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Abstract— For (possibly unstable) ODE systems with actu-
ator delay, predictor-based infinite-dimensional feedback can
compensate for actuator delay of arbitrary length and achieve
stabilization. We extend this concept to another class of PDE-
ODE cascades, where the infinite-dimensional part of the plant
is of diffusive, rather than convective type. We derive predictor-
like feedback laws and observers, with explicit gain kernels.
The gain kernels involve second order matrix exponentials
of the system matrix of the ODE plant, which is the result
of the second-order-in-space character of the actuator/sensor
dynamics. The construction of the kernel functions is performed
using the continuum version of the backstepping method.
Robustness to small perturbations in the diffusion coefficient is
proved.

I. INTRODUCTION

For ODE systems with actuator and sensor delays,
predictor-based control design and its extensions to ob-
servers, adaptive control, and even nonlinear system have
been active areas of research over the last thirty years [1],
[2], [3], [4], [5], [6], [7], [11], [9], [8], [12], [13], [14], [15],
[16], [17], [18], [19], [20], [23], [25], [26], [27].

Though various finite-dimensional forms of actuator dy-
namics (consisting of linear and nonlinear integrators) have
been successfully tackled in the context of backstepping
methods, realistic forms of infinite-dimensional actuator and
sensor dynamics different than pure delays have not received
attention.

In this note we address the problems of compensating
the actuator and sensor dynamics dominated by diffusion,
i.e., modeled by the heat equation. Purely convective/first-
order hyperbolic PDE dynamics (i.e., transport equation, or,
simply, delay) and diffusive/parabolic PDE dynamics (i.e.,
heat equation) introduce different problems with respect to
controllability and stabilization. On the elementary level,
the convective dynamics have constant magnitude response
at all frequencies but are limited by a finite speed of
propagation. The diffusive dynamics, when control enters
through one end-point of a 1-D domain and exits (to feed
the ODE) through the other, are not limited in the speed of
propagation but introduce an infinite relative degree, with the
associated significant roll-off of the magnitude response at
high frequencies.

In this note we present an exact extension of the predictor
feedback and observer design, from delay-ODE cascades [1],
[11] to diffusion PDE-ODE cascades. We apply the same
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ideas we employed in [11] to construct infinite-dimensional
state transformations and Lyapunov-Krasovskii functionals.
The key difference is in the transformation kernel functions
(and the associated ODEs and PDEs which need to be
solved). While in our work on delays [11] the kernel ODEs
and PDEs were of first order, here they are of second order.
To be more precise, the design PDEs for control gains arising
in delay problems were hyperbolic of first order, whereas
with diffusion problems they are hyperbolic of second order.
As we did in [11], we solve them explicitly.

We start in Section II with an actuator compensation
design with full state feedback. With a simple design we
achieve closed-loop stability. We follow this with a more
complex design which also endows the closed-loop system
with an arbitrarily fast decay rate. In Section III we ap-
proach the question of robustness of our infinite-dimensional
feedback law with respect to uncertainty in the diffusion
coefficient. This question is rather nontrivial for actuator
delays. We resolved it positively for small delay perturbations
in [8] and we resolve it positively here for small perturba-
tions in the diffusion coefficient. Finally, in Section IV we
develop a dual of our actuator dynamics compensator and
design an infinite-dimensional observer which compensates
the diffusion dynamics of the sensor.

II. STABILIZATION WITH FULL-STATE FEEDBACK

We consider the cascade of a heat equation and an LTI
finite-dimensional system given by

Ẋ(t) = AX(t)+Bu(0, t) (1)
ut(x, t) = uxx(x, t) (2)
ux(0, t) = 0 (3)
u(D, t) = U(t) , (4)

where X ∈ Rn is the ODE state, U is the scalar input to the
entire system, and u(x, t) is the state of the PDE dynamics
of the diffusive actuator. The cascade system is depicted in
Figure 1.

The length of the PDE domain, D, is arbitrary. Thus, we
take the diffusion coefficient to be unity without loss of
generality. We assume that the pair (A,B) is stabilizable and
take K to be a known vector such that A+BK is Hurwitz.

We recall from [11] that, if (2), (3) are replaced by the
delay/transport equation,

ut(x, t) = ux(x, t) , (5)
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Fig. 1. The cascade of the heat equation PDE dynamics of the actuator with the ODE dynamics of the plant.

then the predictor-based control law

U(t) = K
[

eADX(t)+
∫ D

0
eA(D−y)Bu(y, t)dy

]
(6)

achieves perfect compensation of the actuator delay and
achieves exponential stability at u ≡ 0,X = 0.

Next we state a new controller that compensates the
diffusive actuator dynamics and prove exponential stability
of the resulting closed-loop system.

Theorem 1: (Stabilization) Consider a closed-loop system
consisting of the plant (1)–(4) and the control law

U(t) =K
[

I 0
]e

[
0 A
I 0

]
D [

I
0

]
X(t)

+
∫ D

0

∫ D−y

0
e

[
0 A
I 0

]
ξ

dξ

[
I
0

]
Bu(y, t)dy

 . (7)

For any initial condition such that u(x,0) is square integrable
in x and compatible with the control law (7), the closed-loop
system has a unique classical solution and is exponentially
stable in the sense of the norm(

|X(t)|2 +
∫ D

0
u(x, t)2dx

)1/2

. (8)

Proof: Consider the state transformation (given in its
direct and inverse forms as)

w(x, t) = u(x, t)−
∫ x

0
m(x− y)u(y, t)dy

−KM(x)X(t) (9)

u(x, t) = w(x, t)+
∫ x

0
n(x− y)u(y, t)dy

+KN(x)X(t) , (10)

where

m(s) =
∫ s

0
KM(ξ )Bdξ (11)

n(s) =
∫ s

0
Kn(ξ )Bdξ (12)

M(ξ ) =
[

I 0
]

e

[
0 A
I 0

]
ξ
[

I
0

]
(13)

N(ξ ) =
[

I 0
]

e

[
0 A+BK
I 0

]
ξ
[

I
0

]
. (14)

A lengthy but straightforward calculation yields

Ẋ(t) = (A+BK)X(t)+Bw(0, t) (15)
wt(x, t) = wxx(x, t) (16)
wx(0, t) = 0 (17)
w(D, t) = 0 . (18)

Consider a Lyapunov function

V = XT PX +
a
2
‖w‖2 , (19)

where ‖w(t)‖2 is a compact notation for
∫ D

0 w(x, t)2 dx, the
matrix P = PT > 0 is the solution to the Lyapunov equation

P(A+BK)+(A+BK)T P =−Q

for some Q = QT > 0, and the parameter a > 0 is to be
chosen later. It is easy to show, using(9) and (10), that there
exist positive constants α1,α2,β1,β2 such that

‖w‖2 ≤ α1‖u‖2 +α2|X |2 (20)
‖u‖2 ≤ β1‖w‖2 +β2|X |2 , (21)

and hence, that there exist positive constants δ and δ̄ such
that

δ
(
|X |2 +‖u‖2)≤V ≤ δ̄

(
|X |2 +‖u‖2) (22)

Tanking a derivative of the Lyapunov function along the
solutions of the PDE-ODE system (15)–(18), we get

V̇ = XT QX +2XT PBw(0, t)−a‖wx‖2

≤ −λmin(Q)
2

|X |2 +
2|PB|2

λmin(Q)
w(0, t)2−a‖wx‖2

≤ −λmin(Q)
2

|X |2−
(

a− 8|PB|2

λmin(Q)

)
‖wx‖2 , (23)

where the last line is obtained by using Agmon’s inequality.
Taking

a >
8|PB|2

λmin(Q)
, (24)

and using Poincare’s inequality, there exists a positive con-
stant b such that

V̇ ≤−bV .

Hence,

|X(t)|2 +‖u(t)‖2 ≤ δ̄

δ
e−bt (|X0|2 +‖u0‖2) (25)

for all t ≥ 0, which completes the proof.
The convergence rate to zero for the closed-loop system is

determined by the eigenvalues of the PDE-ODE system (15)–
(18). These eigenvalues are the union of the eigenvalues of
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A+BK, which are placed at desirable locations by the control
vector K, and of the eigenvalues of the heat equation with
a Neumann boundary condition on one end and a Dirichlet
boundary condition on the other end. While exponentially
stable, the heat equation PDE need not necessarily have
fast decay. Its decay rate is limited by its first eigenvalue,
−π2/

(
4D2

)
.

Fortunately, the compensated actuator dynamics, i.e., the
w-dynamics in (17)–(18) can be sped up arbitrarily by a
modified controller.

Theorem 2: (Performance Improvement) Consider a
closed-loop system consisting of the plant (1)–(4) and the
control law

U(t) =φ(D)X(t)+
∫ D

0
ψ(D,y)u(y, t)dy , (26)

where

φ(x) = KM(x)−
∫ x

0
κ(x,y)KM(y)dy (27)

ψ(x,y) = κ(x,y)+
∫ x−y

0
KM(ξ )Bdξ

−
∫ x

y
κ(x,ξ )

∫
ξ−y

0
KM(η)Bdηdξ (28)

κ(x,y) = −cx
I1

(√
c(x2− y2)

)
√

c(x2− y2)
, c > 0 , (29)

and I1 denotes the appropriate Bessel function. For any initial
condition such that u(x,0) is square integrable in x and
compatible with the control law (26), the closed-loop system
has a unique classical solution and its eigenvalues are given
by the set

eig{A+BK}∪

{
−c− π2

D2

(
n+

1
2

)2

, n = 0,1,2, . . .

}
.

(30)
Proof: Consider the new (invertible) state transforma-

tion,

z(x, t) = w(x, t)−
∫ x

0
κ(x,y)w(y, t)dy

= u(x, t)−
∫ x

0
ψ(x,y)u(y, t)dy−φ(x)X(t) .(31)

A lengthy but straightforward calculation employing, among
other things, the properties of the kernel κ(x,y) derived
in [21, Section VIII.A], and the composition of backstepping
transformations in [21, Section VIII.E], yields the trans-
formed closed-loop system

Ẋ(t) = (A+BK)X(t)+Bz(0, t) (32)
zt(x, t) = zxx(x, t)− cz(x, t) (33)
zx(0, t) = 0 (34)
z(D, t) = 0 . (35)

With an elementary calculation of the eigenvalues of the z-
system, the result of the theorem follows.

III. ROBUSTNESS TO DIFFUSION COEFFICIENT
UNCERTAINTY

We now study robustness of the feedback law (7) to
a perturbation in the diffusion coefficient of the actuator
dynamics, i.e., we study stability robustness of the closed-
loop system

Ẋ(t) = AX(t)+Bu(0, t) (36)
ut(x, t) = (1+ ε)uxx(x, t) (37)
ux(0, t) = 0 (38)

u(D, t) =
∫ D

0
m(D− y)u(y, t)dy+KM(D)X(t) (39)

to the perturbation parameter ε , which we allow to be either
positive or negative but small.

Theorem 3: (Robustness to Diffusion Uncertainty) Con-
sider a closed-loop system (36)–(39). There exists a suf-
ficiently small ε∗ > 0 such that for all ε ∈ (−ε∗,ε∗) the
closed-loop system has a unique classical solution (under
feedback-compatible initial data in L2) and is exponentially
stable in the sense of the norm(

|X(t)|2 +
∫ D

0
u(x, t)2dx

)1/2

.

Proof: It can be readily verified that

Ẋ(t) =(A+BK)X(t)+Bw(0, t) (40)
wt(x, t) =(1+ ε)wxx(x, t)

+ εKM(x)((A+BK)X(t)+Bw(0, t)) (41)
wx(0, t) =0 (42)
w(D, t) =0 . (43)

Along the solutions of this system, the derivative of the
Lyapunov function (19) is

V̇ ≤ −λmin(Q)
2

|X |2−
(

a− 8|PB|2

λmin(Q)
−|ε|a

)
‖wx‖2

+aε

∫ D

0
w(x)KM(x)dx((A+BK)X(t)+Bw(0, t))

≤ −λmin(Q)
4

|X |2−
(

a− 8|PB|2

λmin(Q)

)
‖wx‖2

+|ε|a
(

1+4‖µ1‖+ |ε|a 4‖µ2‖2

λmin(Q)

)
‖wx‖2 , (44)

where

µ1(x) = KM(x)B (45)
µ2(x) = |KM(x)| . (46)

In the second inequality we have employed Young’s and
Agmon’s inequalities. Choosing now, for example,

a =
16|PB|2

λmin(Q)
.

it is possible to select |ε| sufficiently small to achieve
negative definiteness of V̇ .
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u(x,t)
u(D,t) u(0,t)U(t)

X(t)

Y(t)CX(t)

Fig. 2. The cascade of the ODE dynamics of the plant with the heat equation PDE dynamics of the sensor.

IV. OBSERVER DESIGN

Consider the LTI ODE system in cascade with diffusive
sensor dynamics at the output (as depicted in Figure 2),

Y (t) = u(0, t)) (47)
ut(x, t) = uxx(x, t) (48)
ux(0, t) = 0 (49)
u(D, t) = CX(t) (50)

Ẋ(t) = AX(t)+BU(t) . (51)

We recall from [11] that, if (48), (49) are replaced
by the delay/transport equation, ut(x, t) = ux(x, t), then the
predictor-based observer

ût(x, t) = ûx(x, t)+CeAxL(Y (t)− û(0, t)) (52)
û(D, t) = CX̂(t) (53)

˙̂X(t) = AX̂(t)+BU(t)+ eADL(Y (t)− û(0, t)) (54)

achieves perfect compensation of the observer delay and
achieves exponential stability at u− û ≡ 0,X − X̂ = 0.

Next we state a new observer that compensates the diffu-
sive sensor dynamics and prove exponential convergence of
the resulting observer error system.

Theorem 4: (Observer Design and Convergence) Assume
that M(D) is non-singular. The observer

ût(x, t) = ûxx(x, t)+CM(x)L(Y (t)− û(0, t)) (55)
ûx(0, t) = 0 (56)

û(D, t) = CX̂(t) (57)
˙̂X(t) = AX̂(t)+BU(t)+M(D)L(Y (t)− û(0, t)) . (58)

where L is chosen such that A−LC is Hurwitz, guarantees
that X̂ , û exponentially converge to X , u, i.e., more specif-
ically, that the observer error system is exponentially stable
in the sense of the norm(

|X(t)− X̂(t)|2 +
∫ D

0
(u(x, t)− û(x, t))2 dx

)1/2

.

Proof: Introducing the error variables

X̃ = X − X̂ (59)
ũ = u− û , (60)

we obtain:

ũt(x, t) = ũxx(x, t)−CM(x)Lũ(0, t) (61)
ũx(0, t) = 0 (62)
ũ(D, t) = CX̃(t) (63)

˙̃X(t) = AX̃(t)−M(D)Lũ(0, t) . (64)

Consider the transformation

w̃(x) = ũ(x)−CM(x)M(D)−1X̃ . (65)

After a lengthy but straightforward calculation, which ex-
ploits the fact that A and M(x) commute, we get

w̃t(x, t) =w̃xx(x, t) (66)
w̃x(0, t) =0 (67)
w̃(D, t) =0 (68)

˙̃X(t) =
(
A−M(D)LCM(D)−1) X̃

−M(D)Lw̃(0, t) . (69)

The matrix A−M(D)LCM(D)−1 is Hurwitz, which can be
easily seen by using a similarity transformation M(D), which
commutes with A.

With a Lyapunov function

V = X̃T M(D)−T PM(D)−1X̃ +
a
2

∫ D

0
w̃(x)2 dx , (70)

where P = PT > 0 is the solution to the Lyapunov equation

P(A−LC)+(A−LC)T P =−Q

for some Q = QT > 0, one gets

V̇ =− X̃T M(D)−T QM(D)−1X̃

−2X̃T M(D)−T PLw̃(0, t)− a
2
‖w̃x‖2 . (71)

Applying Young’s and Agmon’s inequalities, taking a is
sufficiently large, and then applying Poincare’s inequality,
one can show that

V̇ ≤−µV

for some µ > 0, i.e., the (X̃ , w̃) system is exponentially stable
at the origin. From (65) we get exponential stability in the

sense of
(
|X̃(t)|2 +

∫ D
0 ũ(x, t)2dx

)1/2
.

The convergence rate of the observer is limited by the
first eigenvalue of the heat equation (66)–(68), i.e., by
−π2/(4D2). A similar observer re-design, as applied for the
full-state control design in Theorem 2, can be applied to
speed up the observer convergence.

V. CONCLUSIONS

In this note we developed explicit formulae for full-state
control laws and observers in the presence of diffusion-
governed actuator and sensor dynamics.

Since we have chosen to keep the presentation compact,
the least clear (and probably the most intriguing) part for the
reader is how we actually construct the feedback law like (7)
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or the transformation like (9), (10) and its kernels (11)–(14).
We find these functions by postulating a transformation of
the form

w(x, t) = u(x, t)−
∫ x

0
q(x,y)u(y, t)dy− γ(x)X(t) (72)

and deriving the conditions

γ
′′(x) = Aγ(x) (73)
γ(0) = K (74)
γ
′(0) = 0 , (75)

which is a second order ODE, and

qxx(x,y) = qyy(x,y) (76)
q(x,x) = 0 (77)

qy(x,0) =−γ(x)B , (78)

which is a hyperbolic PDE of second order and of Goursat
type. We then proceed to solve this cascade system explicitly.
A similar procedure is used in the observer design.

It is reasonable to ask many questions regarding the
possibility of extension of these results to other types of
cascades. For example, can these results be extended to
actuators and sensors which are of wave equation (second
order hyperbolic) type? This is the subject of our companion
paper [10].

How about an extension to other types of cascades? For
example, an unstable reaction-diffusion (parabolic) PDE with
boundary control entering through a delay? Our design works
in this case to the extent that a feedback transformation
can be constructed to convert the closed-loop system into
a cascade of two exponentially stable systems, a transport
equation feeding into a heat equation. However, difficul-
ties arise when trying to construct a composite Lyapunov-
Krasovskii functional for the two PDEs because they are
connected through a Dirichlet type of boundary condition
(which is a fundamental problem—PDEs from different
classes interacting through boundary conditions). In this
case one must resort to higher order norms to characterize
stability. This is the subject of our ongoing research, both
for parabolic and second-order hyperbolic PDEs with input
delays.

We have also studied other cascade combinations of
PDEs, such as heat-wave and wave-heat cascades, connected
through Dirichlet or Neumann variables. Parts of the PDE
control community consider these coupled problems to be
representative of PDE problems modeling fluid-structure
interactions. The heat-wave and wave-heat cascades give rise
to more serious challenges than delay-heat and delay-wave
cascades. After a rather major effort to identify conditions
on the backstepping transformation kernels, one is faced
with formidable, uncommon PDEs that contain fourth-order
derivatives in time or space, plus additional effects. These
are also subjects of ongoing research.
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