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Abstract— This work focuses on modeling of film porosity in
thin film deposition using stochastic differential equations. A
deposition process is modeled via kinetic Monte Carlo (kMC)
simulation on a triangular lattice. The microscopic process
events involve atom adsorption and migration and the film
growth allows for vacancies and overhangs to develop inside the
film. Appropriate definitions of film site occupancy ratio (SOR),
i.e., fraction of film sites occupied by particles over total number
of film sites, and its fluctuation are introduced to describe
film porosity. Deterministic and stochastic ordinary differential
equation (ODE) models are also derived to describe the time
evolution of film SOR and its fluctuation. The coefficients of the
ODE models are estimated on the basis of data obtained from
the kMC simulator of the deposition process using least-square
methods. Simulation results demonstrate the applicability and
effectiveness of the proposed film porosity modeling methods
in the context of the deposition process under consideration.

I. INTRODUCTION

With the rapid development of the ultra-large scale in-

tegration (ULSI) in the semiconductor industry, increased

complexity and density of devices on the wafer leads to an

increasing demand for improving semiconductor manufactur-

ing process operation and yield. Within this manufacturing

environment, thin film microstructure, including thin film

surface roughness and amount of internal film defects, has

emerged as an important film quality variable which strongly

influences the electrical and mechanical properties of micro-

electronic devices.

Most of the previous research efforts on modeling and

control of thin film microstructure have focused on thin

film surface roughness, e.g., [13]–[17]. Two fundamental

modeling approaches, kinetic Monte Carlo (kMC) methods

[3], [6], [7], [20], [21] and stochastic differential equation

(SDE) models [4], [5], have been developed to describe the

evolution of film microscopic configurations. However, kMC

models are not available in closed-form and this limitation

precludes the use of kMC models for system-level analysis

and the design and implementation of model-based feedback

control systems. Therefore, it is desirable to achieve better

closed-loop performance by designing feedback controllers

on the basis of closed-form process models.

SDEs arise naturally in the modeling of surface morphol-

ogy of ultra thin films in a variety of material preparation
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processes [4], [5], [23] since they contain the surface mor-

phology information and account for the stochastic nature

of the growth processes. However, the construction of SDE

models from kMC simulation data or experimental data is

a challenging task. Theoretical foundations on the analysis,

parameter optimization, and optimal stochastic control for

linear stochastic ordinary differential equation (ODE) sys-

tems can be found in the early work by Astrom [1]. More

recently, likelihood-based methods for parameter estimation

of stochastic ODE models have been developed [2], [11].

These methods determine the model parameters by solving

an optimization problem to maximize a likelihood function or

a posterior probability density function of a given sequence

of measurements of a stochastic process. Recent results [8],

[19] employed statistical moments to reformulate the pa-

rameter estimation problem into one involving deterministic

differential equations.

In the context of modeling of thin film porosity, kMC

models have been widely used to model the evolution of

porous thin films in many deposition processes, such as the

molecular beam epitaxial (MBE) growth of silicon films and

copper thin film growth [24], [26]. Both monocrystalline

and polycrystalline kMC models have been developed and

simulated [12], [25]. Despite recent significant efforts on

modeling of surface roughness, a close study of the existing

literature indicates the lack of general and practical methods

in the area of modeling thin film porosity using SDEs.

Motivated by these considerations, the present work fo-

cuses on the development of a systematic methodology for

modeling of film porosity in thin film deposition processes

using SDEs. Initially, a thin film deposition process which

involves atom adsorption and migration is introduced and is

modeled using a triangular lattice-based kMC simulator. The

film growth model allows porosity, vacancies and overhangs

to develop and leads to the deposition of a porous film.

Subsequently, appropriate definitions of film site occupancy

ratio (SOR) and its fluctuation are introduced to describe film

porosity. Then, deterministic and stochastic ODE models are

derived that describe the time evolution of film SOR and its

fluctuation. The coefficients of the ODE models are estimated

on the basis of data obtained from the kMC simulator of the

deposition process using least-square methods. Simulation

results demonstrate the applicability and effectiveness of the

proposed film porosity modeling methods in the context of

the deposition process under consideration.
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II. THIN FILM DEPOSITION PROCESS DESCRIPTION AND

MODELING

This section is associated with the description of the

kMC simulation of a thin film deposition process. Two

microscopic processes are considered; atom adsorption and

surface migration. Vacancies and overhangs are allowed in

the kMC model to introduce porosity during the film growth.

A. On-lattice kinetic Monte Carlo model of film growth

The thin film growth process considered in this work

includes two microscopic processes: an adsorption process,

in which particles are incorporated into the film from the

gas phase, and a migration process, in which surface particles

move to adjacent sites. A ballistic deposition model is chosen

to simulate the evolution of film porosity, which allows

vacancies and overhangs to model the microstructural defects

in the thin film. Microscopic models with similar rules and

structures are reported in simulation works for deposition

processes of a variety of materials [12], [24], [25].

Gas phase 
particles

Particles
on lattice

Substrate 
particlesSubstrate

Gas phase

Fig. 1. Thin film growth process on a triangular lattice.

The film growth model used in this work is an on-lattice

kMC model in which all particles occupy discrete lattice

sites. The on-lattice kMC model is valid for temperatures

T < 0.5Tm, where Tm is the melting point of the crystal.

A triangular lattice is selected to represent the crystalline

structure of the film, as shown in Fig.1. All particles are

modeled as identical hard disks and the centers of the

particles deposited on the film are located on the lattice sites.

The diameter of the particles equals the distance between two

neighboring sites. The width of the lattice is fixed so that the

lattice contains a fixed number of sites in the lateral direction.

The new particles are always deposited from the top side

of the lattice where the gas phase is located; see Fig.1.

Particle deposition results in film growth in the direction

normal to the lateral direction. The direction normal to the

lateral direction is thus designated as the growth direction.

The number of sites in the lateral direction is defined as the

lattice size and is denoted by L. The lattice parameter, a,

which is defined as the distance between two neighboring

sites, determines the lateral extent of the lattice, La.

The number of nearest neighbors of a deposited particle on

the thin film ranges from zero to six, the coordination number

of the triangular lattice. A particle with six nearest neighbors

is associated with an interior particle that is fully surrounded

by other particles and cannot migrate. A particle with one to

five nearest neighbors is possible to diffuse to an unoccupied

neighboring site with a probability that depends on its local

environment. In the simulation, a bottom layer in the lattice

is initially set to be fully packed and fixed, as shown in

Fig.1. There are no vacancies in this layer and the particles

in this layer cannot migrate. This layer acts as the substrate

for the deposition and is not counted in the computation of

the number of the deposited particles, i.e., this fixed layer

does not influence the film porosity (see section III below).

Two types of microscopic processes (Monte Carlo events)

are considered, an adsorption process and a migration pro-

cess. These Monte Carlo events are assumed to be Poisson

processes. All events occur randomly with probabilities pro-

portional to their respective rates. The events are executed

instantaneously upon selection and the state of the lattice

remains unchanged between two consecutive events.

B. Adsorption process

In an adsorption process, an incident particle comes in

contact with the film and is incorporated onto the film. The

microscopic adsorption rate, W , which is in units of layers

per unit time, depends on the gas phase concentration. The

layers in the unit of adsorption rate are densely packed

layers, which contain L particles. With this definition, W is

independent of L. In this work, the microscopic adsorption

rate, W , is treated as a process parameter. For the entire

deposition process, the macroscopic adsorption rate in terms

of incident particles per unit time, which is denoted as ra, is

related to W as follows:

ra = LW (1)

The incident particles are initially placed at random posi-

tions above the film lattice and move toward the lattice in ran-

dom directions. The initial particle position, x0, which is the

center of an incident particle, is uniformly distributed in the

continuous domain, (0, La). The incident angle, θ , is defined

as the angle between the incident direction and the direction

normal to the film, with a positive value assigned to the

down-right incident direction and a negative value assigned

to the down-left incident direction. Probability distribution

functions of the incident angle may vary from a Dirac-

Delta function to a cosine function, for different deposition

processes. In this work, the probability distribution of the

angle of incidence is chosen to be uniform in the interval

(−0.5π , 0.5π).

The procedure of an adsorption process is illustrated

in Fig.2. After the initial position and incident angle are

determined, the incident particle, A, travels along a straight

line towards the film until contacting the first particle, B,

on the film. Upon contact, particle A stops and sticks to

particle B at the contacting position; see Fig.2. Then, particle

A moves (relaxes) to the nearest vacant site, C, among the

neighboring sites of particle B. Instantaneous particle surface

relaxation is conducted since site C has only one neighboring

particle and is considered unstable in the triangular lattice,
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Fig. 2. Schematic of the adsorption event with surface relaxation. In this
event, particle A is the incident particle, particle B is the surface particle
that is first hit by particle A, site C is the nearest vacant site to particle A
among the sites that neighbor particle B, and site D is a stable site where
particle A relaxes.

as shown in Fig.2. When a particle is subject to particle

surface relaxation, the particle moves to its most stable

neighboring vacant site, which is defined as the site with the

most nearest neighbors. In the case of multiple neighboring

vacant sites with the same number of nearest neighbors, a

random one is chosen from these sites with equal probability

as the objective of the particle surface relaxation process.

Note that particle surface relaxation is considered as part of

the deposition event, and thus, it does not contribute to the

process simulation time. There is also only one relaxation

event per incident particle.

C. Migration process

In a migration process, a particle overcomes the energy

barrier of the site and jumps to its vacant neighboring site.

The migration rate (probability) of a particle follows an

Arrhenius-type law with a pre-calculated activation energy

barrier that depends on the local environment of the particle,

i.e., the number of the nearest neighbors of the particle

chosen for a migration event. The migration rate of the ith

particle is calculated as follows:

rm,i = ν0 exp

(
−

niE0

kBT

)
(2)

where ν0 denotes the pre-exponential factor, ni is the number

of the nearest neighbors of the ith particle and can take the

values of 2, 3, 4 and 5 (rm,i is zero when ni = 6 since this

particle is fully surrounded by other particles and cannot

migrate), E0 is the contribution to the activation energy

barrier from each nearest neighbor, kB is the Boltzmann’s

constant and T is the substrate temperature of the thin

film. Since the film is thin, the temperature is assumed to

be uniform throughout the film and is treated as a time-

varying but spatially-invariant process parameter. In this

work, the factor and energy barrier contribution in Eq.2 take

the following values ν0 = 1013s−1 and E0 = 0.6 eV, which

are appropriate for a silicon film [10].

When a particle is subject to migration, it can jump to

either of its vacant neighboring sites with equal probability,

unless the vacant neighboring site has no nearest neighbors,

i.e., the surface particle cannot jump off the film and it can

only migrate on the surface.

D. Simulation algorithm

After the rates of surface micro-processes are determined,

kMC simulations can be carried out using the continuous-

time Monte Carlo method [22] due to the computational

efficiency. To simulate the process with limited-size lattice

and reduce the boundary effects, periodic boundary condi-

tions (PBCs) are applied to the kMC model of the deposition

process. With the assumption that all microscopic processes

are Poisson processes, the time increment upon the execution

of a successful event is computed based on the total rates of

all the micro-processes, which can be listed and calculated

from the current state of the lattice. To further improve the

computational efficiency, a grouping algorithm is also used

in the selection of the particle that is subject to migration

[18]. In the grouping algorithm, the events are pre-grouped

to improve the execution speed. In this work, the layer of the

film emerges as a natural grouping criterion, i.e., all particles

in the same layer are considered to be part of one group.

III. OPEN-LOOP SIMULATIONS

In this section, simulations of the kMC model of a silicon

thin film growth process using the methodology described

in the previous section are presented with the process pa-

rameters being kept constant (i.e., open-loop simulation).

Appropriate definitions of film site occupancy ratio are also

introduced to describe the film porosity and its fluctuation.

A. Definition of film site occupancy ratio

Since film porosity is the main objective of modeling

and control design of this work, a new variable, film site

occupancy ratio (SOR), is introduced to represent the extent

of the porosity inside the thin film as follows:

ρ =
N

LH
(3)

where ρ denotes the film SOR, N is the total number of

deposited particles on the lattice, L is the lattice size (i.e.,

number of sites in one layer), and H denotes the number

of deposited layers. Note that the deposited layers are the

layers that contain deposited particles and do not include the

initial substrate layer. The concept of packing density, which

represents the occupancy ratio of space for a specific packing

method, is not the same as the film SOR defined in Eq.3,

and thus, it cannot be used to characterize the evolution of

film porosity.

Fig.3 gives an example showing how film SOR is defined.

Since each layer contains L sites, the total number of sites

in the film is LH. Film SOR is the ratio between the number

of deposited particles, N, and the total number of sites,

LH. With this definition, film SOR ranges from 0 to 1.

Specifically, ρ = 1 denotes a film whose sites are fully

occupied and has a flat surface. At the beginning of the

deposition process when there are no particles deposited on

the lattice and only the substrate layer is present, N and H

are both zeros and the ratio N/(LH) is not defined. In this

case, a zero value is assigned to the film SOR at this state.

As a consequence, the evolution profiles of the film SOR in

this work always start from zero.
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Fig. 3. Illustration of the definition of film SOR of Eq.3.

Due to the stochastic nature of kMC models of thin film

growth processes, the film SOR, ρ , fluctuates about a mean

value, 〈ρ〉, at all times. A quantitative measure of the SOR

fluctuations is provided by the variance of the film SOR as

follows:

Var(ρ) =
〈
(ρ −〈ρ〉)2

〉
(4)

where 〈·〉 denotes the average (mean) value.

B. Film site occupancy ratio evolution profiles

In this subsection, the thin film deposition process is

simulated according to the algorithm described in section II.

The evolution of film SOR defined in Eq.3 and its variance

are computed from Eqs.3 and 4, respectively. The lattice

size L is equal to 100 throughout this work. The choice of

lattice size is determined from a balance between statistical

accuracy and reasonable requirements for computing power.

1000 independent simulation runs are carried out to obtain

the expected value and the variance of the film SOR. The

simulation time is 1000 s. All simulations start with an

identical flat initial condition, i.e., only a substrate layer

is present on the lattice without any deposited particles.

Fig.4 shows the evolution profiles of the film SOR and

its variance during the deposition process for the following

process parameters: T = 600 K and W = 1 layer/s. In Fig.4,

the film SOR is initially 0 and as particles begin to deposit

on the film, the film SOR increases with respect to time and

quickly reaches a steady-state value. Snapshots of the thin

film microstructure at different times, t = 100 s, 400 s, 700 s

and 1000 s, of the open-loop simulation are shown in Fig.5.

In Fig.4, the evolution profile of the variance starts at

zero and jumps to a peak, after which the variance decays

with respect to time. The variance is used to represent the

extent of fluctuation of the film SOR at a given time. Since

all simulations start at the same initial condition, the initial

variance is zero (by convention) at time t = 0. As particles

begin to deposit on the film, the variance of the film SOR,

Var(ρ), increases at short times and it subsequently decreases

to zero at large times. Note that the film SOR is a cumulative

property since it accounts for all the deposited layers and

particles on the film. Thus, at large times, SOR fluctuations

decrease as more layers are included into the film. It is evi-

dent from Fig.4 that the SOR variance decays and approaches
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Fig. 4. Mean value (solid lines) and variance (dashed line) of the complete
film SOR versus time for a 1000 s open-loop deposition process with
substrate temperature T = 600 K and deposition rate W = 1 layer/s.
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Fig. 5. Snapshots of the film microstructure at t = 100 s, 400 s, 700 s
and 1000 s of the open-loop deposition process with substrate temperature
T = 600 K and deposition rate W = 1 layer/s.

zero at large times. Thus, the film SOR of Eq.3 and its

variance of Eq.4 are not suitable variables for the purposes of

modeling and control of film porosity fluctuations. Another

variable must be introduced to represent the fluctuation of

the film porosity for modeling and control purposes.

C. Partial film site occupancy ratio

In this subsection, a new concept of film SOR is intro-

duced, termed partial film SOR, which is the film SOR

calculated by accounting only for the top Hp layers of the

film. Mathematically, the partial film SOR is defined as

follows:

ρp =
Np

LHp

(5)

where ρp denotes the partial film SOR and Np denotes the

number of particles in the top Hp layers and Hp denotes the

number of top layers of the film included in the computation

of the partial film SOR. The definition of the partial film

SOR is shown schematically in Fig.6. To calculate the partial

film SOR of Eq.5, the number of top Hp layers must first be

determined. As shown in Fig.6, the top Hp layers start from

the top layer of the lattice and include the (Hp-1) layers

below the top layer. The number of particles in the top Hp

layers is denoted by Np. The partial film SOR, ρp, is then

calculated as the ratio between Np and the total number of
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sites in the top Hp layers, LHp. Similar to ρ , ρp is ranging

from 0 to 1. ρp = 1 denotes fully occupied top Hp layers.

L (sites)

H
p (layers)

H
(layers)

Fig. 6. Illustration of the definition of partial film SOR of Eq.5.

The choice of Hp affects the value of the partial film

SOR, ρp, and furthermore, it results in different modeling

results. Specifically, the partial film SOR cannot be correctly

calculated without the existence of Hp layers in the film.

This problem is bypassed by assuming the existence of

Hp fully-packed substrate layers in the film before the

deposition process begins. These substrate layers are used in

the calculation of ρp when H < Hp; see, for example, Fig.7

for the construction of the substrate layers. This assumption

does not affect the deposition process since the particles in

the substrate layers neither migrate nor affect the adsorption

or migration processes of the deposited particles. Therefore,

at the beginning of deposition, the partial film SOR starts

from unity since all Hp layers are substrate layers and are

fully occupied. There also exist alternative choices of Hp at

the beginning of deposition, e.g., equating Hp with H and

hence having ρp = ρ when H < Hp. Different choices of Hp

affect the computation of ρp at the initial stages and result

in different initial values. However, the main dynamics of

the partial film SOR remains unchanged, especially at large

times.

L (sites)

H
p (layers)

Fig. 7. Illustration of the substrate layers used in the definition of partial
film SOR at the initial stage. Underneath the deposited particles (white
particles), all layers are filled with particles (shadowed particles) and are
used for the calculation of the partial film SOR until Hp film layers have
been deposited.

Although complete film SOR and partial film SOR are

defined similarly, they are different variables, which are

used to describe different aspects of the film. The most

notable difference is the denominator of the fractions. In

the complete film SOR, the denominator of the ratio is

the number of the sites in the entire deposited film, and

thus, it increases with respect to time, due to the deposition

of new particles. This cumulative property of the complete

film SOR averages the fluctuations of the porosity from

different layers of the film and results in the decay of the

variance of the complete film SOR to zero with respect

to time. For the partial film SOR, on the contrary, the

denominator of the ratio is fixed at LHp, and thus, ρp only

accounts for the porosity of the newly deposited Hp layers

of the film. Another difference lies in the mechanism of

the deposition process. Due to particle migration, particles

in the film interior have a higher probability of achieving

closed-packed configurations than particles in the top layers.

However, newly deposited particles in the top layers have not

experienced enough migration events and are more active for

migrating. For the above reasons, the fluctuation of ρp does

not decay with respect to time and is much larger than the

fluctuation of ρ at large times. Thus, the variance of ρp is

selected to represent the porosity fluctuations and is used for

modeling and control design. The partial film SOR variance,

Var(ρp), is computed by the following expression

Var(ρp) =
〈
(ρp −

〈
ρp

〉
)2

〉
. (6)

The evolution profiles of the expected partial film SOR

and the variance of partial film SOR are shown in Figs.8

for the same process parameters as in Fig.4. The top 100

layers are chosen in the calculation of the partial film SOR,

i.e., Hp = 100 in Eq.5. The choice of Hp depends on the

process requirements. Too few layers result in dramatic

fluctuations of the partial film SOR. For a deposition process

of about 1000 deposited layers, it is found through extensive

simulation tests that 100 top layers constitute a suitable

choice for modeling and control design.
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Fig. 8. Mean value (solid line) and variance (dashed line) of the partial film
SOR versus time for a 1000 s open-loop deposition process with substrate
temperature T = 600 K and deposition rate W = 1 layer/s.

As shown in Fig.8, the mean partial film SOR,
〈
ρp

〉
, starts

from 1 as a result from the use of the initial substrate layer.

Then,
〈
ρp

〉
decreases with respect to time and reaches a

steady-state value at large times. Comparing to the expected

film SOR in Fig.4, the expected partial film SOR is smaller

at steady state, since the top layers of the film are newly

formed and are more active for particle migration than the

bulk layers, which are already deposited for a longer time

and are stabilized.
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The evolution profile of the variance of partial film SOR,

Var(ρp), is different from the one of the complete film

SOR, Var(ρ), which decays to zero at large times. Similarly

to the evolution of Var(ρ), Var(ρp) starts from zero due

to an identical deterministic initial condition applied to all

simulations. However, Var(ρp) does not decay to zero with

respect to time, but reaches a steady-state non-zero value.

Therefore, the variance of partial film SOR is chosen as the

representation of the run-to-run fluctuation of film porosity.

IV. CONSTRUCTION OF ODE MODELS FOR COMPLETE

AND PARTIAL FILM SITE OCCUPANCY RATIO

For modeling and control purposes, dynamic models are

required that describe the evolution of film porosity in

terms of complete and partial film SOR. In this section,

deterministic and stochastic linear ODE models are derived

to describe the evolution of film SOR. The derivation of these

ODE models and the computation of their parameters is done

on the basis of data obtained from the kMC model of the

deposition process.

A. Deterministic dynamic model of complete film site occu-

pancy ratio

From the open-loop simulation results, the dynamics of

the expected value of the complete film SOR evolution can

be approximately described by a first-order ODE model.

Therefore, a linear first-order deterministic ODE is chosen to

describe the dynamics of the complete film SOR as follows:

τ
d 〈ρ(t)〉

dt
= ρss −〈ρ(t)〉 (7)

where t is the time, τ is the time constant and ρss is the

steady-state value of the complete film SOR. The determin-

istic ODE system of Eq.7 is subject to the following initial

condition:

〈ρ(t0)〉 = ρ0 (8)

where t0 is the initial time and ρ0 is the initial value of the

complete film SOR. Note that ρ0 is a deterministic variable,

since ρ0 refers to the expected value of the complete film

SOR at t = t0. From Eqs.7 and 8, it follows that

〈ρ(t)〉 = ρss +(ρ0 −ρss)e−(t−t0)/τ . (9)

B. Stochastic dynamic model of partial film site occupancy

ratio

To capture the variance of the partial film SOR, a stochas-

tic model must be used. For simplicity, a linear stochastic

ODE is used to model the dynamics of the partial film SOR.

Similarly to the deterministic ODE model for the expected

complete film SOR of Eq.7, a first-order stochastic ODE

is chosen for the computation of the partial film SOR as

follows:

τp

dρp(t)

dt
= ρss

p −ρp(t)+ξp(t) (10)

where ρss
p and τp are the two model parameters which denote

the steady-state value of the partial film SOR and the time

constant, respectively, and ξp(t) is a Gaussian white noise

with the following expressions for its mean and covariance:

〈ξp(t)〉 = 0

〈ξp(t)ξp(t
′)〉 = σ 2

pδ (t − t ′)
(11)

where σp is a parameter which measures the intensity of the

Gaussian white noise and δ (·) denotes the standard Dirac

delta function. The model parameters ρss
p , τp and σp are

functions of the substrate temperature. We note that ξp(t) is

taken to be a Gaussian white noise because the values of ρp

obtained from 10,000 independent kMC simulations of the

deposition process at large times are in closed accordance

with a Gaussian distribution law: see Fig.9 for the histogram

of the partial film SOR at t = 1000 s.
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Fig. 9. Histogram from 10,000 simulation runs of the partial film SOR
at the end (t = 1000 s) of the open-loop deposition process with substrate
temperature T = 600 K and deposition rate W = 1 layer/s.

The stochastic ODE system of Eq.10 is subject to the

following initial condition:

ρp(t0) = ρp0 (12)

where ρp0 is the initial value of the partial film SOR. Note

that ρp0 is a random number, which follows a Gaussian

distribution.

The following analytical solution of Eq.10 can be obtained

from a direct computation as follows:

ρp(t) = ρss
p +

(
ρs0 −ρss

p

)
e−(t−t0)/τp +

∫ t

t0

e−(s−t0)/τpξsds.

(13)

In Eq.13, ρp(t) is a random process, the expected value

of which,
〈
ρp(t)

〉
, can be obtained as follows:〈

ρp(t)
〉

= ρss
p +

(
〈ρs0〉−ρss

p

)
e−(t−t0)/τp . (14)

The analytical solution of Var(ρp) can be obtained from

the solution of Eq.13 using the following result [1]:

Result 1: If (1) f (x) is a deterministic function, (2)

η(x) is a random process with 〈η(x)〉 = 0 and covariance

〈η(x)η(x′)〉 = σ2δ (x− x′), and (3) ε =
∫ b

a f (x)η(x)dx, then

ε is a real random variable with 〈ε〉 = 0 and variance

〈ε2〉 = σ 2
∫ b

a f 2(x)dx.

Using Result 1, the variance of the partial film SOR, Var(ρp),
can be obtained from the analytical solution of Eq.13 as

follows:

Var(ρp(t)) =
τpσ2

p

2
+

(
Var(ρp0)−

τpσ2
p

2

)
e−2(t−t0)/τp (15)
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where Var(ρp0) is the variance of the partial film SOR at

time t = 0, which is calculated as follows:

Var(ρp0) =
〈
(ρp0 −

〈
ρp0

〉
)2

〉
. (16)

A new model parameter, Varss
p , is introduced to simplify

the solution of Var(ρp) in Eq.15 as follows:

Varss
p =

τpσ 2
p

2
(17)

where Varss
p stands for the steady-state value of the variance

of the partial film SOR. With the introduction of this new

model parameter, the solution of the variance of the partial

film SOR, Var(ρp), can be rewritten in the following form:

Var(ρp(t)) = Varss
p +

(
Var(ρp0)−Varss

p

)
e−2(t−t0)/τp . (18)

C. Parameter estimation

Since the ODE models of Eqs.7 and 10 are linear, the five

parameters, ρss, τ , ρss
p , τp and Varss

p , can be estimated from

the solutions of Eqs.9 and 14. Specifically, the parameters

ρss
p and τp are estimated using Eq.9 and the parameters

ρss
p , τp and Varss

p are estimated using Eq.14, solving two

separate least square problems. Specifically, the two least-

square problems can be solved independently to obtain the

first four model parameters. The steady-state variance, Varss
p ,

is obtained from the steady-state values of the variance

evolution profiles at large times.

The parameters ρss and τ are estimated by minimizing the

sum of the squared difference between the evolution profiles

from the ODE model prediction and the kMC simulation at

different time instants as follows:

min
ρss,τ

m

∑
i=1

[
〈ρ(ti)〉−

(
ρss +(ρ0 −ρss)e−(t−t0)/τ

)]2

(19)

where m is the number of the data pairs, (ti, 〈ρ(ti)〉), from

the kMC simulations. Similarly, ρss
p and τp can be obtained

by solving the following least-square optimization problem

expressed in terms of the expected partial film SOR:

min
ρss

p ,τp

m

∑
i=1

[〈
ρp(ti)

〉
−

(
ρss

p +
(
ρp0 −ρss

p

)
e−2(t−t0)/τp

)]2

.

(20)

The data used for the parameter estimation are obtained

from the open-loop kMC simulation of the thin film growth

process. These data can be obtained from off-line mea-

surements, but real-time estimates of film porosity is also

possible by using the on-line measurement data, such as

surface height profiles. The process parameters are fixed

during each open-loop simulation so that the dependence

of the model parameters on the process parameters can be

obtained for fixed operation conditions. The complete film

SOR and the partial film SOR are calculated on the basis of

the deposited film at specific time instants.

The above parameter estimation process is applied to the

open-loop simulation results. First, the open-loop evolution

profiles of the complete film SOR and of the partial film SOR

are obtained from 1000 independent kMC simulation runs

with substrate temperature T = 600 K and deposition rate

W = 1 layer/s. Subsequently, the deterministic and stochastic

ODE models of Eqs.7 and 10 are compared with the open-

loop kMC simulation data to compute the model parameters

using least square methods. Figs.10 and 11 show the open-

loop profiles and the predicted profiles of 〈ρ〉,
〈
ρp

〉
and

Var(ρp) from the ODE models with the estimated parameters

as follows:

ρss = 0.8178, τ = 1.6564 s

ρss
p = 0.6957, τp = 77.27 s, Varss

p = 1.6937×10−3.
(21)

The predictions from the ODE models are very close to the

open-loop kMC simulation profiles, which indicates that the

dynamics of the film SOR can be adequately described by

first-order ODEs. There is, however, some mismatch of the

predicted ODE-based profiles from the kMC data, especially

for the expected value of the complete film SOR. This is

because the dynamics of the complete film SOR depend on

the total height of the film. A film at initial stages is very thin

and the complete film SOR changes significantly as more

layers are deposited, while a film at large times is much

thicker and the complete film SOR is relatively insensitive

to the newly deposited layers. Since a first-order ODE model

is used to capture the dynamics of the complete film SOR,

the time constant, τ , is chosen to strike a balance between

the initial and final stages of the film growth. Therefore, the

predictions from the ODE model cannot match the open-

loop profiles, obtained from the kMC models, perfectly at

all times. Overall, the computed first-order ODE models

approximate well the dynamics of the film SOR and its

fluctuation, and thus, they can be used for the purpose of

feedback control design.
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Fig. 10. Expected value of the complete film SOR (Top) and the partial
film SOR (bottom) with respect to time for a 1000 s open-loop deposition
process (solid line) and predictions from the deterministic/stochastic ODE
models with estimated parameters (dashed line); T = 600 K, W = 1 layer/s.
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Fig. 11. Variance of the partial film SOR with respect to time for a 1000
s open-loop deposition process (solid line) and the estimated steady-state
level (dashed line); T = 600 K, W = 1 layer/s.

The dependence of model parameters on the process

variables, i.e., the substrate temperature and the adsorption

rate, can be obtained by repeating the estimation process

at a variety of operating conditions. Such dependence can

be used in the predictive control design which regulates the

film porosity at a desired level and minimizes the porosity

fluctuations [9].

Finally, the lattice size dependence of the steady-state

value of complete film SOR is shown in Fig.12. It can be

clearly seen that the film SOR depends on the lattice size.

To achieve near lattice-size independence, a very large lattice

size is required and cannot be simulated using the available

amount of computing power. The purpose of the proposed

modeling method is to identify the film SOR models from

the output of the given deposition process, which can be from

either a kMC simulator or experimental deposition process

data. Note that the applicability of the proposed modeling

method is not limited to any specific lattice size. In this

work, a lattice size of 100 captures the film SOR dynamics

and allows obtaining sufficient statistical accuracy in terms

of computing expected values and variances of film SORs.
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Fig. 12. Dependence of steady-state values of film SOR, ρss, on the lattice
size for different temperature.
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