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Abstract—This paper addresses dynamic data-driven signature detec-
tion in mobile robots. The core concept of the paper is built upon the
principles of Symbolic Dynamic Filtering (SDF) that has been recently
reported in literature for extraction of relevant information (i.e., features)
in complex dynamical systems. The objective here is to identify the robot
behavior in real time as accurately as possible. Two different approaches
to classifier design are presented in the paper; the first one is Bayesian
and the second is based on measures of formal languages. The proposed
methods have been experimentally validated on a networked robotic test-
bed to detect and identify the type and motion profile of the robots under
consideration.

I. INTRODUCTION

Automated behavior recognition of robots is critical for multi-agent

coordination and has become increasingly important with technolog-

ical advancements in information processing and sensor networking.

In such missions, a robotic platform may be required to make real-

time decisions based on the collective behavior of other robots on a

distributed network. This paper defines the behavior of a mobile robot

system as statistical patterns of its evolutionary dynamics. Temporal

changes in these statistical patterns occur over a slow time scale with

respect to the fast time scale of robot dynamics [1].

The technical approach for feature selection presented in this paper,

called the Symbolic Dynamic Filtering (SDF) [2], is built upon

the concepts of Symbolic Dynamics [3], Finite State Automata and

Pattern Recognition [4]. Partitioning of the space of robot dynamics

yields an alphabet to obtain symbol sequences from time-series data.

Then, the tools of computational mechanics are used to identify

statistical patterns of these symbol sequences through construction of

a probabilistic finite state machine (PFSM) for each symbol sequence.

Transition probability matrices of the PFSM, obtained from the

symbol sequences, capture the evolving pattern of the robot behavior

in the slow scale. The statistical patterns (i.e., state probability

histograms) that are derived from the respective state transition

matrices are compared with an appropriate metric to discover how

close a particular pattern is to a set of reference patterns. Two

different methods for classifier design are presented in the paper.

The first approach is based on the classical Bayesian classifier which

is design to minimize the Bayes’ risk function. The second approach

for classifier design proposed in the paper is based on the recently

reported measures of formal languages [5]. It is a new approach for

classifier design that is faster than the classical Bayesian approach.

The major contribution of this paper is formulation of a dynamic

data-driven method for signature detection in mobile robots, and its

experimental validation on robotic agents in real-time. The novel part

of the signature detection algorithm is pattern generation and identifi-

cation in mobile robots by space partitioning of the time-series data. ,
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where the theory of partitioning has been successfully developed and

widely reported in the Physics and Applied Mathematics literature

(e.g., see citations in [3]).

II. PATTERN IDENTIFICATION OF MOBILE ROBOTS

The objective of this paper is to identify the most likely pattern

among a finite set of pre-determined patterns from the time-series

data. Since Behavioral patterns of robots may vary due to, for

example, variations in payload, type of drive-system, type of motion,

and faults in the robot, the patterns are constructed as the state

probability vectors of the D-Markov machine, described in [2].

Let Ξ = {ξi, i = 1, 2, . . . , |Ξ|} be defined as a (nonempty

finite) collection of patterns, where |Ξ| is the cardinality of Ξ. The

reference time-series data xi for each pattern ξi ∈ Ξ is combined to

generate a single time-series data x. This combined time-series data x

is then partitioned using the maximum entropy partitioning technique

to generate the unique partition vector ζ. Using this partition vector

ζ the reference time-series data xi for each pattern is partitioned and

a D-Markov machine Mi of appropriate depth is constructed. The

steady state probability vector of each Mi is chosen as the reference

probability distribution p̃i for each pattern class.

We present two methods to construct a classifier based on the

feature vector p which is the state probability vector corresponding

to the time-series data x. The first method is based on the Bayesian

analysis and the second method is based on measures of formal

languages.

A. Bayesian classifier

The Bayesian analysis in this paper is formulated by constructing

an identity map between the set {ξ1, ξ2, · · · , ξ|Ξ|} of pattern classes

and the set {d1, d2, · · · , d|Ξ|} of decisions on selection of reference

probability distribution to compute the distance from. The objective

here is to formulate a nonnegative real measure of these decisions

for a given time series data.

Let x be a set of time series data that truly belongs to the pattern

class ξj for some j ∈ {1, · · · , |Ξ|}. Let the state probability distribu-

tion of the respective D-Markov machine be pi(x), i ∈ {1, · · · , |Ξ|}.

The following definition formalizes the notion of deviation measure

of a decision di, i ∈ {1, · · · , |Ξ|}.

Definition 1: Given a time series data set x whose true pattern

is ξj , deviation measure of the decision di is defined in terms of

the respective state probability distribution pj(x) and the reference

probability distribution p̃i as:

mij(x) , d
(

pj(x), p̃i

)

(1)

where d(•, •) is a distance function, e.g., the standard Euclidean norm

of the difference between the distributions, pj(x) and p̃i.

Due to uncertainties prevalent in the time-series data x, the

deviation measure mij(x) in Eq. (1) would not be identically equal to
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0, regardless of whether the decision di is correct or not. Nevertheless,

it is expected that mij(x) would be relatively small if di is the correct

decision, i.e., i = j. This fact motivates the deviation measure to be

treated as a random variable.

Let Mij(x) denote the random variable associated with the de-

viation measure when the decision di that the data set x belongs to

the pattern class ξi while x truly belongs to the jth pattern class ξj .

Then, realization of the random variable Mij is the non-negative real

mij(x) in Eq. (1). Hence, for each pattern class ξj , there could be

decisions di, i = 1, 2, · · · , |Ξ| that give rise to realizations of the ran-

dom variables Mij , i = 1, 2, · · · , |Ξ| as mij(x), i = 1, 2, · · · , |Ξ|;
and there would be a total of |Ξ| × |Ξ| = |Ξ|2 random variables

Mij . In the sequel, the probability distribution of Mij is denoted

as pMij
.

The a priori conditional probability P [x|ξj , di] represents the

probability of observation of the data x conditioned on the true pattern

ξj and the decision di of choosing the reference probability vector

p̃i that represents the pattern ξi. That is,

P [x|ξj , di] = pMij

(

mij(x)
)

(2)

where Mij is the random variable representing a decision di when

the true pattern class is ξj ; and the argument of the distribution

pMij
is mij that is the deviation measure (see Eq. (1)) of the state

probability vector of the data set x that truly belongs to the pattern

class ξj obtained by choosing the reference state probability vector

p̃i based on decision di. The a posteriori probabilities are given as:

P [ξj |x, di] =
P [x|ξj , di]P [ξj |di]

P [x|di]
(3)

Equation (3) is expressed in a different form as:

P [ξj |x, di] =
P [x|ξj , di]P [ξj ]

∑

k
P [x|ξk, di]P [ξk]

(4)

based on the following two assumptions.

• The pattern classes ξj’s form a mutually exclusive and exhaus-

tive set. It follows from the total probability theorem that

P [x|di] =
∑

k

P [x|ξk, di]P [ξk|di]

• The prior probability of a pattern ξj is independent of the process

of making the decision di, i.e.,

P [ξj |di] = P [ξj ]

Substitution of Eq. (2) in Eq. (4) yields:

P [ξj |x, di] =
pMij

(

mij(x)
)

P [ξj ]
∑

k
pMik

(

mij(x)
)

P [ξk]
(5)

Let the risk of making a decision di when truly the pattern class is

ξj be specified as λij . Then, the total risk of making a decision di

becomes [4]:

R(di|x) =

|Ξ|
∑

j=1

λijP (ξj |x, di) (6)

and the decision on pattern identification is made by minimizing the

risk in Eq. (6) as:

d
⋆ = argmin

i

R(di|x) (7)

B. Language Measure classifier

This section presents an alternative method of classifier design

that is significantly faster than the Bayesian classifier presented in

Section II-A. The rationale is that the language measure classifier

does not require estimation of probability distributions of the ran-

dom variables Mij . The probabilistic finite state machine (PFSM)

constructed from the symbol sequence acts as a language generator.

A signed measure of the language [5], [6] is obtained by assigning a

characteristic weight to each of the states of the constructed PFSM.

In this setting, the task of classifier design amounts to choosing the

characteristic weight vector for each pattern class; and the decision

is based on maximizing the measure generated by different pattern

classes. The concept is formally presented below.

Let a deterministic finite state automaton (DFSA) be represented

as Gi , (Q,Σ, δ, qi, Qm), where Q is the finite set of states with

|Q| = n, and qi ∈ Q is the initial state; Σ is the (finite) alphabet of

events with |Σ| = m; the Kleene closure of Σ is denoted as Σ⋆ that

is the set of all finite-length strings of events including the empty

string ε; the (possibly partial) function δ : Q × Σ → Q represents

state transitions and δ⋆ : Q × Σ⋆ → Q is an extension of δ; and

Qm ⊆ Q is the set of marked (i.e., accepting) states.

The time-series data is modeled as a probabilistic finite state

automaton (PFSA), which is a DFSA augmented by the char-

acteristic function and event generation probabilities [5], [6].

Definition 2: The characteristic function χ : Q → [−1, 1] assigns

a signed real weight to each state qi, i = 1, 2, . . . , n such that

relatively more positive weights are assigned to relatively more

desirable states.

Definition 3: The event generation probabilities are specified as

π̃ : Σ⋆ × Q → [0, 1] such that ∀qj ∈ Q,∀σk ∈ Σ, ∀s ∈ Σ⋆,

(1) π̃[σk, qj ] , π̃jk ∈ [0, 1);
∑

k
π̃jk = 1;

(2) π̃[σ, qj ] = 0 if δ(qj , σ) is undefined; π̃[ǫ, qj ] = 1;

(3) π̃[σks, qj ] = π̃[σk, qj ] π̃[s, δ(qj , σk)].

The Π̃-matrix is defined as: Π̃ij = π̃(qi, σj), qi ∈ Q, σj ∈ Σ.

Remark 1: The Π̃-matrix is analogous to the morph matrix of

a Markov chain in the sense that an element π̃ij represents the

probability of the jth event occurring at the ith state.

Definition 4: The probabilistic state transition map of the prob-

abilistic finite state automaton (PFSA) is defined as a function

π : Q × Q → [0, 1) such that

π(qj , qk) =







0 if {σ ∈ Σ : δ(qj , σ) = qk} = ∅
∑

σ∈Σ: δ(qj , σ)=qk

π̃(σ, qj) , πjk otherwise

(8)

The Π-matrix, defined as Πij = π(qi, qj), qi, qj ∈ Q.

Remark 2: The Π-matrix is analogous to the state transition

probability matrix of a Markov chain in the sense that an element πjk

is analogous to the transition probability from state qj to state qk.

The language generated by a PFSA is defined to be a probabilistic

regular language.

The regular language generated by the PFSA under consideration

is a sublanguage of the Kleene closure Σ∗ of the alphabet Σ.

Definition 5: The formal measure of the generated language of a

PFSA with respect to a defined characteristic weight vector [6] is

defined as:

ν(θ) = θ [I − (1 − θ)Π]−1
χ with θ ∈ (0, 1) (9)

Proposition 1: The limiting measure vector ν(0) ,

limθ→0+ ν(θ) exists and ||ν(0)||∞ ≤ 1 (For proof see [6]).
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Proposition 2: If the state transition matrix is irreducible, the

renormalized measure vector is given by the expression ν(0) = νe

where e , [1 1 . . . 1]T . Then, the scalar renormalized measure ν
is denoted as [6]

ν = p
T
χ (10)

The language-measure-based classifier is designed by computing a

characteristic weight vector χ for each pattern class ξi ∈ Ξ from the

reference probability vector {p̃i, i = 1, . . . , |Ξ|}. Given the reference

probability vectors p̃i, let

Hi ,

[

p̃1 . . . p̃i−1 p̃i+1 . . . p̃|Ξ|

]

(11)

Corresponding to each pattern ξi, the characteristic weight vector

χi is assigned as

χi =
[

I −Hi(HT
i H)−1HT

]

p̃i (12)

Let p be the stationary probability vector of the constructed D-

Markov machine for a data set x that is symbolized by using a given

partition vector ζ. Then, the decision for pattern classification is made

by maximizing the renormalized measure in Eq. (10) as

d
⋆ = argmax

i

p
T
χi (13)

Computation of the characteristic weight in Eq. (12) relies on the

concept of parity space [7], [8]. The projection matrix in Eq. (12)

can be derived as

V
T

i Vi =
[

I −Hi(HT
i H)−1HT

]

(14)

where Vi is known as the parity matrix for the pattern class ξi and

the corresponding parity vector is Vip for a data set that generates the

stationary probability vector p. The magnitude of this parity vector

determines whether p belongs to the pattern class ξi as seen below.

̺i = ‖Vip‖ =

{

large, if p = p̃i

small, if p 6= p̃i

(15)

Let θi , Vip̃i and φi , Vip be the parity vectors of the reference

probability vectors and the unknown probability vector respectively.

Then, the following inner product is computed as

〈θi, φi〉 = θ
T
i φi = p̃

T
i V

T
i Vip (16)

By precomputation, it is possible to assign χi = V T
i Vip̃i. Then,

Eq. (16) becomes

〈θi, φi〉 = p̃
T
i V

T
i Vip = χ

T
i p = p

T
χi (17)

Equivalently, the the inner product 〈θi, φi〉 is the same as the

renormalized measure defined in Eq. (10).

C. Algorithms for Behavior Identification

Let R = {ρ1, . . . , ρ|R|} be the set of robots and let each robot

execute one or more of the different motion profiles in the set

Φ = {ϕ1, . . . , ϕ|Φ|}. Let the number of profiles executed by robot

ρi be ni. Also, let the indices of the profiles executed by robot ρi be

{yi
1, . . . , y

i
ni
}. That is robot ρi executes profiles {ϕyi

1
, . . . , ϕyi

ni
}.

Thus, the total number of pattern classes |Ξ| =
∑

ij
ni ≤ |R||Φ|.

The pattern identification procedure first generates a partitioning ζ
and obtains a reference state probability vector p̃j , i = 1, . . . , |Ξ|
of time-series data belonging to each pattern class ξj . Algorithm 1

describes the procedure to compute the pattern vectors. Once the

pattern set {p̃i} is constructed, time-series data sets are analyzed to

estimate the probability densities pMij
(•) for the Bayesian classifier

by following the procedure in Algorithm 2. Algorithm 3 gives the

corresponding forward algorithm for the Language Measure classifier
Given a set of time-series data with an unidentified pattern, a

symbol sequence is generated using the partitions ζ. Then, a D-

Markov machine of appropriate depth D is constructed based on the

procedure described in [2]. If the correct decision is made (i.e., the

distance is computed from the correct reference probability vector),

then the generated probability vector p should be very close to

the chosen reference probability vector, implying that the deviation

measure mij ≈ 0.0 in equation (1). The a priori probabilities

pMij
(mij) are computed from the densities estimated in Algo-

rithm 2. The a posteriori probabilities and the Bayes risk functions are

then computed from pMij
(mij) via Eqs. (5) and (6) respectively, as

shown in lines 10-11 of Algorithm 5. The decision d⋆ is chosen so as

to minimize the risk in line 12 of the Algorithm 5. Lines 13-14 simply

convert the identified pattern vector index d⋆ into corresponding

indices of the robot i and the movement profile yi
ℓ. Algorithm 6

provides the analogous inverse or identification algorithm for the

Language Measure classifier.

Algorithm 1 Pattern Identification Forward Algorithm

Input: time-series data sets
Output: Sequence of reference probability vectors p̃i, i = 1, . . . , |Ξ|

Let j = 0;
x = ∅;
for i = 1 to |R| do

for k = 1 to ni do
Let robot ρi ∈ R execute motion ϕyi

k
∈ Φ;

Collect the time-series data xj ;
x = x

⋃

xj ;
j = j + 1;

end for
end for
Partition x using Alg. 4 to obtain partition vector ζ.
for i = 1 to |Ξ| do

partition xi using ζ to obtain the reference probability vector p̃i.
end for

Algorithm 2 Forward Algorithm for Bayesian Classifier

Input: time-series data sets
Output: probability densities pMij

(•) ∀ i, j = 1, · · · , |Ξ|
for j = 1 to |Ξ| do

for ℓ = 1 to L do
Collect time-series data xℓ

j

for i = 1 to |Ξ| do
partition xℓ

j using ζ to obtain symbol sequence s
construct D-Markov machine G using s
compute state probability vector pj for G

compute the deviation measure mℓ
ij = d(pj , p̃i)

end for
end for

end for
From realizations

{

m1
ij , · · · , mL

ij

}

estimate the probability density for

pMij
(•) ∀ i, j = 1, · · · , |Ξ|

III. EXPERIMENTAL RESULTS AND DISCUSSION

This section provides a detailed description of the experimental

procedure, an application of the SDF method to time-series data

1331



Algorithm 3 Forward Algorithm for Language Measure Classifier

Input: time-series data sets
Output: characteristic weight vectors {χi}

for i = 1 to |Ξ| do

compute Hi =
[

p̃1 . . . p̃i−1p̃i+1 . . . p̃|Ξ|

]

compute χi =
[

I −Hi(H
T
i H)−1HT

]

p̃i

end for

Algorithm 4 Maximum Entropy Partitioning

Input: time-series Data x,Number of Symbols |A|
Output: Partition Vector ζ

sort x in ascending order
let K=length(x)
ζ(1) = x(1); minimum of x
for i=2 to |A| do

ζ(i) = x

(

floor

(

(i − 1) ∗ K

|A|

))

end for
ζ(|A| + 1) = x(K); maximum of x

Algorithm 5 Inverse Algorithm for Bayesian Classifier

Input: time-series Data x, Reference probability vectors {p̃i}, density
estimates {pMij

}
Output: Identified Pattern i.e decision d⋆

partition x using ζ to get symbol sequence s
construct D-Markov machine G using s
compute state probability vector pj⋆ for G, where j⋆ corresponds to
the unknown pattern ξj⋆ that is yet to be identified
for i = 1 to |Ξ| do

compute the deviation measure mij = d(pj⋆ , p̃i)
for j = 1 to |Ξ| do

compute P [x|di, ξj ] = pMij
(mij(x)) (equation 2)

end for
for j = 1 to |Ξ| do

compute P [ξj|x, di] using Eq. (5)
end for
compute the Bayes risk R(x|di) using Eq. (6)

end for
compute d⋆ = argmini R(x|di)
from sequence {n1, n2, . . . , n|R|} compute the cumulative se-

quence {0, n1, n1 + n2, . . . ,
∑i=|R|

i=1 ni} to form the new sequence
{N0, N1, N2, . . . , N|R|}
find i such that Ni−1 < d⋆ ≤ Ni and k = Ni − j

Conclude that the robot ρi was executing ϕyi
k

profile

of robot signature, and discussion of the experimental results. The

objective here is to identify the statistical patterns of robot behavior

that may include both parametric and nonparametric uncertainties

such as:

1) Small variations in the robot mass that includes unloaded base

weights of the platform itself and its payload.

2) Uncertainties in friction coefficients for robot traction.

3) Fluctuations in the robot motion due to small delays in com-

mands due to communication delays, computational delays

especially if the processor is heavily loaded.

4) Sensor uncertainties due to random noise in the A/D channels

of the microprocessor.

The Segway RMP and Pioneer 2AT robots are commanded to

execute three different motion trajectories, namely, random motion,

Algorithm 6 Inverse Algorithm for language measure Classifier

Input: time-series Data x, characteristic weight vectors {χi}
Output: Identified Pattern i.e decision d⋆

partition x using ζ to get symbol sequence s
construct D-Markov machine G using s
compute state probability vector pj⋆ for G, where j⋆ corresponds to
the unknown pattern ξj⋆ that is yet to be identified
for i = 1 to |Ξ| do

compute the language measure νi = (pj⋆ )T
χi

end for
compute d⋆ = argmaxi νi

from sequence {n1, n2, . . . , n|R|} compute the cumulative se-

quence {0, n1, n1 + n2, . . . ,
∑i=|R|

i=1 ni} to form the new sequence
{N0, N1, N2, . . . , N|R|}
find i such that Ni−1 < d⋆ ≤ Ni and k = Ni − j

Conclude that the robot ρi was executing ϕyi
k

profile

circular motion, and square motion.Both robots were made to execute

each of the three different types of trajectories on a pressure sensi-

tive floor consisting of 144 piezoelectric sensors in the laboratory

environment for about an hour. Details of the laboratory setup can

be found in [1]. This procedure was repeated to collect six data sets

for two different robots executing each of the three different motion

behaviors. It has been assumed that, during the execution of each

motion, the statistical behavior of the robot is stationary and it does

not switch behaviors in between.

Since the robot movements influence those sensors that surround

its location, only a few sensors generate significantly higher readings

than the remaining sensors. A simple background subtraction was

used to eliminate the readings from sensors away from the robot’s

location. Since the spatial distribution of the pressure-sensitive coils

underneath the floor is statistically homogenous, the decisions on

detection of robot behavior patterns are statistically independent of

the robot location (e.g., center of the circle, center and orientation

of the square, and mean of the distribution for random motion).

The parameters selected for the above three type of motion are

presented below. For the two types of robots, a total of six different

Motion Type Parameter Value
Circular Diameter 4m
Square Edge length 3m
Random Uniform distribution range in x-dir 1 to 7

range in y-dir 1 to 4

behavior patterns are defined. The data sets for each of the six pattern

classes are collected and processed to create the respective reference

probability vectors p̃i, i ∈ 1, . . . , |Ξ|, where |Ξ| = 6.

For all cases considered in this paper, the following options have

been used in the SDF procedure for construction of D-Markov

machines.

• Partitioning Method: Hilbert-transform-based analytical signal

space partitioning (ASSP ) [9];

• D-Markov machine parameters: Alphabet size |A|=8 and depth

D = 1;

• Distance function for computation of deviation measure: Stan-

dard Euclidean norm of the difference between the pair of

patterns.

The above combination of the parameters |A| and D was adequate

to successfully recognize all six behavioral patterns with only 8 states

and was computationally very fast in the sense that the code execution
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time was orders of magnitude smaller than the process response

time. Further increase of the alphabet size |A| did not provide any

noticeable improvement in the results because a finer partitioning did

not generate any significant new information as discussed in detail

by Rajagopalan and Ray [10]. Increasing the value of D beyond

1 was also found to be ineffective, which increases the number of

states of the finite state machine, many of them having near zero

or zero probabilities and requires a larger data set for computational

convergence of the state probability vectors.

A. Generation of statistical patterns for Bayesian classifier

A set of L=60 experiments were conducted to generate an ensem-

ble of realizations for each of these random variables. To compute

a realization mℓ
ij , where ℓ ∈ {1 . . . L}, the following procedure is

adopted:

• Partition the ℓth data set for pattern j using partition vector ζ.

• Construct a D-Markov machine (of state cardinality less than or

equal to |A|D) for each generated symbol sequence and compute

the state probability vector pj .

• Compute the realization mℓ
ij as the distance between pj and

reference probability vector p̃i.

Thus, an ensemble consisting of L=60 realizations
{

m1
ij , . . . , m

L
ij

}

was created for each random variable Mij .

A two-parameter lognormal distribution was hypothesized for

each random variable Mij . The rationale for selecting lognormal

distribution of Mij , as opposed to other distributions (e.g., normal

or Weibull), is stated below.

• The fact that the lognormal distribution is one directional on

the position axis is consistent with the deviation measure which

cannot be negative since it is a distance function.

• For a sample data set using the correct reference probability

vector, the probability of deviation measure being extremely

close to zero is less but higher for a certain range and gradually

decreases as the deviation measure increases. This is easily

modeled by a lognormal distribution.

• Since the random variable ℓn(Mij) is Gaussian, many standard

statistical tools are available for statistical data analysis.

The probability density function of the random variable Mij is

defined as:

pMij
(x) =

1√
2π σij x

exp

(−(ln(x) − µij)
2

2σ2
ij

)

U(x) (18)

where U(•) is the standard Heaviside unit step function; and µ and

σ are respectively the mean and standard deviation of the Gaussian

distributed random variable ln(Mij). The two parameters (i.e., mean

µij and the variance σ2
ij of Mij) for lognormal distribution were

identified from each of the 36 sets,
{

m1
ij , . . . , m

L
ij

}

. Each lognormal

distribution satisfied the 10% significance level which suffices for

the conventional standard of 5% significance level. The goodness of

fit of these histograms evinces that the lognormal distribution is an

adequate approximation of the statistics of Mij .

B. Identification of Robot Type and Motion Profile

The problem at hand is to identify the type of the robot and

its motion profile on the pressure-sensitive floor in the laboratory

environment. Based on the acquired information of statistical patterns,

a solution to the above identification problem was obtained through

usage of Algorithms 5 and 6 from online time-series data of the

unidentified robot (i.e., either Segway or Pioneer in the present ex-

perimentation). The time-series data was partitioned using a partition

ζ obtained from Algorithm 1 to generate a symbol sequence. A D-

Markov machine (with state cardinality |A|D = 8 for |A| = 8 and

D = 1) was constructed for the generated symbol sequence. The state

probability vector was computed for the constructed state machine.

Following Eq. (1), the deviation measure mij(x) was computed for

the probability vector pi(x), and each reference vector p̃i where

i ∈ {1, · · · , 6} for a given set of time-series data x and the unknown

pattern ξj is yet to be identified.

The pattern of robot type and motion was identified based on

the probabilistic Bayesian method in Section II. The following

assumptions were made in the absence of any specific information

on P [ξj ] in Eq. (5) and λij in Eq. (6).

• Uniform probability of the prior probabilities of occurrence of

the pattern classes ξj’s, i.e., P [ξj ] =
1

|Ξ| ∀j ∈ {1, · · · , |Ξ|}.

• Uniform nonzero risk for all wrong decisions and zero risk for

correct decisions, i.e., λij = 1−δij where δij =

{

1 if i = j

0 if i 6= j

is the Kronecker-delta function.

With the above choices of λij’s and P [ξj ]’s, risk minimization in

Eq. (7) is equivalent to having the maximum likelihood estimate of

the pattern class as

argmax
i

(

P [x|di, ξi]
)

= argmax
i

(

pMii

(

mij(x)
)

(19)

TABLE I
DEVIATION MEASURES mij(x) AND TOTAL RISK di

Decision di mij(x) Total Risk R(di|x)
Segway Rand. 0.14831 0.9929
Segway Circ. 0.12076 1.0000
Segway Sq. 0.10643 0.9926
Pioneer Rand. 0.44743 0.9780
Pioneer Circ. 0.075726 0.7473
Pioneer Sq. 0.038984 0.0419 (see Eq. (7))

The pertinent results for a given time series data x are summarized

in Table I that lists the values of the deviation measures mij in the

second column for an unidentified set of time-series data x which

belongs to the class of Pioneer Square (i.e., ξ6). Assuming the prior

probabilities for all ξj are equal, Eq. (5) reduces to

P [ξj |x, di] =
pMij

(

mij(x)
)

∑

k
pMik

(

mij(x)
) (20)

The risk of of making decision di when the true hypothesis is ξj

is chosen as λij = (1−δij) . With this choice of the risk parameters,

the total risk of making the decision di given by Eq. (6) becomes

R(di|x) =
∑

j 6=i

P (ξj |x, di) (21)

Table I shows the computed values of the total risk of making

decision di in the third column. The decision d⋆ as given in Eq. (7),

is the one that minimizes the total risk R(di|x). The maximum like-

lihood estimate is simply the maximum of the diagonal elements of

the matrix
[

pMij
(mij)

]

. In this example the maximum corresponds

to Pioneer Square, shown in bold in Table I, which confirms the

decision d⋆ obtained by minimizing the total risk in Eq. (21).
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Figure 1 shows the results of identification of pattern types with

the Bayesian classifier for 60 sets of time-series data for each pattern

class. The numbers on the abscissa of Fig. 1 indicate the data

corresponding to a particular pattern class. For all six patterns, the

algorithms successfully identified the patterns for more than 60%

of the cases studied for all pattern classes. From the statistical

perspectives, it is expected that the success rate would improve if

the number of samples in the goodness of fit analysis is increased

(see Subsection III-A).
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Fig. 1. Performance of robot behavior identification for different patterns
using the Bayesian classifier;
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Fig. 2. Performance of robot behavior identification for different patterns
using the language-measure-based classifier;

Figure 2 shows the results of identification of pattern types

with the language-measure classifier for the same 60 data sets that

were used for the Bayesian classifier. It shows that the algorithm

successfully identified the correct pattern for more than 60% of

the cases studied. The performance of the language-measure-based

classifier is qualitatively similar to the Bayesian classifier in terms

of error due to misclassification. However, the language-measure-

based classifier is much simpler in terms of computational complexity

as seen form the algorithms presented in Section II-C. The main

computational advantage accrues from the fact that the language-

measure-based classifier does not require estimation of the probability

density functions for the random variables {pMij
}. The following list

compares the computation time, needed for feature extraction, clas-

sifier construction, and pattern identification, in the two classifiers.

Classifier Feature Classifier Pattern
extraction construction identification

Bayesian 407.09 sec 16.2677 sec 1.6076 sec
Language measure 407.09 sec 12.0406 sec 0.3861 sec

The amount of time required during the feature extraction is

relatively large due to the volume of data that the algorithm processes

in both classifiers. However, construction of the language measure

classifier and subsequent pattern identification take less time than

those for the Bayesian classifier.

IV. SUMMARY AND CONCLUSIONS

This paper presents an online dynamic data-driven method for

identification of behavior patterns in autonomous agents such as

mobile robots. The proposed method utilizes symbolic dynamic

filtering (SDF) [2] to model the statistical behavior patterns of mobile

robots. These identified models are then used to detect the pattern

class of robot behavior (e.g., the type of robot and the kind of robot

motion) in real-time based on the time-series data collected from an

array of sensors. Two pattern identification methods are proposed

and they have the following distinct features compared to standard

statistical pattern recognition [4].

• Fully automated model identification in the symbol space via

coarse graining of the phase space. This feature allows usage of

relatively low-precision and inexpensive commercially available

sensors.

• Robustness to parametric and non-parametric uncertainties due

to, for example, phase distortion and imprecise initial conditions.

• Insensitivity to environmental and spurious disturbances due to

the inherent noise suppression capability of symbolic dynamic

filtering (SDF) [2], [10].

Further the language-measure-based classifier is seen to be compu-

tationally less expensive than the Bayesian classifier while they have

comparable performance.
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