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Abstract— In this work, we develop a method for model
predictive control of nonlinear stochastic partial differential
equations (PDEs) to regulate the state variance, which physi-
cally represents the roughness of a surface in a thin film growth
process, to a desired level. We initially formulate a nonlinear
stochastic PDE into a system of infinite nonlinear stochastic
ordinary differential equations (ODEs) by using Galerkin’s
method. A finite-dimensional approximation is then derived
that captures the dominant mode contribution to the state
variance. A model predictive control problem is formulated
based on the finite-dimensional approximation so that the
future state variance can be predicted in a computationally
efficient way. The control action is computed by minimizing an
objective function including penalty on the discrepancy between
the predicted state variance and a reference trajectory, and
a terminal penalty. An analysis of the closed-loop nonlinear
infinite-dimensional system is performed to characterize the
closed-loop performance enforced by the model predictive
controller. The model predictive controller is initially applied to
the stochastic Kuramoto-Sivashinsky equation (KSE), a fourth-
order nonlinear stochastic PDE. Simulation results demonstrate
that the proposed predictive controller can successfully drive
the norm of the state variance of the stochastic KSE to a
desired level in the presence of significant model parameter
uncertainties. In addition, we consider the problem of surface
roughness regulation in a one-dimensional ion-sputtering pro-
cess. The predictive controller is applied to the kinetic Monte
Carlo model of the sputtering process to successfully regulate
the expected surface roughness to a desired level.

I. INTRODUCTION

Nonlinear stochastic partial differential equations (PDEs)

arise naturally in the modeling of the evolution of the surface

height profile of ultra thin films in a variety of material

preparation processes such as thin film growth [5], [10],

[23], [24] and ion sputtering processes [6], [13]. Recently,

it was demonstrated that covariance control methods can be

applied to stochastic PDEs and result in successful control of

microscopic thin film morphology and methods for feedback

control of surface roughness based on linear [16], [17] and

nonlinear [18] stochastic PDE process models were devel-

oped. These stochastic-PDE-based control methods consti-

tute an alternative to control of thin film microstructure based
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on kinetic Monte-Carlo models [14], [15]. Furthermore, a

systematic identification approach was developed for linear

stochastic PDEs [16] and methods for construction of linear

and nonlinear stochastic PDE models for thin film growth

and ion-sputtering processes using first principles-based mi-

croscopic simulations were proposed [12], [20].

Model predictive control (MPC) is widely used in chemi-

cal process control due to its capability to handle input and

state constraints, to tolerate model uncertainty and suppress

external disturbances, and to force the closed-loop system

to follow a target trajectory using optimal control action

(see References [2], [11], [21], [22] for surveys of results

and references in this area). In MPC, the control action is

obtained by repeatedly solving an on-line finite horizon con-

strained open-loop optimal control problem. Recent efforts

on predictive control of distributed parameter systems have

focused on predictive control of deterministic parabolic PDEs

including linear systems with distributed [9] and boundary

[7] control and nonlinear systems with distributed control

[8]. However, results on predictive control of stochastic

distributed parameter systems, to the best of our knowledge,

are not available.

In this work, a method for model predictive control of

nonlinear stochastic PDEs is developed. The control ob-

jective is to regulate the state variance of the stochastic

PDE to a desired level. A nonlinear stochastic PDE is first

formulated into an infinite-dimensional nonlinear stochas-

tic ODE system by using Galerkin’s method. A finite-

dimensional approximation is then constructed to capture

the dominant mode contribution to the state variance. A

model predictive control problem is formulated based on

the finite-dimensional approximation.The control action is

computed by minimizing an objective cost function, which

includes both in-process and terminal penalties. An analysis

of the closed-loop nonlinear infinite-dimensional system is

performed to characterize the closed-loop performance en-

forced by the model predictive controller. Finally, numerical

simulations are performed to the stochastic KSE model and

the kinetic Monte Carlo model of an ion-sputtering process

to demonstrate the effectiveness and the robustness of the

proposed predictive controller.

II. PRELIMINARIES

We consider nonlinear dissipative stochastic PDEs with

distributed control of the following form:

∂h

∂ t
= A h+F (h)+

p

∑
i=1

bi(x)ui(t)+ξ (x, t) (1)
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subject to homogeneous boundary conditions and the initial

condition h(x,0) = h0(x), where x ∈ [−π,π] is the spatial

coordinate, t is the time, h(x, t) is the height of the surface

at position x and time t, A is a dissipative spatial differential

operator, F is a nonlinear function, ui(t) is the ith manipu-

lated input, p is the number of manipulated inputs and bi(x)
is the ith actuator distribution function (i.e., bi(x) determines

how the control action computed by the ith control actuator,

ui(t), is distributed (e.g., point or distributed actuation) in

the spatial interval [−π,π]). ξ (x, t) is a Gaussian noise with

zero mean and the following expression for its covariance:

〈ξ (x, t)ξ (x′, t ′)〉 = σ2δ (x− x′)δ (t − t ′) (2)

where σ is a real number, δ (·) is the Dirac delta function,

and 〈·〉 denotes the expected value.

The eigenvalue problem for A is defined as

A φ̄ j = λ jφ̄ j, j = 1,2, · · · ,∞ (3)

where λ j and φ̄ j denote the jth eigenvalue and eigenfunction,

respectively. To simplify our development and motivated by

most practical applications, we consider stochastic PDEs for

which A is a highly dissipative operator (i.e., a second-order

or fourth-order linear self-adjoint operator) and has eigen-

values which are real numbers and eigenfunctions which are

orthogonal to each other. The eigenspectrum of A , σ(A ),
is defined as the set of all eigenvalues of A , i.e. σ(A ) =
{λ1,λ2, · · ·}. Assumption 1 states that the eigenspectrum of

A can be partitioned into a finite-dimensional part consisting

of m slow eigenvalues and a stable infinite-dimensional

complement containing the remaining fast eigenvalues, the

separation between the slow and fast eigenvalues of A is

large, and that the infinite sum of
∞

∑
i=1

1/|λi| converges to a

finite positive number.

Assumption 1: The eigenvalues of A satisfy the following

[4]:

1) λ1 ≥ λ2 ≥ . . ..
2) σ(A ) can be partitioned as σ(A ) = σ1(A )+σ2(A ),

where σ1(A ) consists of the first m (with m finite)

eigenvalues, i.e. σ1(A ) = {λ1,λ2, · · · ,λm}. λm+1 < 0

and
|λ1|

|λm+1|
= O(ε) where ε < 1 is a small positive

number.

3) There exists a positive number, γ > 0, such that for

sufficient large n,
∞

∑
i=n

1

|λi|
< γ .

Note that the eigenvalue problem of the stochastic PDE of

Eq.1 is formulated in the same way as that of deterministic

PDEs. The assumption of finite number of unstable eigen-

values and discrete eigenspectrum are always satisfied for

parabolic PDE systems defined in finite spatial domains [3],

while the assumption of existence of only a few dominant

modes that capture the dominant dynamics of the stochastic

parabolic PDE system and the convergence of the infinite

sum
∞

∑
i=n

1/|λi| to a finite positive number are usually satisfied

by the majority of materials processes (see the example of

the sputtering process described by the stochastic Kuramoto-

Sivashinsky equation in the Simulation section).

III. NONLINEAR MODEL PREDICTIVE CONTROLLER

DESIGN

A. Model reduction

We apply Galerkin’s method to the system of Eq.1 to

derive an approximate finite-dimensional system. First, the

solution of Eq.1 is expanded into an infinite series in terms

of the eigenfunctions of the operator A of Eq.3 as follows:

h(x, t) =
∞

∑
n=1

αn(t)φ̄n(x) (4)

where αn(t) are time-varying coefficients. Substituting the

above expansion for the solution, h(x, t), into Eq.1 and taking

the inner product with the adjoint eigenfunctions, φ̄ ∗
n (x), the

following system of infinite nonlinear stochastic ODEs is

obtained:

dαn

dt
= λnαn + fnα +

p

∑
i=1

biαn
ui(t)+ξ n

α(t), n = 1, . . . ,∞ (5)

where

biαn
=

∫ π

−π
φ̄ ∗

n (x)bi(x)dx, ξ n
α(t) =

∫ π

−π
ξ (x, t)φ̄ ∗

n (x)dx

(6)

and

fnα =
∫ π

−π
φ̄ ∗

n (x)F (h)dx (7)

Note that the operator A is self-adjoint, therefore, the adjoint

eigenfunction is equal to the corresponding eigenfunction,

i.e., φ̄ ∗
n (x) = φ̄n(x).

Due to the orthogonality of the eigenfunctions of operator

A , the projections of the noise, ξ n
α(t), are independent

stochastically. As integrals of white noise, the covariances

of ξ n
α(t) can be computed by using the following result:

Result 1: If (1) f (x) represents a general deterministic

function, (2) η(x) is a random variable with 〈η(x)〉 = 0

and covariance 〈η(x)η(x′)〉 = σ 2δ (x − x′), and (3) ε =
∫ b

a f (x)η(x)dx, then ε is a real random number with 〈ε〉= 0

and covariance 〈ε2〉 = σ 2
∫ b

a f 2(x)dx [1].

Owing to its infinite-dimensional nature, the system of

Eq.5 cannot be directly used for the design of controllers

that can be implemented in practice (i.e., the practical

implementation of controllers which are designed on the

basis of this system will require the computation of infinite

sums which cannot be done by a computer). Instead, we will

base the controller design on a finite-dimensional approxi-

mation of this system. Subsequently, we will show that the

resulting controller will enforce the desired control objective

in the closed-loop infinite-dimensional system. Specifically,

we rewrite the system of Eq.5 as follows:

dxs

dt
= Asxs +Fs(xs,x f )+Bsu+ξs

dx f

dt
= A f x f +F f (xs,x f )+B f u+ξ f

(8)
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where xs = [α1 α2 · · · αm]T , x f = [αm+1 αm+2 · · · ]T , As =
diag[λ1 λ2 · · · λm], A f = diag [λm+1 λm+2 · · · ], Fs(xs,x f ) =
[ f1α(xs,x f ) f2α(xs,x f ) · · · fmα(xs,x f )]

T , F f (xs,x f ) = [
fm+1α(xs,x f ) fm+2α(xs,x f ) · · · ]T , u = [u1 u2 · · · up],
ξs = [ξ 1

α · · · ξ m
α ], and ξ f = [ξ m+1

α ξ m+2
α · · · ].

The standard Galerkin’s method is to approximate the

solution h(x, t) of the system of Eq.1 by x̃s(t), which is given

by the following m−dimensional system:

dx̃s

dt
= Asx̃s +Fs(x̃s,0)+Bsu+ξs (9)

where the tilde symbol in x̃s denotes that this state variable

is associated with a finite-dimensional system.

B. Predictive controller design

In this section, we design a nonlinear model predictive

controller based on the finite-dimensional stochastic ODE

system of Eq.9 to control the norm of the state variance of

the nonlinear stochastic infinite-dimensional system of Eq.1

to a desired level. Let X = [xT
s xT

f ]
T . The variances of xs, x f

and X are defined as:

var(xs(t)) =
[

〈α1(t)
2〉 · · · 〈αm(t)2〉

]T

var(x f (t)) =
[

〈αm+1(t)
2〉 〈αm+2(t)

2〉 · · ·
]T

var(X(t)) =
[

var(xs(t))
T var(x f (t))

T
]T

(10)

where 〈·〉 denotes the expected value.

We provide a predictive control formulation that is on the

basis of the finite-dimensional system of Eq.9 and computes

the control action by minimizing an objective function in-

cluding the distance between the predicted state variance and

a reference trajectory and a terminal penalty.

Consider a vector of reference trajectories describing the

desired trajectories for each element of the variance of xs,

var(x∗s (t)) = [〈α∗
1 (t)2〉 · · · 〈α∗

m(t)2〉]T . The control action,

u(t), can be obtained by solving, in a receding horizon

fashion, the following optimization problem:

min
u

∫ t+Tp

t

(

Q‖var(x̃u
s (τ))− var(x∗s (τ))‖2 +R‖u(t)‖2

)

dτ

+Q f ‖var(x̃u
s (t +Tp))− var(x∗s (t +Tp))‖2

s.t.
dx̃s

dt
= Asx̃s +Fs(x̃s,0)+Bsu+ξs

(11)

where Q and Q f are positive real numbers, Tp is the

prediction horizon, and x̃u
s (τ) is the solution of Eq.9 that

is due to the control u(τ), with an initial condition x̃s(t) at

a time t.

A challenge for the design of a predictive controller for a

stochastic process is to predict the state variance, var(xs(t)),
in a computationally efficient way. Although a realization of

the future evolution of state variance can be solved through

numerical integrations of the stochastic process model, due

to the stochastic nature of the process, numerical solutions

from different simulation runs of the same stochastic process

are not identical. The state variance should be computed by

averaging the numerical solutions of the stochastic process

from a large number of individual simulation runs. The

prediction of state variance using brute force numerical

integration of a nonlinear stochastic system is, therefore,

extremely computationally expensive and is not appropriate

for the design of predictive controllers to be implemented in

real-time.

As an alternative, an analytical solution of the state vari-

ance based on the process model, if available, provides a

feasible way for MPC design. For linear stochastic PDEs,

the analytical solution of the state variance is readily avail-

able, which results in efficient design of a model predictive

controller for surface variance regulation [20]. However, ana-

lytical solutions of the state variance for nonlinear stochastic

PDEs are, in general, not available. To this end, we focus on

the construction of a nonlinear feedback controller that can

induce a linear structure in the closed-loop finite-dimensional

stochastic system of Eq.9. Therefore, the analytical solution

of the state variance under the proposed controller struc-

ture can be obtained. Consequently, the control action is

computed by solving an optimization problem in a receding

horizon fashion and computationally efficient way.

Specifically, the control law takes the following form:

u(t) = B−1
s {(Acs(t)−As) x̃s(t)−Fs(x̃s(t),0)} (12)

where Acs(t) = diag[λc1(t) · · · λcm(t)], λci(t) (1 ≤ i ≤ m)

are time-varying, desired poles of the closed-loop finite-

dimensional system. Note that in the proposed controller

structure of Eq.12, the desired poles are not fixed values

but will be computed in real-time by solving an on-line

optimization problem in a receding horizon fashion. This

is a fundamental difference from the nonlinear feedback

controller proposed in our previous work [18].

Replacing the u of Eq.9 by Eq.12, we have the following

closed-loop system:

dx̃s(t)

dt
= Acs(t)x̃s(t)+ξs (13)

In this control problem formulation, the computation of the

control action, u(t), is equivalent to the computation of

Acs(t), or the values of λci(t) for i = 1,2, · · · ,m, by solving

the following optimization problem:

min
Acs(t)

∫ t+Tp

t

(

Q‖var(x̃s(τ))− var(x∗s (τ))‖2
)

dτ

+Q f ‖var(x̃s(t +Tp))− var(x∗s (t +Tp))‖2

s.t.
dx̃s

dt
= Acs(t)x̃s +ξs

ai < λci(t) < bi; i = 1,2, · · · ,m.

(14)

Note that in the optimization problem of Eq.14, Acs(t) does

not change during the optimization time interval t < τ <
t + Tp. The control action, u, is computed based on the

solution of the constrained optimization problem of Eq.14

using Eq.12. Therefore, u is not explicitly included in the

objective function. The system of Eq.13 is a linear stochastic

system and the analytical solution of the state variance of
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Eq.13 can be obtained as follows:

x̃n(τ) = eλcn(τ−t)x̃n(t)+
∫ τ

t
eλcn(t+Tp−µ)ξ n

s (µ)dµ

;n = 1,2, · · · ,m.
(15)

The expected value (the first stochastic moment) and the

variance (the second stochastic moment) of the state of Eq.13

can be computed as follows [16], [20]:

〈x̃n(τ)〉 = eλcn(τ−t)x̃n(t)

〈x̃n(τ)2〉 =
e2·λcn(τ−t) −1

2 ·λcn

+ 〈x̃n(t)〉2 ;n = 1,2, · · · ,m.

(16)

Eq.16 gives the analytical solution of var(x̃s(t)) in the closed-

loop finite-dimensional system of Eq.9. Using Eq.16, the op-

timization problem of Eq.14 can be subsequently formulated

as a minimization of a nonlinear algebraic equation, which

can be readily solved by using standard unconstrained or

constrained multidimensional nonlinear minimization algo-

rithms (for example, Nelder-Mead method or golden section

search).

By applying the controller of Eqs.12 and 14 to the infinite-

dimensional system of Eq.8, and using that ε =
|λ1|

|λm+1|
, the

closed-loop system takes the form:

dxs

dt
= Acsxs +(Fs(xs,x f )−Fs(xs,0))+ξs

ε
dx f

dt
= A f ε x f + εB f B

−1
s (Acs −As) x̃s

+εF f (xs,x f )− εB f B
−1
s Fs(x̃s,0)+ εξ f

(17)

where λ1 and λm+1 are the first and the (m+1)th eigenvalues

of the linear operator in Eq.8, and A f ε = diag[λε1 λε1 λε2

λε2 · · · ] is an infinite-dimensional matrix defined as A f ε =
ε ·A f .

We now proceed to characterize the accuracy with which

the variance of X = [xT
s xT

f ]
T is controlled in the closed-loop

infinite-dimensional system. Theorem 1 provides estimates

of the variances of xs and x f of the closed-loop system of

Eq.17 and a characterization of the variance of X enforced

by the controller of Eqs.12 and 14 in the closed-loop infinite

dimensional system. The proof of Theorem 1 can be found

in the journal version of this paper [19] and is omitted here

due to space limitation.

Theorem 1: Consider the closed-loop stochastic infinite-

dimensional system of Eq.17 and the definition of

‖var(xs)‖2, ‖var(x f )‖2, and ‖var(X)‖2 shown in Eq.10.

Then, there exist µ∗ > 0 and ε∗ > 0 such that if ‖x f 0‖+
‖xs0‖ ≤ µ∗ and ε ∈ (0,ε∗], ‖var(xs(t f ))‖2, ‖var(x f (t f ))‖2,

and ‖var(x(t f ))‖2 satisfy:

‖var(x f (t))‖2 = O(ε) (18)

‖var(xs(t))‖2 = ‖var(x∗s (t))‖2 +O(
√

ε) (19)

‖var(X(t))‖2 = ‖var(x∗s (t))‖2 +O(
√

ε) (20)

where x f 0 and xs0 are the initial conditions for x f and xs in

Eq.17, respectively.

Remark 1: Referring to the closed-loop finite-dimensional

system, we note that the predictive controller of Eq.11 needs

to be carefully designed to ensure closed-loop stability.

Specifically, let’s consider the closed-loop stochastic finite-

dimensional system of Eq.9. Its stability is determined by

the term Asx̃s +Fs(x̃s,0)+Bsu and is not affected by the

noise term ξs. Therefore, the closed-loop stability of the

stochastic finite-dimensional system under predictive control

can be addressed in the context of predictive control of

deterministic systems (see [2], [21], [22] for results on

predictive control of finite-dimensional systems and [8],

[9] for results on predictive control of infinite-dimensional

systems). A stabilizing predictive controller can be designed

by imposing suitable weight matrices (Q, R and Q f ) and

using an appropriate prediction horizon.

IV. SIMULATION RESULTS

In this section, we present applications of the pro-

posed model predictive controller to both the stochastic

Kuramoto-Sivashinsky equation (KSE), a fourth order non-

linear stochastic PDE model, and the kinetic Monte Carlo

model of a sputtering process. Since the physical inter-

pretation of the state variance of a stochastic PDE is the

expected roughness of the surface modeled by the stochastic

PDE, we will use the expected surface roughness as the

control objective in the simulation study. Simulation results

demonstrate that the proposed model predictive controller

is able to regulate the expected surface roughness of the

process modeled by the stochastic KSE to a desired level

with good robustness properties against model uncertainties.

Furthermore, we demonstrate that the controller designed

based on the stochastic KSE model of the process can

regulate the surface roughness of the kinetic Monte Carlo

model of the same process to a desired level.

A. Nonlinear predictive control of the stochastic Kuramoto-

Sivashinsky equation

The stochastic KSE is a fourth-order nonlinear stochastic

PDE that describes the evolution of the height fluctuation for

surfaces in a variety of material preparation processes includ-

ing surface erosion by ion sputtering, surface smoothing by

energetic clusters and ZrO2 thin film growth by reactive ion

beam sputtering. We consider the following stochastic KSE

with spatially distributed control:

∂h

∂ t
= −ν

∂ 2h

∂x2
−κ

∂ 4h

∂x4
+

λ

2

(

∂h

∂x

)2

+
p

∑
i=1

b̂i(x)ui(t)+ξ ′(x, t)

(21)

where ui is the ith manipulated input, p is the number of

manipulated inputs, b̂i is the ith actuator distribution function

(i.e., b̂i determines how the control action computed by the

ith control actuator, ui, is distributed (e.g., point or distributed

actuation) in the spatial interval [−π,π]), ν = 1.975×10−4,

κ = 1.58×10−4, λ = 1.975×10−4, x ∈ [−π,π] is the spatial

coordinate, t is the time, h(x, t) is the height of the surface

2479



at position x and time t and ξ ′(x, t) is a Gaussian noise with

zero mean and unit covariance:

〈ξ ′(x, t)ξ ′(x′, t ′)〉 = δ (x− x′)δ (t − t ′) (22)

A 200th order stochastic ODE of Eq.21 obtained via

Galerkin’s method is used to simulate the process (the use

of higher-order approximations led to identical numerical re-

sults, thereby implying that the following simulation runs are

independent of the discretization). The δ function involved in

the covariances of ξ n
α and ξ n

β is approximated by
1

∆t
, where

∆t is the integration time step.

1) Eigenvalue problem: To study the dynamics of Eq.21,

we initially consider the eigenvalue problem of the linear

operator of Eq.21, which takes the form:

Aφ̄n(x) = −ν
d2φ̄n(x)

dx2
−κ

d4φ̄n(x)

dx4
= λnφ̄n(x)

d jφ̄n

dx j
(−π) =

d jφ̄n

dx j
(+π); j = 0, · · · ,3; n = 1, · · · ,∞

(23)

where λn denotes an eigenvalue and φ̄n denotes an eigen-

function. A direct computation of the solution of the

above eigenvalue problem yields λ0 = 0 with ψ0 = 1/
√

2π ,

and λn = νn2 − κn4 (λn is an eigenvalue of multiplicity

two) with eigenfunctions φn = (1/
√

π)sin(nx) and ψn =
(1/

√
π)cos(nx) for n = 1, · · · ,∞. Note that the φ̄n in Eq.23

denotes either φn or ψn. From the expression of the eigenval-

ues, it follows that for fixed values of ν > 0 and κ > 0, the

number of unstable eigenvalues of the operator A in Eq.23 is

finite and the distance between two consecutive eigenvalues

(i.e. λn and λn+1) increases as n increases.

We then derive nonlinear stochastic ODE formulations of

Eq.21 using Galerkin’s method. By substituting the expan-

sion of h(x, t) in terms of the eigenfunctions into Eq.21 and

taking the inner product with the adjoint eigenfunctions, the

following system of infinite nonlinear stochastic ODEs is

obtained:

dαn

dt
= (νn2 −κn4)αn + fnα +

p

∑
i=1

biαn
ui(t)+ξ n

α(t)

n = 1, . . . ,∞
dβn

dt
= (νn2 −κn4)βn + fnβ +

p

∑
i=1

biβn
ui(t)+ξ n

β (t)

(24)

The control objective is the expected value of the surface

roughness, r, which is modeled by the stochastic KSE and

is represented by the standard deviation of the surface from

its average height and is computed as follows:

〈r(t)2〉 =

〈

1

2π

∫ π

−π
[h(x, t)− h̄(t)]2dx

〉

(25)

where h̄(t) =
1

2π

∫ π

−π
h(x, t)dx is the average surface height.

The expected surface roughness, 〈r(t)2〉 can be rewritten in

terms of αn(t) and βn(t) [17], [18]:

〈r(t)2〉 =
1

2π

∞

∑
i=1

[

〈αi(t)
2〉+ 〈βi(t)

2〉
]

(26)

Therefore, the control problem of the expected surface

roughness is equivalent to the state covariance control of

the stochastic KSE. The proposed predictive control method

can be applied to regulate the expected surface roughness.

2) Open-loop dynamics of the stochastic KSE: In the

first simulation, we compute the expected value of open-

loop surface roughness profile from the solution of the

stochastic KSE of Eq.21 by setting ui(t) = 0 for i = 1, · · · , p.

For ν = 1.975× 10−4 and κ = 1.58× 10−4, the stochastic

KSE possesses one positive eigenvalue. Therefore, the zero

solution of the open-loop system is unstable. Surface rough-

ness profiles obtained from 100 independent simulation runs

using the same parameters are averaged and the resulting

surface roughness profile is shown in Fig.1. The value of the

open-loop surface roughness increases due to the open-loop

instability of the zero solution. On the other hand, due to

the existence of the nonlinear term, the open-loop surface

roughness does not increase exponentially but it is bounded.
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Fig. 1. The open-loop profile of the expected surface roughness resulting
from the computation of the average of 100 independent simulation runs of
the stochastic KSE of Eq.21.

3) Model reduction: Following the same way of model

reduction of Eq.8, we rewrite the system of Eq.24 as follows:

dxs

dt
= Λsxs + fs(xs,x f )+Bsu+ξs

dx f

dt
= Λ f x f + f f (xs,x f )+B f u+ξ f

(27)

We note that the subsystem x f in Eq.27 is infinite-

dimensional. Neglecting the x f subsystem, the following 2m-

dimensional system is obtained:

dx̃s

dt
= Λsx̃s + fs(x̃s,0)+Bsu+ξs (28)

where the tilde symbol in x̃s denotes that this state variable

is associated with a finite-dimensional system.

4) Nonlinear predictive control of the stochastic KSE: In

this closed-loop simulation, we design a predictive controller

based on a 10th order stochastic ODE approximation con-

structed by using the first 10 eigenmodes of the system of

Eq.21. Ten control actuators are used to control the system.
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The ith actuator distribution function is taken to be:

bi(z) =



















1√
π

sin(iz); i = 1, · · · ,5

1√
π

cos[(i−5)z]; i = 6, · · · ,10

(29)

Under this control problem formulation, m = 5 and the value

of ε = |λ1|/|λ11| = 4.21×10−4. Our desired expected value

of the surface roughness is 4.28. A reference trajectory for

the expected surface roughness is constructed and is shown

by the dotted line in Fig.2. The prediction horizon, Tp, of

180 s is selected, which is sufficiently large compare to the

slow time scale in which the slow modes in the optimized

closed-loop system evolves. Closed-loop simulations are

performed to study the evolution of the expected value of

the surface roughness under predictive control. To further

simplify the computation, the predictive controller is solved

by assuming that all the closed-loop poles of the finite-

dimensional system are equal to each other. Closed-loop

surface roughness profiles obtained from 100 independent

simulation runs using the same simulation parameters are

averaged and the resulting surface roughness profile is shown

in Fig.2 (solid line) and it is compared with the open-loop

surface roughness profile (dotted line). We can see that the

controller successfully drives the surface roughness to the

desired level, which is lower than that corresponding to open-

loop operation (ui(t) = 0, i = 1, . . . ,10).
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Fig. 2. The closed-loop profile of the expected value of the surface
roughness of the nonlinear KSE under predictive control (solid line) vs.
the reference trajectory.

5) Robustness properties of the predictive controller: In

this subsection, we demonstrate the good robustness prop-

erties of the model predictive controller against parameter

uncertainties of the stochastic KSE process model. To this

end, we consider significant uncertainty in the parameters of

the stochastic KSE process model. Specifically, the controller

is designed based on the stochastic KSE model with the

following parameters, νm = 1.975×10−4, κm = 1.58×10−4,

and λm = 1.975×10−4, where the subscript m denotes that

the parameter is used by the model predictive controller

design. However, the parameters of the stochastic KSE to

which the predictive controller is applied are, ν = 1.5νm,

κ = 0.5κm, and λ = 1.2λm, which correspond to a 50%

uncertainty associated with ν and κ and a 20% uncertainty

associated with λ . The proposed predictive controller is

applied to the stochastic KSE model with the model uncer-

tainties, and the simulation results are shown in Fig.3. It is

clear that the predictive controller successfully regulates the

expected surface roughness to desired level in the presence

of significant model uncertainties.
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Fig. 3. The expected closed-loop surface roughness of the nonlinear KSE
under the proposed predictive controller Effect of model uncertainty.

B. Model predictive control of an ion-sputtering process

described by the stochastic KSE

Physical processes whose evolution of surface height

can be modeled by the stochastic KSE, such as surface

erosion by ion sputtering, can also be modeled by using

kinetic Monte Carlo techniques (see, for example, [6], [16]).

Since kinetic Monte Carlo models predict the evolution of

surface roughness in these processes by directly simulating

the formation of the surface under various surface micro-

processes such as adsorption, desorption, surface erosion and

surface reaction, kinetic Monte Carlo models have a higher

accuracy for prediction of the surface roughness than the

stochastic KSE model. To better verify the efficiency of the

developed feedback controller, we implement linearization

of the proposed nonlinear predictive controller to the kinetic

Monte Carlo process model of a sputtering process [6] to

control the surface roughness to a desired level.

1) Process description: We consider a 1-D-lattice rep-

resentation of a crystalline surface in a sputtering process,

which includes two surface micro-processes, erosion and dif-

fusion. The solid-on-solid assumption is made which means

that no defects or overhangs are allowed in the process. The

microscopic rules are as follows: a site, i, is first randomly

picked among the sites of the whole lattice and the particle

at the top of this site is subject to: a) erosion with probability

0 < f < 1, or b) diffusion with probability 1− f .

If the particle at the top of site i is subject to erosion, the

particle is removed from the site i with probability Pe ·Y (φi).

Pe is determined as
1

7
times the number of occupied sites in a

box of size 3×3 centered at the site i, which is shown in Fig.

4. There is a total of 9 sites in the box. The central one is the
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particle to be considered for erosion (the one marked by •).

Among the remaining 8 sites, the site above the central site

of interest must be vacant since the central site is a surface

site. Therefore, only 7 of the 8 sites can be occupied and

the maximum value of Pe is 1. Y (φi) is the sputtering yield

function defined as follows:

Y (φi) = y0 + y1φ 2
i + y2φ 4

i (30)

where y0, y1 and y2 are process dependent constants and φi

is the local slope defined as follows:

φi = tan−1

(

hi+1 −hi−1

2a

)

(31)

where a is the lattice parameter and hi+1 and hi−1 are the

values of surface height at sites i+1 and i−1, respectively.

Fig. 4. Schematic of the rule to determine Pe. Pe is defined as
1

7
times

the number of occupied sites in a box of size 3×3 centered at the particle

on the top of site i; Pe = 1 in the left figure and Pe =
4

7
in the right figure,

where the particle marked by • is on the top of site i.

If the particle at the top of site i is subject to diffusion,

one of its two nearest neighbors, j ( j = i + 1 or i− 1) is

randomly chosen and the particle is moved to the nearest

neighbor column with probability wi→ j as follows:

wi→ j =
1

1+ exp(β∆Hi→ j)
(32)

where ∆Hi→ j is the energy difference between the final and

initial states of the move, β =
1

kBT
and H is defined through

the Hamiltonian of an unrestricted solid-on-solid model as

follows:

H =

(

J

a2

)

L

∑
k=1

(hk −hk+1)
n (33)

where J is the bond energy, L is the total number of sites

in the lattice and n is a positive number. In the simulations

presented in this paper, we use n = 2 and βJ = 2.0.

The equation for the height fluctuations of the surface in

this sputtering process was derived in [13] and is a stochastic

Kuramoto-Sivashinsky equation of the form of Eq.34:

∂h

∂ t
= −ν

∂ 2h

∂x2
−κ

∂ 4h

∂x4
+

λ

2

(

∂h

∂x

)2

+ξ (x, t) (34)

where x ∈ [−π,π] is the spatial coordinate, t is the time,

h(x, t) is the height of the surface at position x and time t,

ν and κ are two constants, and ξ (x, t) is a Gaussian noise

with zero mean and covariance:

〈ξ (x, t)ξ (x′, t ′)〉 = σ2δ (x− x′)δ (t − t ′) (35)

where σ is a constant, δ (·) is the dirac function, and 〈·〉
denotes the expected value. Note that the noise covariance

depends on both space x and time t.

The parameters of the stochastic KSE model are identified

by using a method reported in [12] as ν = 2.76 × 10−5,

κ = 1.54× 10−7, λ = 3.06× 10−3, and σ2 = 1.78× 10−5.

Using the identified model parameters, the expected sur-

face roughness predicted by the stochastic KSE model is

consistent to that from the kMC model. However, there

are observable model errors due to various approximations

made in the process modeling procedures (see [12] for

simulation results and detailed discussions). As demonstrated

in the previous section, the proposed predictive controller

is robust against significant model parameter uncertainties

and is suitable to control the sputtering process based on an

identified stochastic KSE process model.

2) Model predictive control of the sputtering process: In

the closed-loop simulation, we design a predictive controller

based on a 20th order stochastic ODE approximation con-

structed by using the first 20 eigenmodes of the system of

Eq.34. First we design a linear state feedback controller as

follows:

u(t) = B−1
s {(Acs(t)−As) x̃s(t)} (36)

where Acs(t) = diag[λc1(t) · · · λcm(t)]. λci(t) (1 ≤ i ≤ m)

are time-varying, desired poles of the closed-loop finite-

dimensional system and the poles λci(t) are computed by

solving the the optimization problem shown in Eq.14. Twenty

control actuators are used to control the system. The ith

actuator distribution function takes the same form as shown

in Eq.29. Under this control problem formulation, m = 10

and the value of ε = |λ1|/|λ21|= 0.02. Our desired expected

value of the surface roughness is 0.3. To further simplify the

computation, the predictive controller is solved by assuming

that all the closed-loop poles of the finite-dimensional system

are equal to each other. Note that this predictive controller

is the linearization around the zero solution of the predictive

controller of Eqs.12 - 14.

Then, we apply the designed predictive controller to the

kMC model of the sputtering process to control the surface

roughness to the desired level. In this simulation, the initial

surface roughness is about 0.5. The controller is implemented

by manipulating the probability that a randomly selected site

is subject to erosion rule, f . Specifically, the f of site i is

determined according to the following expression:

f (i) =

f̄ +

(

20

∑
j=1

b j(zi)u j(t)

)

/a

1+

(

20

∑
j=1

b j(zi)u j(t)

)

/a

(37)

Closed-loop surface roughness profiles obtained from 100

independent simulation runs using the same simulation pa-

rameters are averaged and the resulting surface roughness

profile is shown in Fig.5. We can see that the predictive

controller successfully drives the surface roughness very

close to the desired level.

2482



0 50 100 150 200 250 300 350 400 450 500
0.3

0.35

0.4

0.45

0.5

0.55

kMC: Model Predictive Control

Eroded Layers

E
x
p
e
c
te

d
 R

o
u
g
h
n
e
s
s

Fig. 5. The closed-loop profile of the expected value of the surface
roughness under predictive control.

Remark 2: Note that although the stochastic KSE model

of Eq.34 is a nonlinear model for the sputtering process, the

linearization of the stochastic KSE around its zero solution

is used to design the predictive controller of Eqs.36 and

14. This is made based on the following argument. Since

the instability of the spatially uniform steady state comes

from the linear part of the model, and the nonlinear part of

the stochastic KSE helps bound the surface roughness, for

control purposes, we only need to focus on the stabilization

of the linear part of the stochastic KSE. This argument is

further supported by our simulation results, which demon-

strate the effectiveness of the predictive controller designed

in this work.

V. CONCLUSIONS

We developed a method for model predictive control of

nonlinear stochastic PDEs to regulate the state variance to a

desired level. Initially, a system of infinite nonlinear stochas-

tic ODEs is formulated from the nonlinear stochastic PDE

by using Galerkin’s method. To capture the dominant mode

contribution, a finite-dimensional approximation was then

derived. A model predictive control problem was formulated

based on the approximation. This enabled computationally

efficient prediction of state variance of the finite-dimensional

system. The control action was computed by minimizing an

objective penalty function. To characterize the closed-loop

performance enforced by the model predictive controller,

an analysis of the closed-loop nonlinear infinite-dimensional

system was provided. The predictive controller was initially

applied to the stochastic KSE and resulted in successful

control of the norm of the state variance to a desired level

in the presence of significant model parameter uncertainties.

In addition, the problem of surface roughness regulation in

a one-dimensional ion-sputtering process was considered.

A model predictive controller was designed based on an

identified stochastic KSE surface model to control the surface

roughness of the sputtering process by manipulating the

surface bombardment rate in a spatially distributed manner.

The predictive controller successfully regulated the expected

surface roughness to a desired level in the kMC model of

the sputtering process.
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