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Abstract— In this paper, a novel distributed algorithm to
deal with the problem of estimating the network centroid
in a multi-agent system is proposed. In this scenario, agents
are assumed to be lacking any global reference frame or
absolute position information. The proposed algorithm can
be thought as a general tool to retrieve information about
the centroid of a network of agents. Indeed, this allows to
release several simplifying assumptions for a significant family
of algorithms dealing with decentralized motion coordination.
The convergence properties of the algorithm are carefully
investigated in the case of a fully connected network for which
a proof of convergence is provided. Successively, simulations
to show the effectiveness of the algorithm also for arbitrary
undirected connected graphs are given.

I. INTRODUCTION

In recent years multi agent systems have drawn the atten-

tion of a huge amount of researchers, for a representative

example see [1], [2], [3], [4]. In this framework Laplacian

based controllers [5], [6], [7], [8] have been studied in many

forms and applications, for instance rendezvous [9], leader

following [10], attitude control [11] and many others [12],

[13], [14]. The majority of these algorithms, dealing with

decentralized motion coordination problems, assume that the

agents have access to absolute position information (GPS)

and thus have a common global reference that makes it easy

to interpret the information passed by other agents. Even

when in multi agent systems the agents are not supposed to

know their absolute position, many times they are assumed

to have a common attitude reference to exchange information

that can be achieved by using a compass, gyroscopes and oc-

casionally gravity as common reference for their coordinate

system. For space applications another technological solution

is to use a frame of fixed stars to have a common reference.

In all these instances several technological countermeasures

have to be undertaken for the implementation of coordination

algorithms increasing the total costs of the single agents.

Many coordination algorithms rely on local information

taken by the neighbors in the sensing radius of the agents and

some general information about the swarm of mobile units,

for instance its centroid. In this paper we are interested in

developing an asynchronous and decentralized algorithm to

estimate the location of the centroid of the network of agents

that does not require any common attitude reference nor

any absolute position information. We believe that removing

such hidden assumption could significantly advance the

technological feasibility of mobile swarm of agents, reducing

their dependence on the global positioning system in the low

level control loops. Furthermore in many space applications,

where networks of mobile robots are envisioned in the so not

distant future, the absence of the need for absolute position

information or a common coordinate system could prove to

be an essential robust feature.

The rest of the paper is organized as follows. In Section

I-A the scenario along with simplifying assumptions is

introduced. In Section II a more formal description of the

problem formulation is given. In Section III the proposed

algorithm is described and the proof of its convergence in

case a fully connected graph is given. In Section IV, the

performance of the algorithm for several network topologies

is discussed. Finally, in Section V conclusions are drawn and

future work is discussed.

A. Paper content

In this paper, a decentralized asynchronous algorithm to

estimate the centroid of a network of agents is proposed.

It allows to release several simplifying assumption for a

large family of algorithms proposed in literature dealing with

decentralized motion coordination.

In particular, the following assumptions are made:

• The network of agents can be described by a connected

undirected graph.

• Each agent can only communicate with agents directly

connected to it.

• Communications are asynchronous, i.e. communication

failures or delays do not affect the network.

• Each agent is able to sense the distance between itself

and its neighbors.

• Each agent is able to sense the direction in which it sees

its neighbors with respect to its local reference frame,

arbitrary fixed on it.

Objective of the proposed algorithm is to make available to

each agent an estimate of where the network centroid is with

respect to the local agents reference frame. The convergence

properties of the algorithm are carefully investigated in the

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

WeA16.4

978-1-4244-4524-0/09/$25.00 ©2009 AACC 512



case of a fully connected network for which a proof of con-

vergence is provided. Successively, simulations to show the

effectiveness of the algorithm also for arbitrary undirected

connected graphs are given. Although, the connectedness

of the network proved not to be a sufficient condition for

the convergence of the proposed algorithm, some promising

topologies showing good convergence results are discussed.

A characterization of the set of all the graphs in which the

proposed algorithm converges is left to future research.

II. PROBLEM DESCRIPTION

Let us consider a network of agents with limited sensing

capabilities. Each agent, which is characterized by a position

in a d-dimensional space, is able to collaborate with the

neighboring agents, i.e., agents that are within its range of

sensing. Information exchanged between agents is only the

distance between them and the direction of the line of sight

with respect to their local reference frame.

From a mathematical standpoint, the graph theory [15]

provides a suitable framework for describing such a problem

by exploiting the definition of proximity graph as in [6]. Let

the network of agents be described by G = (V, E), where

V = {1, . . . , n} is the set of nodes (agents) and E ⊆ {V ×
V } is the set of edges (connectivity). A position pi ∈ R

d in

the dth dimensional space is associated to each node vi ∈
V , with i = 1, . . . , n. In particular, an edge representing

a connection between two agents exists if and only if the

distance between these agents is less then or equal to their

sensing radius r, namely

E = {(i, j) : ‖pi − pj‖ ≤ k, ∀i, j = 1, . . . , n i 6= j},

where ‖·‖ is the Euclidean norm in R
d. Therefore, a generic

couple of agents i, j is able to sense ‖pi−pj‖ reciprocally. In

addition, each agent has a local reference frame defined by an

orthonormal basis of vectors in R
d fixed on it and, is able

to determine the direction in which neighbors are sensed,

strictly with respect to its own local reference frame.

By introducing a rotation matrix Ri for each agent i, is

possible to express the node’s network centroid estimate ei

with respect to a global reference frame as follows:

egi = Riei + pi.

Now, by assuming the origin of the arbitrary common

global coordinate systems Og to be at the centroid of the

network, the problem formulation can be stated as follows.

Problem Statement: Given the following initial condition

for each node vi ∈ V :

egi(t0) = Riei(t0) + pi = pi,

the following condition must be achieved for each agent

under the assumptions I-A:

egi(∞) = Riei(∞) + pi = Og =

∑n

i=1
pi

n

Note that, a virtual global reference frame unknown by

the agents is used for analysis purposes.

III. CONSENSUS ALGORITHM WITH UNKNOWN GLOBAL

REFERENCE FRAME

In this section, a decentralized algorithm for the estimation

of the network centroid under assumptions I-A is given. First,

a convenient terminology is proposed, successively the main

concepts of the algorithms are described and finally the prove

of its convergence for a fully connected network is given.

Let us define the direction for which agent i is able to

sense agent j with respect to its local frame as

cij = RT
i

(pj − pi)

‖pj − pi‖
,

clearly, the following property holds Ricij = −Rjcji. In

addition, let the relative distance between two agents i and

j be:

dij = dji = ‖pi − pj‖2.

Finally, by assuming the network of agents to be deployed

in a d-dimensional space, let 0 be the d-elements vectors of

zeros.

Algorithm 1:

Let ei(t0) = 0, ∀ i = 1, . . . , n with t0 = 0. At each

time-step t:

1) Select an edge at random (i, j) ∈ E.

2) Compute ei(t)
T cij and ej(t)

T cji,

3) Update nodes estimate according to:

ei(t + 1) = ei(t) + ∆ij(t) · cij ,

ej(t + 1) = ej(t) + ∆ji(t) · cji.

with

∆ij(t) =

(

dij + ej(t)
T cji − ei(t)

T cij

2
+ ei(t)

T cij

)

,

∆ji(t) =

(

dji + ei(t)
T cij − ej(t)

T cji

2
+ ej(t)

T cji

)

It is important to notice how this algorithm lends itself to

an easy decentralized implementation, where collaboration

between couple of agents can be safely performed asyn-

chronously.

In other words, after an initialization step where each agent

assumes its own location to be the network centroid, namely

ei = 0 and thus egi = pi in the global reference frame, the

algorithm iterates as follows at each time-step:

• A communication link between two nodes is activated.

The edge selection process deeply affects the conver-

gence rate of the algorithm and the network topology

affects both the convergence rate and the convergence

to a common estimate. In this paper, each edge has

a strictly positive probability to be chosen at each

instant of time. The following edge selection process has

been exploited during simulations: at each time step, an

agent is selected at random using a uniform probability

513



distribution, it then communicates with all its neighbors

in random order.

• The two “activated” agents estimate the relative position

between each other, namely their distance and the line

of sight both in their own local reference frame. They

then compute the projection of their current estimate of

the network centroid with respect to the line of sight

between them and transmit this scalar value to their

companion.

• The two agents then update their estimates indepen-

dently by averaging between their projections on the

line of sight and updating their estimate of the network

centroid along the direction of the line of sight.

• Another edge is selected and the process repeats itself,

after some time each node will have a good estimate

with respect to its local reference frame.

Note that, such iterative algorithm makes all nodes con-

verge to the correct estimate of the centroid if some assump-

tions on the topology hold. It should be also noticed that, for

sake of clarity, the description of the algorithm was referred

only to a single couple of agents. Indeed, in a real-context

different couples of agents might perform the algorithm at the

same time in different portion of the network. This not only

drastically affects the convergence time but it also highlights

the inherent parallelism of the proposed algorithm. Moreover,

in a real implementation a distributed edge selection process

can be naturally obtained by letting each node individually

schedule its transmitting time according to any deterministic

or random schema.

It will now be proved that, if the graph representing the

network is fully connected, and each edge has a strictly

positive probability to be chosen at each instant of time,

then the probability that all the agents agree on where is the

network centroid goes to one as time goes to infinity.

Theorem 1: If the network of agents is fully connected

then

∀i ∈ V, Pr

(

lim
t→∞

egi(t) =

∑n

i=1
pi

n

)

= 1

Proof:

Given a suitable Lyapunov-like function of the state of the

network, the proof relies on a probabilistic argument to show

that such a function converges to zero as time goes to infinity

almost surely, depending on the edge selection process.

By considering two generic agents i and j, the generic

configuration at time t given in Figure 1 is used as support

for the proof.

Let Og be the coordinates of the network centroid in the

common global reference frame. Then if the estimates of the

agents are updated using Algorithm 1 and we choose

V (t) =

n
∑

i=1

‖egi(t) − Og‖
2

2

as a candidate Lyapunov function. V (t) is a quadratic

function and so is positive for any t ≥ 0. The following

manipulations show that V (t + 1) ≤ V (t).

Fig. 1. Example of algorithm iteration involving two nodes.

At time t only nodes i, j change their estimation, thus

possibly changing the value of V (t + 1). Thus we have

V (t + 1) − V (t)=‖egi(t + 1)−Og‖
2 + ‖egj(t + 1)−Og‖

2

− ‖egi(t) − Og‖
2 − ‖egj(t) − Og‖

2

Since the global reference frame is arbitrary we chose

Og = 0 for sake of clarity. Thus

V (t + 1) − V (t) =

= ‖egi(t + 1)‖2 + ‖egj(t + 1)‖2 − ‖egi(t)‖
2 − ‖egj(t)‖

2

Now from the description given in Algorithm 1, we know

that

ei(t + 1) = ei(t) + ∆ij(t) · cij ,

ej(t + 1) = ej(t) + ∆ji(t) · cji.

where:

∆ij(t) =

(

dij + ej(t)
T cji − ei(t)

T cij

2
+ ei(t)

T cij

)

,

∆ji(t) =

(

dji + ei(t)
T cij − ej(t)

T cji

2
+ ej(t)

T cji

)

and noticing that ∆ij(t) = ∆ji(t) = ∆(t), and by definition

cij = −cji = ĉ with ĉT ĉ = 1, the previous equation can be

re-written as

V (t + 1) − V (t) = ‖egi + ∆ĉ‖2 + ‖egj − ∆ĉ‖2

−‖egi‖
2 − ‖egj‖

2

= eT
giegi + 2∆ĉT egi + ∆2 + eT

gjegj

−2∆ĉT egj + ∆2 − eT
giegi − eT

gjegj

= 2∆2 + 2∆ĉT (egi − egj)

where the temporal index has been omitted for sake of clarity.

Now, by observing the Fig. 1 can be noticed that ∆ is

nothing more than the projection over ĉ at time t of the

vector egj − egi scaled by a factor of two,

∆ = ‖egj − egi‖
cos(α)

2
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where α is the angle between egj and egi. Now, by substi-

tuting for ∆:

V (t + 1) − V (t) =

= 2∆2 + 2∆ĉT (egi − egj)

=
‖egj − egi‖

2 cos(α)2

2
− ‖egj − egi‖

2 cos(α)2 ≤ 0

where

ĉT (egi − egj) = −ĉT (egj − egi)

= −‖egi − egj‖ cos(α).

Thus proving that V (t) is a non-increasing function of time.

V (t + 1) = V (t) each time an edge connecting two nodes

who have exactly the same estimate of the network centroid

are chosen.

If V (t) 6= 0 necessarily there exist at least two nodes in

the network such that egi 6= egj 6= Og . Since we assume

that the network is fully connected, i.e. each node has the

possibility to communicate with any other node, and given

that each communication link is assumed to have a strictly

positive probability to be activated at each instant of time,

then we have that the probability

Pr
(

lim
t→∞

V (t′ + t) − V (t′) < 0
)

= 1

since we are sampling a finite set of elements an infinite

amounts of times.

Since for V (0) we have that

∀i, egi =

∑n

i=1
pi

n
,

then

∀i ∈ V, Pr

(

lim
t→∞

egi(t) =

∑n

i=1
pi

n

)

= 1,

thus proving the statement. �

IV. SIMULATIONS

In order to corroborate the mathematical analysis, several

simulations have been performed by exploiting a framework

developed by the authors using Matlab. Different network

topologies such as fully connected, arbitrary or tetrahedrons-

based have been investigated. The following edge selection

process has been exploited for the simulations: at each

time step, an agent is selected randomly using a uniform

probability distribution, it then communicates with all its

neighbors in random order. Such a selection process has been

chosen to mimic the expected behavior of the algorithm in

a real application where communications are sequential and

asynchronous.

A. Fully connected Graph

In the case of a fully connected graph the algorithms

always converges, as proven in Theorem 1. In Fig. 2, a

configuration where a network is deployed according to the

vertexes of a cube (8 agents) is shown. In particular, each

node converges to the right estimate of the network centroid

after only few iterations. Note that, this particular embedding

was chosen only for sake of visualization and it does not

affect the convergence of the algorithm.

As far as the convergence time is concerned, several sim-

ulations considering a varying number of vertexes ranging

from 10 nodes to 100 nodes have been performed. Results are

given in Table I. In detail, 10 different configurations were

considered, each one was run 50 times and at each single iter-

ation a deployment was randomly generated. Table I shows

the average number of iteration required to the algorithm

in order to converge for each configuration. Although the

number of iterations increases with the number of vertexes, it

is important to recall the inherent parallelism of the algorithm

previously discussed which is not revealed by this table.

Indeed, at each iteration in a real context there might be

several couples of nodes performing the algorithm at the

same time, while the code running in Matlab is sequential.

TABLE I

CONVERGENCE RATE - FULLY CONNECTED GRAPH

Number of Vertixes Number of Iterations

10 57

20 65

30 77

40 82

50 90

60 98

70 106

80 116

90 127

100 136

B. Tetrahedrons-based Graphs

In this section, a conjecture that has been validated only

by simulation so far is proposed. It involves a special class of

connectivity graphs, namely graphs obtained by opportunely

interconnecting tetrahedrons. An inductive argument is given

to convince the reader of the correctness of the proposed

conjecture.

Conjecture 2: A sufficient condition for Algorithm 1 to

converge is that the network of agents is represented by a

graph composed by tetrahedrons sharing one face.

This conjecture can be supported by a constructive argu-

ment. As shown in Fig. 4, let us build a new connectivity

graph by “attaching” two tetrahedrons along a face and then

several others in at different spots. The algorithm can then

be thought as acting locally on each single tetrahedron and

finally composing the result along the segment connecting

the centroids of the two tetrahedrons. Now if a connectivity

graph characterized by n tetrahedrons is considered, this

process works if the algorithm is assumed to be executed at

each step only in a couple of adjacent tetrahedrons. However,

as the algorithm convergence is not affected by the edge

selection order, this argumentation holds for any given edge

selection sequence.

C. Arbitrary Connected Graphs

A general necessary condition for the convergence of

Algorithm 1 for arbitrary connected graphs is now given.
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Fig. 2. Fully connected graph with 8 nodes.
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Fig. 3. Arbitrary graph with 7 nodes.
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Fig. 4. Tetrahedron-based graph with 9 nodes.

Theorem 3: If a network of agents with pi ∈ R
d executes

Algorithm 1, a necessary condition for the agents to have the

same common estimate of the network centroid is that each

agent has at least d neighbors.

Proof: The agents perform estimation updates along the

line of sight between them, at each iteration they can adjust

their estimate along only one direction. Thus to be able

to adjust their estimate in a R
d space they need at least

d independent directions over which perform their update.

This condition is not sufficient, a counter-example in Fig.6

is provided. �

Although the algorithm has proven to perform well if

the graph is sufficiently connected, convergence cannot be

achieved for any arbitrary connected graph.

A reason why this happens is that the algorithm involves

a projection of the agents’ estimate along the line of sight

with their neighbors, this may fail to propagate enough

information about the agent’s estimate if the graph is not

sufficiently connected.

V. CONCLUSIONS

In this paper, a novel algorithm to deal with the problem

of estimating the network centroid in a multi agent system
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Fig. 5. Arbitrary graph with 5 nodes.
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Fig. 6. Arbitrary graph with 5 nodes.

has been provided. In this framework, agents are assumed to

be lacking any global reference frame or absolute position

information. Collaboration among agents, which involves the

computation of the relative distance and the direction of their

line of sight with respect to the local reference frame of each

agent, was limited to the exchange of the projection of the

actual estimates along the direction of the line of sight.

The proposed algorithm can be thought as a general tool

to retrieve information about the centroid of a network of

agents. Indeed, this information turns out to be crucial for a

large family of algorithms dealing with decentralized motion

control, as many simplifying assumption can be reduced.

A proof of convergence for a fully connected network, i.e.,

each agent correctly estimates the location of the network

centroid with respect to its own local reference frame, is

given. A formal characterization of all the graph structures

over which the proposed algorithm converges is left for

future research.
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