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Abstract— A set of N independent Gaussian linear time
invariant systems is observed by M sensors whose task is
to provide the best possible steady-state causal minimum
mean square estimate of the state of the systems, in addition
to minimizing a steady-state measurement cost. The sensors
can switch between systems instantaneously, and there are
additional resource constraints, for example on the number of
sensors which can observe a given system simultaneously. We
first derive a tractable relaxation of the problem, which provides
a bound on the achievable performance. This bound can be
computed by solving a convex program involving linear matrix
inequalities. Exploiting the additional structure of the sites
evolving independently, we can decompose this program into
coupled smaller dimensional problems. In the scalar case with
identical sensors, we give an analytical expression for an index
policy proposed in a more general context by Whittle. In the
general case, we develop open-loop periodic switching policies
whose performance matches the bound arbitrarily closely.

I. INTRODUCTION

Advances in sensor networks and the development of
unmanned vehicle systems for intelligence, reconnaissance
and surveillance missions require the development of data
fusion schemes that can handle measurements originating
from a large number of sensors observing a large number of
targets, see e.g. [1], [2]. These problems have a long history
[3], and can be used to formulate static sensor scheduling
problems as well as trajectory optimization problems for
mobile sensors [4], [5].

In this paper, we consider M sensors tracking the state of
N sites or targets in continuous time. We assume that the
sites can be described by N plants with independent linear
time invariant dynamics,

ẋi = Aixi +Biui +wi, xi(0) = xi,0, i = 1, . . . ,N.

We assume that the plant controls ui(t) are deterministic and
known for t ≥ 0. Each driving noise wi(t) is a stationary white
Gaussian noise process with zero mean and known power
spectral density matrix Wi: Cov(wi(t),wi(t ′)) = Wi δ (t− t ′).
The initial conditions are random variables with known mean
x̄i,0 and covariance matrices Σi,0. By independent systems
we mean that the noise processes of the different plants are
independent, as well as the initial conditions xi,0. Moreover
the initial conditions are assumed independent of the noise
processes. We shall also assume that
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Assumption 1: The matrices Σi,0 are positive definite for
all i ∈ {1, . . . ,N}.
This can be achieved by adding an arbitrarily small pertur-
bation to a potentially non invertible matrix Σi,0. We have
M sensors to observe the N plants. If sensor j is used to
observe plant i, we obtain measurements

yi j = Ci jxi + vi j.

Here vi j is a stationary white Gaussian noise process with
power spectral density matrix Vi j, assumed positive definite.
Also, vi j is independent of the other measurement noises,
process noises, and initial states. Finally, to guarantee con-
vergence of the filters later on, we assume throughout that

Assumption 2: For all i ∈ {1, . . . ,N}, there exists a set of
indices j1, j2, . . . , jni ∈ {1, . . . ,M} such that the pair (Ai,C̃i)
is detectable, where C̃i = [CT

i j1 , . . . ,C
T
i jni

]T .

Assumption 3: The pairs (Ai,W
1/2
i ) are controllable, for

all i ∈ {1, . . . ,N}.
Let us define πi j(t) = 1 if plant i is observed at time t

by sensor j, and πi j(t) = 0 otherwise. We assume that each
sensor can observe at most one system at each period, hence
we have the constraint

N

∑
i=1

πi j(t)≤ 1, ∀t, j = 1, . . . ,M. (1)

If instead sensor j is required to be always operated, con-
straint (1) should simply be changed to

N

∑
i=1

πi j(t) = 1. (2)

We also add the following constraint, similar to the one used
by Athans [6]. We suppose that each system can be observed
by at most one sensor at each time, so we have

M

∑
j=1

πi j(t)≤ 1, ∀t, i = 1, . . . ,N. (3)

Similarly if system i must always be observed by some
sensor, constraint (3) can be changed to an equality constraint

M

∑
j=1

πi j(t) = 1. (4)

Note that a sensor in our discussion can correspond to a
combination of several physical sensors, and so the con-
straints above can capture seemingly more general problems
where we allow for example more that one simultaneous
measurements per system.

We consider an infinite-horizon average cost problem.
The parameters of the model are assumed known. We wish
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to design an observation policy π(t) = {πi j(t)} satisfying
the constraints (1), (3), or their equality versions, and an
estimator x̂π of x, depending at each instant only on the past
and current observations produced by the observation policy,
such that the average error variance is minimized, in addition
to some observation costs. The policy π itself can also only
depend on the past observations. More precisely, we wish to
minimize, subject to the constraints (1), (3),

γ = min
π,x̂π

limsup
T→∞

1
T

E

[∫ T

0

N

∑
i=1

(
(xi− x̂π,i)′Ti(xi− x̂π,i)

+
M

∑
j=1

κi j πi j(t)

)
dt

]
, (5)

where the constants κi j are a cost paid per unit of time
when plant i is observed by sensor j. The Ti’s are positive
semidefinite weighting matrices.

Literature Review and Contributions of this paper. The
sensor scheduling problem presented above, except for minor
variations, is an infinite horizon version of the problem
considered by Athans in [6]. See also Meier et al. [3] for
the discrete-time version. Athans considered the observation
of only one plant. We include here several plants to show
how their independent evolution property can be leveraged in
the computations, using the dual decomposition method from
optimization. Discrete-time versions of this sensor selection
problem have received a significant amount of attention, see
e.g. [7], [8], [9], [4], [10], [11], [12]. All algorithms proposed
so far, except for the greedy policy of [11] in the completely
symmetric case, either run in exponential time or consist of
heuristics with no performance guarantee. However, to the
authors’ knowledge, the problem has not been shown to be
intractable. We do not consider the discrete-time problem
in this paper. Finite-horizon continuous-time versions of the
problem, besides the presentation of Athans [6], have also
been the subject of several papers [13], [14], [15], [16].
For these problems the solutions proposed, usually based
on optimal control techniques, also involve computational
procedures that scale poorly with the dimension of the
problem.

Somewhat surprisingly however, and with the exception
of [17], it seems that the infinite-horizon continuous time
version of the Kalman filter scheduling problem has not been
considered previously. Mourikis and Roumeliotis [17] con-
sider initially also a discrete time version of the problem for a
particular robotic application. However, their discrete model
originates from the sampling at high rate of a continuous time
system. To cope with the difficulty of determining a sensor
schedule, they assume instead a model where each sensor can
independently process each of the available measurements
at a constant frequency, and seek the optimal measurement
frequencies. In fact, they obtain these frequencies by intro-
ducing heuristically a continuous time Riccati equation, and
show that the frequencies can then be computed by solving
a semidefinite program. In contrast, we consider the more
standard schedule-based version of the problem in contin-
uous time, which is a priori more constraining. We show
that essentially the same convex program provides in fact

a lower bound on the cost achievable by any measurement
policy. In addition, we provide additional insight into the
decomposition of the computations of this program, which
can be useful in the framework of [17] as well.

The rest of the chapter is organized as follows. Section
II briefly recalls that for a fixed policy π(t), the optimal
estimator is obtained by a type of Kalman-Bucy filter. The
properties of the Kalman filter (independence of the error
covariance matrix with respect to measurements) imply that
the remaining problem of finding the optimal scheduling
policy π is a deterministic control problem. In section III we
treat a simplified scalar version of the problem with identical
sensors as a special case of the classical “Restless Bandit
Problem” (RBP) [18], and provide analytical expressions for
an index policy and for the elements necessary to compute
efficiently a lower bound on performance, both of which
were proposed in the general setting of the RBP by Whittle.
Then, for the multidimensional case treated in full generality
in section IV, we show that the lower bound on performance
can be computed as a convex program involving linear matrix
inequalities. This lower bound can be approached arbitrarily
closely by a family of new periodically switching policies
described in section IV-C. Approaching the bound with
these policies is limited only by the frequency with which
the sensors can actually switch between the systems. In
general, our solution has much more attractive computational
properties than the solutions proposed so far for the finite-
horizon problem. Additional details and some proofs omitted
in this paper can be found in [19], [20].

II. OPTIMAL ESTIMATOR

For a given observation policy π(t) = {πi j(t)}i, j, the
minimum variance filter x̂π(t) is given by the Kalman-Bucy
filter [21], see [6]. The resulting estimator is unbiased and the
error covariance matrix Σπ,i(t) for site i verifies the matrix
Riccati differential equation

Σ̇π,i(t) = AiΣπ,i +Σπ,iAT
i +Wi−Σπ,i

(
∑

M
j=1 πi j(t)CT

i jV
−1
i j Ci j

)
Σπ,i, (6)

with Σπ,i(0) = Σi,0. We can then reformulate the optimization
of the observation policy as a deterministic optimal control
problem. Rewriting E((xi − x̂i)′Ti(xi − x̂i)) = Tr(Ti Σi), the
problem is to minimize

γ = min
π

limsup
T→∞

1
T

[∫ T

0

N

∑
i=1

(
Tr
(
TiΣπ,i(t)

)
+

M

∑
j=1

κi j πi j(t)

)
dt

]
,

(7)
subject to the constraints (1), (3), or their equality versions,
and the dynamics (6).

III. SCALAR SYSTEMS AND IDENTICAL SENSORS

We assume in this section that
1) the sites or targets have one-dimensional dynamics, i.e.,

xi ∈ R, i = 1, . . . ,N.
2) all the sensors are identical, i.e., Ci j =Ci,Vi j =Vi,κi j =

κi, j = 1, . . . ,M.
Because of condition 2, we can simplify the problem formu-
lation introduced above so that it corresponds exactly to a
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special case of the RBP introduced by Whittle in [18]. We
define

πi(t) =

{
1 if plant i is observed at time t by a sensor
0 otherwise.

Note that a constraint (4) for some system i can be elim-
inated, by removing one available sensor, which is always
measuring the system i. Constraints (2) and (3) can then
be replaced by the single constraint ∑

N
i=1 πi(t) = M, ∀t. This

constraint means that at each period, exactly M of the N sites
are observed. We treat this case in the following, but again
the equality sign can be changed to an inequality. To obtain
a lower bound on the achievable performance, we relax the
constraint to enforce it only on average

limsup
T→∞

1
T

∫ T

0

N

∑
i=1

πi(t)dt = M. (8)

Then we adjoin this constraint using a (scalar) Lagrange
multiplier λ to form the Lagrangian

L(π,λ ) = limsupT→∞
1
T

[∫ T
0 ∑

N
i=1 [Tr(TiΣπ,i(t))+(κi +λ )πi(t)]dt−λM

]
.

Here κi is the cost per time unit for observing site i. The
dynamics of Σπ,i are now given by

d
dt Σπ,i(t) = AiΣπ,i +Σπ,iAT

i +Wi−πi(t)Σπ,iCT
i V−1

i CiΣπ,i. (9)

Then the original optimization problem (7) with the relaxed
constraint (8) can be expressed as

γ = inf
π

sup
λ

L(π,λ ) = sup
λ

inf
π

L(π,λ ),

where the exchange of the supremum and the infimum
can be justified using a minimax theorem for constrained
dynamic programming [22]. Hence we are led to consider
the computation of the dual function

γ(λ )= min
π

limsup
T→∞

1
T

∫ T

0

N

∑
i=1

[Tr(TiΣπ,i(t))+(κi +λ )πi(t)]dt,

which has the important property of being separable by site,
i.e., γ(λ ) = ∑

N
i=1 γ i(λ ), where for each site i we have

γ
i(λ ) = min

πi
limsup

T→∞

1
T

∫ T

0
Tr
(
Ti Σπi,i(t)

)
+(κi +λ )πi(t)dt. (10)

When the dynamics of the sites are one dimensional, i.e.,
Σi ∈ R, we can obtain an analytical expression of this dual
function, which provides a lower bound on the cost for each
λ . The results are presented in paragraph (III-B). First, we
explain how these computations also provide the elements
necessary to design a scheduling policy.

A. Restless Bandits

The Restless Bandit Problem (RBP) was introduced by
Whittle in [18] as a generalization of the classical Multi-
Armed Bandit Problem (MABP), which was first solved
by Gittins [23]. In the RBP, we have N projects evolving
independently, M of which can be activated at each time.
Projects that are active can evolve according to different

dynamics than projects that remain passive. In our context,
the projects correspond to the systems and the active action
corresponds to taking a measurement. Whittle [18] proposed
an index policy which, although suboptimal for a general
RBP, generalizes Gittins’ optimal policy for the MABP.

Consider the objective (10) for system i. The Lagrange
multiplier λ can be interpreted as a tax penalizing measure-
ments of the system. As λ increases, the passive action (i.e.,
not measuring) should become more attractive. Let us denote
P i(λ ) the set of covariance matrices Σi where the passive
action is optimal. Let Sn

+ be the set of symmetric positive
semidefinite matrices. Then we say that

Definition 4: System i is indexable if and only if P i(λ )
is monotonically increasing from /0 to Sn

+ as λ increases from
−∞ to +∞. If system i is indexable, we define its Whittle
index by λ i(Σi) = inf{λ ∈ R : Σi ∈P i(λ )}.

However natural the indexability requirement may be,
Whittle provided an example of a RBP where it is not veri-
fied. We will see in the next paragraph however that for our
particular problem, at least in the scalar case, indexability of
the systems is guaranteed. The idea behind the definition of
the Whittle index consists in defining an intrisic “value” for
measuring system i, taking into account both the immediate
and future gains. If the covariance of system i is Σi, the
Whittle index defines this value as the tax that should be
paid to make the controller indifferent between measuring
and not measuring the system. Finally, if all the systems
are indexable, the Whittle policy chooses at each instant to
measure the M systems with highest Whittle indices. There is
significant experimental data and some theoretical evidence
indicating that when the Whittle policy is well-defined for
an RBP, its performance is often very close to optimal, see
e.g. [24], [25], [26].

B. Solution of the Scalar Optimal Control Problem

For lack of space, we only present the result of the
computations, which can be found in [19], [20]. We define
x1,i and x2,i to be the negative and positive solutions of the
algebraic Riccati equation (ARE)

2Aix+Wi−
C2

i
Vi

x2 = 0,

xe,i = −Wi/(2Ai) if Ai < 0, xe,i = +∞ if Ai ≥ 0 and Σth,i to
be the unique positive solution of the cubic equation

X3− 2Vi(λ +κi)
TiC2

i
Ai X− 2Vi(λ +κi)

TiC2
i

Wi = 0. (11)

Theorem 1: For the scalar Kalman filter scheduling prob-
lem with identical sensors, the systems are indexable. For
system i, the Whittle index λi(Σi) is given as follows.

λi(Σi) =


−κi +

TiΣ
2
i

Σi−x1,i
if Σi ≤ x2,i,

−κi +
C2

i
2Vi

TiΣ
3
i

AiΣi+Wi
if x2,i < Σi < xe,i,

−κi +
C2

i Σ2
i

2|Ai|Vi
if xe,i ≤ Σi,

with the convention xe,i = +∞ if Ai ≥ 0. A lower bound on
the achievable performance is obtained by maximizing the
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concave function γ(λ ) = ∑
N
i=1 γ i(λ )−λM over λ , where the

term γ i(λ ) is given by
Tix2,i +κi +λ if λ ≤ λi(x2,i),

TiΣth,i(λ )+ Vi(κi+λ )(2AiΣth,i(λ )+Wi)
C2

i (Σth,i(λ ))2 , λi(x2,i) < λ < λi(xe,i),

Tixe,i if λi(xe,i)≤ λ .

IV. MULTIDIMENSIONAL SYSTEMS

Generalizing the computations of the previous section to
multidimensional systems requires solving the corresponding
optimal control problem in higher dimensions, for which
it is not clear that a closed form solution exist. Moreover
we have considered in section III a particular case of the
sensor scheduling problem where all sensors are identical.
We now return to the general multidimensional problem and
sensors with possibly distinct characteristics, as described in
the introduction.

For the infinite-horizon average cost problem, we show
that computing the value of a lower bound similar to the
one presented in section III reduces to a convex optimiza-
tion problem involving, at worst, Linear Matrix Inequalities
(LMI) whose size grows polynomially with the problem
essential parameters. Moreover, one can further decompose
the computation of this convex program into N coupled
subproblems as in the standard restless bandit case.

A. Performance Bound

We define the following quantities:

π̃i j(T ) =
1
T

∫ T

0
πi j(t)dt, ∀T. (12)

Since πi j(t) ∈ {0,1} we must have 0 ≤ π̃i j(T ) ≤ 1. Our
first goal, following the idea exploited in the restless bandit
problem, is to obtain a lower bound on the cost of the optimal
control problem for horizon T in terms of the numbers π̃i j(T )
instead of the functions πi j(t).

It will be easier to work with the information matrices
Qi(t) = Σ

−1
i (t). Note that invertibility of Σi(t) is guaranteed

by our assumption 1, as a consequence of [27, theorem 21.1].
Hence we replace the dynamics (6) by the equivalent

Q̇i =−QiAi−AT
i Qi−QiWiQi +

M

∑
j=1

πi j(t)CT
i jV
−1
i j Ci j, (13)

for all i ∈ {1, . . . ,N}. Let us define, for all T ,

Σ̃i(T ) :=
1
T

∫ T

0
Σi(t)dt, Q̃i(T ) :=

1
T

∫ T

0
Qi(t)dt.

By linearity of the trace operator, we can rewrite the objective
function

limsup
T→∞

N

∑
i=1

{
Tr(Ti Σ̃i(T ))+

M

∑
j=1

κi jπ̃i j(T )

}
.

Let Sn,Sn
+,Sn

++ denote the set of symmetric, symmetric pos-
itive semidefinite and symmetric positive definite matrices
respectively. A function f : Rm→ Sn is called matrix convex
if and only if for all x,y ∈ Rm and α ∈ [0,1], we have

f (αx+(1−α)y)� α f (x)+(1−α) f (y),

where � refers to the usual partial order on Sn, i.e., A � B
if and only if B−A ∈ Sn

+. Equivalently, f is matrix convex
if the scalar function x 7→ zT f (x)z is convex for all vectors
z. The following lemma will be useful

Lemma 5: The functions

Sn
++→ Sn

++ Sn→ Sn

X 7→ X−1 X 7→ XWX

for W ∈ Sn
++, are matrix convex.

Proof: See [28, p.76, p.110].
A consequence of this lemma is that Jensen’s inequality

is valid for these functions. We use it first as follows

∀T,

(
1
T

∫ T

0
Σi(t)dt

)−1

� 1
T

∫ T

0
Qi(t)dt = Q̃i(T ),

hence ∀T, Σ̃i(T ) � (Q̃i(T ))−1, and so Tr(Ti Σ̃i(T )) ≥
Tr(Ti (Q̃i(T ))−1). Next, integrating (13), we have

1
T

(Qi(T )−Qi,0) =−Q̃i(T )Ai−AT
i Q̃i(T )

− 1
T

∫ T

0
Qi(t)WiQi(t)dt +

M

∑
j=1

π̃i j(T )CT
i jV
−1
i j Ci j.

Using Jensen’s inequality and lemma 5 again, we have

1
T

∫ T

0
Qi(t)WiQi(t)dt � Q̃i(T )WiQ̃i(T ),

and so we obtain, using also Qi(T )� 0,

Q̃i(T )Ai +AT
i Q̃i(T )+ Q̃i(T )WiQ̃i(T )−∑

M
j=1 π̃i j(T )CT

i jV
−1
i j Ci j �

Qi,0
T .

(14)

So we see that for a fixed policy π and any time T , the
quantity

N

∑
i=1

{
Tr(Ti Σ̃i(T ))+

M

∑
j=1

κi jπ̃i j(T )

}
(15)

is lower bounded by the quantity
∑

N
i=1

{
Tr(Ti (Q̃i(T ))−1)+∑

M
j=1 κi jπ̃i j(T )

}
, where the

matrices Q̃i(T ) and the number π̃i j(T ) are subject
to the constraints (14) as well as 0 ≤ π̃i j(T ) ≤ 1,
∑

N
i=1 π̃i j(T )≤ 1, j = 1, . . . ,M, ∑

M
j=1 π̃i j(T )≤ 1, i = 1, . . . ,N,

for the inequality version of the resource constraints. Hence
for any T , the quantity Z∗(T ) defined below is a lower
bound on the value of (15) for any choice of policy π

Z∗(T ) = min
Q̃i,pi j

N

∑
i=1

{
Tr(Ti Q̃−1

i )+
M

∑
j=1

κi j pi j

}
, s.t. (16)

Q̃iAi +AT
i Q̃i + Q̃iWiQ̃i−

M

∑
j=1

pi jCT
i jV
−1
i j Ci j �

Qi,0

T
, i = 1 . . . ,N,

(17)

Q̃i � 0, i = 1 . . . ,N; 0≤ pi j ≤ 1, i = 1 . . . ,N, j = 1, . . . ,M,
N

∑
i=1

pi j ≤ 1, j = 1, . . . ,M;
M

∑
j=1

pi j ≤ 1, i = 1, . . . ,N.
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Consider now the same program where the right-hand side
of (17) is replaced by 0 to obtain the constraint:

Q̃iAi +AT
i Q̃i + Q̃iWiQ̃i−

M

∑
j=1

pi jCT
i jV
−1
i j Ci j � 0, i = 1 . . . ,N, (18)

and denote the corresponding solution Z∗. Defining δ := 1/T ,
and rewriting by slight abuse of notation Z∗(δ ) instead of
Z∗(T ) for δ positive, we also define Z∗(0) = Z∗. Note that
Z∗(0) is finite, since we can find a feasible solution to the
program defining Z∗, as follows. For each i, we choose a set
of indices Ji = { j1, . . . , jni} ⊂ {1, . . . ,M} such that (Ai,C̃i)
is observable, as in assumption 2. Once a set Ji has been
chosen for each i, we form the matrix P̂ with elements
p̂i j = 1{ j ∈ Ji}. Finally, we form a matrix P with elements
pi j satisfying the constraints and nonzero exactly where the
p̂i j are nonzero. Such a matrix is easy to find if we consider
the inequality constraints (1) and (3). If equality constraints
are involved instead, such a matrix P exists as a consequence
of Birkhoff theorem, see theorem 6. Now we consider the
quadratic inequality (18) for some value of i. From the
detectability assumption 2 and the choice of pi j, we deduce
that the pair (Ai,Ĉi), with

Ĉi =
[ √

pi1 CT
i1V−1/2

i1 · · · √piM CT
iMV−1/2

iM

]T
(19)

is detectable. Also note that ĈT
i Ĉi = ∑

M
j=1 pi j CT

i jV
−1
i j Ci j.

Together with the controllability assumption 3, we then know
that (18) has a positive definite solution Q̃i [29, theorem
2.4.25]. Hence Z∗(0) is finite.

We can also define Z∗(δ ) for δ < 0, by changing the
right-hand side of (17) into δQi,0 =−|δ |Qi,0. We have that
Z∗(δ ) is finite for δ < 0 small enough. Indeed, passing the
term δQi,0 on the left hand side, this can then be seen as a
perturbation of the matrix C̃i above, and for δ small enough,
detectability, which is an open condition, is preserved.

We will see below that the programs with values Z∗(δ )
are convex. It is then a standard result of perturbation
analysis (see e.g. [28, p. 250]) that Z∗(δ )is a convex func-
tion of δ , hence continuous on the interior of its domain,
in particular continuous at δ = 0. So limsupT→∞ Z∗(T ) =
limT→∞ Z∗(T ) = Z∗. Finally, for any policy π , we obtain the
following lower bound on the achievable cost

limsupT→∞
1
T
∫ T

0 ∑
N
i=1

{
Tr(Ti Σi(t))+∑

M
j=1 κi jπi j(t)

}
dt ≥ Z∗.

We now show how to compute Z∗ (or similarly, Z∗(δ )) by
solving a convex program involving linear matrix inequali-
ties. For each i, introduce a new (slack) matrix variable Ri.
Since Qi � 0,Ri � Q−1

i is equivalent, by taking the Schur
complement, to [

Ri I
I Qi

]
� 0,

and the Riccati inequality (18) can be rewritten[
Q̃iAi +AT

i Q̃i−∑
M
j=1 pi jCT

i jV
−1
i j Ci j Q̃iW

1/2
i

W 1/2
i Q̃i −I

]
� 0.

We finally obtain, dropping the tildes from the notation Q̃i,
the semidefinite program

Z∗ = min
Ri,Qi,pi j

N

∑
i=1

{
Tr(Ti Ri)+

M

∑
j=1

κi j pi j

}
, (20)

s.t.
[

Ri I
I Qi

]
� 0, i = 1 . . . ,N,[

QiAi +AT
i Qi−∑

M
j=1 pi jCT

i jV
−1
i j Ci j QiW

1/2
i

WiQ
1/2
i −I

]
� 0,∀i

0≤ pi j ≤ 1, i = 1 . . . ,N, j = 1, . . . ,M,
N

∑
i=1

pi j ≤ 1, j = 1, . . . ,M, (21)

M

∑
j=1

pi j ≤ 1, i = 1, . . . ,N.

Hence solving the program (20) provides a lower bound on
the achievable cost for the original optimal control problem.

B. Problem Decomposition

It is well-know that efficient methods exist to solve (20)
in polynomial time, which implies a computation time poly-
nomial in the number of variables of the original problem.
Still, as the number of targets increases, the large LMI
(20) becomes difficult to solve. Note however that it can
be decomposed into N small coupled LMIs, following the
standard dual decomposition approach already used for the
restless bandit problem. This decomposition is very useful to
solve large scale programs with a large number of systems.
For completeness, we repeat the argument below.

We first note that (21) is the only constraint which links
the N subproblems together. So we form the Lagrangian

L(R,Q, p;λ ) =
N

∑
i=1

{
Tr(Ti Ri)+

M

∑
j=1

(κi j +λ j)pi j

}
−

M

∑
j=1

λ j,

where λ ∈ RM
+ is a vector of Lagrange multipliers. We

would take λ ∈ RM if we had the constraint (2) instead
of (1). Now the dual function is G(λ ) = ∑

N
i=1 Gi(λ ) −

∑
M
j=1 λ j, where for each i

Gi(λ ) = min
Ri,Qi,{pi j}1≤ j≤M

Tr(Ti Ri)+
M

∑
j=1

(κi j +λ j)pi j,

(22)

s.t.
[

Ri I
I Qi

]
� 0,[

QiAi +AT
i Qi−∑

M
j=1 pi jCT

i jV
−1
i j Ci j QiW

1/2
i

W 1/2
i Qi −I

]
� 0,

0≤ pi j ≤ 1, j = 1, . . . ,M;
M

∑
j=1

pi j ≤ 1.

The optimization algorithm proceeds then as follows. We
choose an initial value λ 1 ≥ 0 and set k = 1.

1) For i = 1, . . . ,N, compute Rk
i ,Q

k
i ,{pk

i j}1≤ j≤M optimal
solution of (22), and the value Gi(λ k).
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2) We obtain the value G(λ k) of the dual function at λ k.
A supergradient of G(λ k) at λ k is given by[

N

∑
i=1

pk
i1−1, . . . ,

N

∑
i=1

pk
iM−1

]
.

3) Compute λ k+1 in order to maximize G(λ ). For example,
we can do this by using a supergradient algorithm, or
any preferred nonsmooth optimization algorithm. Let
k:=k+1 and go to step 1, or stop if convergence is
satisfying.

Because the initial program (20) is convex, we know that
the optimal value of the dual optimization problem is equal
to the optimal value of the primal. Moreover, the optimal
variables of the primal are obtained at step 1 of the algorithm
above once convergence has been reached.

C. Open-loop Periodic Policies Achieving the Performance
Bound

In this section we describe a family of open-loop policies
that can approach arbitrarily closely the lower bound com-
puted by (20), thus proving that this bound is tight. These
policies are periodic switching strategies using a schedule
obtained from the optimal parameters pi j. Assuming no
switching times or costs, their performance approaches the
bound as the length of the switching cycle decreases toward
0.

Let P = [pi j]1≤i≤N,1≤ j≤M be the matrix of optimal param-
eters obtained in the solution of (20). We assume here that
constraints (1) and (3) were enforced, which is the most
general case for the discussion in this section. Hence P
verifies

0≤ pi j ≤ 1, i = 1, . . . ,N, j = 1, . . . ,M,
N

∑
i=1

pi j ≤ 1, j = 1, . . . ,M, and
M

∑
j=1

pi j ≤ 1, i = 1, . . . ,N.

Thus if M = N, P is a doubly substochastic matrix. Else if
M < N or N < M, we can add N−M columns of zeros or
M−N rows of zeros to P respectively to obtain a doubly
substochastic matrix. In any case, we call the resulting
doubly substochastic matrix P̃ = [p̃i j]. If rows have been
added, this is equivalent to the initial problem with additional
“dummy systems”. If columns are added, these correspond to
using “dummy sensors”. Dummy systems are not included
in the objective function, and a dummy sensor j > M is
associated formally to the measurement noise covariance
matrix V−1

i j = 0 for all i, in effect producing no measurement.
In the following we assume that P̃ is an N × N doubly
substochastic matrix, but the discussion in the M×M case
is identical. First, we need the following theorem.

Theorem 6 ([30]): The set of N×N doubly substochastic
matrices is the convex hull of the set P0 of N×N matrices
which have a most one unit in each row and each column,
and all other entries are zero.

Hence for the doubly substochastic matrix P̃, there exists
a set of positive numbers φk and matrices Pk ∈P0 such that

P̃ =
K

∑
k=1

φkPk, with
K

∑
k=1

φk = 1, for some integer K. (23)

An algorithm to obtain this decomposition is described in
[31] and [32] for example, and runs in time O(N4.5). See
also [20]. Note that any matrix A ∈P0 represents a valid
sensor/system assignment (for the system with additional
dummy systems or sensors), where sensor j is measuring
system i if and only if ai j = 1.

The family of periodic switching policies considered is
parametrized by a positive number ε representing a time
interval over which the switching schedule is executed com-
pletely. Fixing ε , a policy is defined as follows:

1) At time t = lε, l ∈ N, associate sensor j to system i as
specified by the matrix P1 of the representation (23).
Run the corresponding continuous-time Kalman filters,
keeping this sensor/system association for a duration
φ1ε .

2) At time t = (l +φ1)ε , switch to the assignment specified
by P2. Run the corresponding continuous time Kalman
filters until t = (l +φ1 +φ2)ε .

3) Repeat the switching procedure, switching to matrix
Pi+1 at time t = l +φ1 + · · ·+φi, for i = 1, . . . ,K−1.

4) At time t = (l + φ1 + · · ·+ φK)ε = (l + 1)ε , start the
switching sequence again at step 1 with P1 and repeat
the steps above.

1) Performance of the Periodic Switching Policies: For
lack of space, the proofs of the results of this section are not
reproduced here, but can be found in [19], [20]. Let us fix
ε > 0 in the definition of the switching policy, and consider
now the evolution of the covariance matrix Σε

i (t) for the
estimate of the state of system i produced by this policy.
The superscript indicates the dependence on the period ε of
the policy. First we have

Lemma 7: For all i ∈ {1, . . . ,N}, the estimate covariance
Σε

i (t) converges as t → ∞ to a periodic solution Σ̄ε
i (t) of

period ε .
Next, denote by Σ̃i(t) the solution to the following Riccati

differential equation (RDE), with initial condition Σi,0:

Σ̇i = AiΣi +ΣiAT
i +Wi−Σi

(
M

∑
j=1

pi jCT
i jV
−1
i j Ci j

)
Σi. (24)

Assumptions 2 and 3 guarantee that Σ̃i(t) converges to a
positive definite limit denoted Σ∗i . Moreover, Σ∗i is the unique
positive definite solution to the algebraic Riccati equation
(ARE):

AiΣi +ΣiAT
i +Wi−Σi

(
M

∑
j=1

pi jCT
i jV
−1
i j Ci j

)
Σi = 0. (25)

The next lemma says that the periodic function Σ̄ε
i (t)

oscillates in a neighborhood of Σ∗i .
Lemma 8: For all t ∈ R+, we have Σ̄ε

i (t)−Σ∗i = O(ε) as
ε → 0.
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Fig. 1. Comparison of the variance trajectories under the periodic switching
policy (oscillating red curves), Whittle’s index policy (solid blue curves
merging with the oscillating curves), and the greedy policy (converging
green curves). Here a single sensor switches between two scalar systems.
The period ε was chosen to be 0.05. The system parameters are A1 =
0.1,A2 = 2,Ci = Wi = Vi = 1,κi = 0. The dashed lines are the steady-state
values that could be achieved with two identical sensors, each measuring
one system. The performance of the Whittle policy is 7.98, which is optimal
(i.e., matches the bound). The performance of the greedy policy is 9.2.
Note that the greedy policy makes the variances converge, while the Whittle
policy makes the Whittle indices (not shown) converge. The switching policy
spends 23% of its time measuring system 1 and 77% of its time measuring
system 2.

The following theorem then follows from the previous two
lemmas, see [19], [20].

Theorem 9: Let Zε denote the performance of the periodic
switching policy with period ε . Then Zε − Z∗ = O(ε) as
ε → 0, where Z∗ is the performance bound (20). Hence
the switching policies approach the lower bound arbitrarily
closely as the period ε tends to 0.

Remark 10: It can be shown that the trajectories of Σε
i (t)

in fact remains close to Σ̃i(t) for all t, characterizing the
transient behavior of the switching policies, see [19].

2) Numerical Simulation: Figure 1 compares the covari-
ance trajectories for the Whittle index policy, the periodic
switching policy and the greedy policy (always measuring
the system with highest mean square error) for a simple
problem with one sensor switching between two scalar
systems. Significant improvements over the greedy policy
can be obtained in general.

REFERENCES

[1] K. Chakrabarty, S. Sitherama Iyengar, H. Qi, and E. Cho, “Grid
coverage for surveillance and target location in distributed sensor
networks,” IEEE Transactions on Computers, vol. 51, no. 12, pp.
1448–1453, December 2002.

[2] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control
for mobile sensing networks,” IEEE Transactions on Robotics and
Automation, vol. 20, no. 2, pp. 243–255, April 2004.

[3] L. Meier, J. Peschon, and R. Dressler, “Optimal control of measure-
ment systems,” IEEE Transactions on Automatic Control, vol. 12,
no. 5, pp. 528–536, 1967.

[4] A. Tiwari, “Geometrical analysis of spatio-temporal planning prob-
lems,” Ph.D. dissertation, California Institute of Technology, 2006.

[5] J. Williams, “Information theoretic sensor management,” Ph.D. disser-
tation, Massachusetts Institute of Technology, February 2007.

[6] M. Athans, “On the determination of optimal costly measurement
strategies for linear stochastic systems,” Automatica, vol. 8, pp. 397–
412, 1972.

[7] E. Feron and C. Olivier, “Targets, sensors and infinite-horizon tracking
optimality,” in Proceedings of the 29th IEEE Conference on Decision
and Control, 1990.

[8] Y. Oshman, “Optimal sensor selection strategy for discrete-time state
estimators,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 30, no. 2, pp. 307–314, 1994.

[9] A. Tiwari, M. Jun, D. Jeffcoat, and R. Murray, “Analysis of a dynamic
sensor coverage problem using Kalman filters for estimation,” in
Proceedings of the 16th IFAC World Congress, 2005.

[10] V. Gupta, T. Chung, B. Hassibi, and R. Murray, “On a stochastic sensor
selection algorithm with applications in sensor scheduling and sensor
coverage,” Automatica, vol. 42, no. 2, pp. 251–260, 2006.

[11] B. F. L. Scala and B. Moran, “Optimal target tracking with restless
bandits,” Digital Signal Processing, vol. 16, pp. 479–487, 2006.

[12] L. Shi, M. Epstein, B. Sinopoli, and R. Murray, “Effective sensor
scheduling schemes in a sensor network by employing feedback in the
communication loop,” in Proceedings of the 16th IEEE International
Conference on Control Applications, 2007.

[13] E. Skafidas and Nerode, “Optimal measurement scheduling in linear
quadratic gaussian control problems,” in Proceedings of the IEEE
International Conference on Control Applications, Trieste, Italy, 1998,
pp. 1225–1229.

[14] A. Savkin, R. Evans, and E. Skafidas, “The problem of optimal robust
sensor scheduling,” Systems and Control Letters, vol. 43, pp. 149–157,
2001.

[15] J. Baras and A. Bensoussan, “Optimal sensor scheduling in nonlin-
ear filtering of diffusion processes,” SIAM Journal on Control and
Optimization, vol. 27, no. 4, pp. 786–813, 1989.

[16] H. Lee, K. Teo, and A. Lim, “Sensor scheduling in continuous time,”
Automatica, vol. 37, pp. 2017–2023, 2001.

[17] A. I. Mourikis and S. I. Roumeliotis, “Optimal sensor scheduling for
resource-constrained localization of mobile robot formations,” IEEE
Transactions on Robotics, vol. 22, no. 5, pp. 917–931, 2006.

[18] P. Whittle, “Restless bandits: activity allocation in a changing world,”
Journal of Applied Probability, vol. 25A, pp. 287–298, 1988.

[19] J. Le Ny, “Performance optimization for unmanned vehicle systems,”
Ph.D. dissertation, Massachusetts Institute of Technology, September
2008.

[20] J. Le Ny, E. Feron, and M. Dahleh, “Scheduling Kalman filters in
continuous time,” Massachusetts Institute of Technology, Tech. Rep.,
October 2008. [Online]. Available: http://arxiv.org/abs/0810.5148

[21] R. E. Kalman and R. S. Bucy, “New results in linear filtering and
prediction,” Journal of Basic Engineering (ASME), vol. 83D, pp. 95–
108, 1961.

[22] E. Altman, Constrained Markov Decision Processes. Chapman and
Hall, 1999.

[23] J. Gittins and D. Jones, “A dynamic allocation index for the sequential
design of experiments,” in Progress in Statistics, J. Gani, Ed. Ams-
terdam: North-Holland, 1974, pp. 241–266.

[24] K. Glazebrook, D. Ruiz-Hernandez, and C. Kirkbride, “Some in-
dexable families of restless bandit problems,” Advances in Applied
Probability, vol. 38, pp. 643–672, 2006.

[25] R. Weber and G. Weiss, “On an index policy for restless bandits.”
Journal of Applied Probability, vol. 27, pp. 637–648, 1990.

[26] J. Le Ny, M. Dahleh, and E. Feron, “Multi-UAV dynamic routing
with partial observations using restless bandit allocation indices,” in
Proceedings of the 2008 American Control Conference, Seattle, June
2008.

[27] R. W. Brockett, Finite Dimensional Linear Systems. John Wiley and
Sons, 1970.

[28] S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2006.

[29] H. Abou-Kandil, G. Freiling, V. Ionescu, and G. Jank, Matrix Riccati
Equations in Control and Systems Theory, ser. Systems & Control:
Foundations & Applications. Birkhäuser, 2003.
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