observations

of swimming animals. The gait which minimized the torque

derivative was found to be asymmetric, however, indicating

that some systems may benefit from unconventional gaits

that are not commonly observed in biology and counter to

intuition. Finally, these studies demonstrate that the proposed

framework for computing optimal gaits can be very useful

for increasing our understanding of animal locomotion mech-

anisms from a biological point of view.
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APPENDIX

Locomotor model parameter values:

n = 18, m = 0.0011 kg, ℓ = 0.1073 m,
cni

= 0.8ℓi N · s/m, cti
= 0.1ℓi N · s/m,

mi = m/n, ℓi = ℓ/(2n), Ji := miℓ
2

i /3, DJ = 0.

Definitions of parameters in nonlinear rectifier (1):

Jθ := J + SθHSθ + CθHCθ, Gθ := SθHCθ − CθHSθ,

Rθ :=

[

ΩθLθ

I

]

, Nθ :=

[

ΩθE
0

]

,

Lθ :=

[

FSθ

−FCθ

]

, Ωθ :=

[

Cθ Sθ

−Sθ Cθ

]

, E :=

[

e 0
0 e

]

,

Sθ := diag(sin θ1, . . . , sin θn), e :=
[

1 . . . 1
]

T

∈ R
n,

Cθ := diag(cos θ1, . . . , cos θn), J := diag(J1, . . . , Jn),
H := LA(BTM−1B)−1ATL, M := diag(m1, . . . , mn),
F := M−1B(BTM−1B)−1ATL, L := diag(ℓ1, . . . , ℓn),
Ct := diag(ct1 , . . . , ctn

), Cn := diag(cn1
, . . . , cnn

),
γ(x) := Γx, Γ := diag(Ct, Cn, CnL2/3),

A :=







1 1
. . .

. . .

1 1







T

, B :=







1 −1
. . .

. . .

1 −1







T

,

dθ̇ = BDJBTθ̇, DJ := diag(d1, . . . , dn),
kθ = BKJBTθ, KJ := diag(k1, . . . , kn).

Definitions of parameters in bilinear rectifier (3):

J := Jη, D := BDJBT + RT

ηΓRη, Lϑ :=
[

Λ1ϑ Λ2ϑ
]

,
Cϑ := N T

ηΓNη + Bϑ + ΘTCΘ, Θ := diag(ϑ, ϑ),
Bϑ := N T

ηΓN1Θ + (N T

ηΓN1Θ)T,
C := N T

1ΓN1 + RC + RT

C , Ω2 := −Ωη/2,

RC :=

[

diag(r̄1) diag(r̄2)
diag(r̄3) diag(r̄4)

]

,

[

r̄1 r̄2

r̄3 r̄4

]

:= N T

ηΓN2,
[

Λ1 Λ2

]

:=
[

diag(v̄1) diag(v̄2)
]

+ RT

ηΓN1 + RT

1ΩΓNo,
[

v̄1 v̄2

]

:= RT

1LΓNη,

R1L :=

[

ΩηL1

0

]

, R1Ω :=

[

Ω1Lη

0

]

,

Ω1 :=

[

−Sη Cη

−Cη −Sη

]

, L1 :=

[

FCη

FSη

]

,

No :=

[

Ωη

0

]

, N1 :=

[

Ω1

0

]

, N2 :=

[

Ω2

0

]

.
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