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Abstract— Passive wireless sensors have emerged as a new
technology to measure multiple phenomena in our daily life.
Passive sensors require no power source, and therefore their
application domains are numerous, including health care, in-
frastructure protection, and national security. The deployment
of passive wireless sensors and their readers has changed how
detection needs to be performed. Passive sensors cannot pre-
process the measurements as they have limited computational
power. Therefore, no local decision is taken. Also, the reader
polls the information from multiple sensors at the same time,
and this causes collisions and hence packet drops and delays.
Detectors designed without considering the properties of the
communication channel have degraded performance. Therefore,
analysis is required to quantify the degradation and take the
necessary remedy action. In this paper, we study the effect
of sensor-reader channel imperfection on the local detection
performance of the reader, assuming no data pre-processing at
the passive sensor. We consider the case of a single sensor-reader
communication over a Bernoulli communication channel. We
formulate the detector performance and compare with the ideal
case. We present the problem of DC level detection in White
Gaussian Noise, as a case study. Finally, we propose a heuristic
approach to restore the original detector performance working
with non-ideal channel, with the cost of increasing the delay
for detection.

I. INTRODUCTION

In classical detection theory, statistical hypothesis testing

is applied to detect noisy signals. The main problem is to

design the optimal detector (according to some pre-defined

criteria) that distinguishes between two or more hypotheses

(sometimes referred to as phenomena or state of nature)

given noisy observations. This problem has been studied

extensively, and different detectors have been proposed [6].

Examples are the Neyman-Pearson (NP) detector and the

minimum Bayes risk detector, with its special case the

Maximum Likelihood (ML) detector [10]. Classical detection

theory will be referred to as centralized detection hereafter.

The emergence of distributed radar has given another

perspective for the detection problem, namely Decentralized

Detection (DD). DD has been an active area of research

during the 1980s and early 1990s. In DD, multiple sensors

relay information (after pre-processing) to a fusion center,

and the problem is to design both the optimal local decision

rules and the fusion rule to detect events as accurately as pos-

sible [1]. The recent emergence of Wireless Sensor Networks

(WSNs) has added to the challenge of detection the issue

of channel imperfection, which causes delays and missed
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observations. There is some recent work that discusses the

effect of non-ideal channels on the design of decentralized

detectors [2], [4]. However, the main assumption is that the

sensor nodes have sufficient computational power to pre-

process the observations and take a decision. This assumption

is no longer valid in the case of passive wireless sensors.

In the last few years, passive wireless sensors have

emerged as a new technology for sensors that does not

require any power source. The basic idea is to use a powered

reader to poll the data from different passive sensors. The

passive sensor uses the incident power from the reader to

energize its local circuitry. A variety of ways exist for the

sensor to modulate the reader incident wave and relay its

information back to the reader. The most popular example

for this architecture is RFID technology [7].

Motivated by RFID technology, passive wireless sensors

have been developed to measure multiple phenomena in

our daily life. In the environmental monitoring domain,

passive wireless sensors that detect bio-hazardous materials

are explained in [18]. An example of a passive wireless

sensor for measuring temperature, stress, strain, acceleration

and displacement using Surface Acoustic Wave (SAW) trans-

ducer is described in [8]. In the health care domain, a passive

strain-sensor technology for the measurement of small strains

on bones or fixation systems in the human body is presented

in [16]. In the automotive industry, passive wireless strain

monitoring of car tires is described in [9].

The application domains for passive sensors has increased

considerably in the last few years. This is due to the fact that

many applications require the deployment of sensors over

long periods of time, often years, without the possibility of

battery replacement or recharging. Domains of applications

include, but are not limited to, health care, infrastructure

protection, food transportation, national security, automotive

industry, environmental monitoring, disaster forecast, and

industrial automation [19]. The technology also advances

everyday giving rise to smaller sensors, longer reading dis-

tances, and better communication protocols.

The introduction of passive wireless sensors as a replace-

ment for active sensors has changed how detection needs

to be performed. The main change comes from the fact

that a passive sensor has limited computational power and

memory, and therefore, it cannot pre-process the measure-

ments before transmission to the reader. In addition, because

of the limited power supplied to the sensor, the reflected

signal has very small power, which makes detection a much

more challenging task especially if the noise power is large.

Finally, in a passive WSN architecture, the reader polls the

information from multiple sensors at the same time, giving
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rise to collisions and hence packet drops and delays.

In this paper, we study the effect of sensor-reader chan-

nel imperfection on the local detection performance of the

reader. We use the terms reader and detector interchangeably

in this paper, since the detector has the additional role of

polling the sensor data. We formulate the detector perfor-

mance, working with a Bernoulli communication channel,

and present a case study for the problem of DC level

detection in White Gaussian Noise (WGN). We compare

analytically the detection performance with perfect commu-

nication channel against a Bernoulli communication channel.

The analytical results are verified by Monte Carlo simulation

studies. We also propose an adaptive detector architecture

to restore the original detector performance working with a

non-ideal channel.

The rest of the paper is organized as follows: In Section

III, we present the problem formulation for detection with

reader/passive sensor pair, communicating over a Bernoulli

communication channel. We formulate the detection perfor-

mance in section IV, and present a case study in Section V.

In section VI, we propose an adaptive detector architecture

to restore the original detector performance working with

non-ideal channel. Finally, we conclude the work with future

research directions in section VII.

II. RELATED WORK

Classical detection theory, with particular attention to

signal processing applications, is discussed in [5], [6], [10].

The research on decentralized detection is largely attributed

to the seminal work of Tenney and Sandell [14]. The optimal

decision rules for the local nodes and the fusion center

are derived under various problem settings and different

optimality criteria. Comprehensive surveys in this area can

be found in [1], [3] and the references therein.

The inclusion of the resource constraints imposed by

WSNs has been reported in recent work. Kalman filter

performance with intermittent observations is studied in [11].

Fading channel layer is incorporated in the classical parallel

fusion structure in [2]. The optimality of the Likelihood-

Ratio test for local sensor decision rules in the presence of

non-ideal channels is proved in [4]. Distributed decision fu-

sion with networking delays and channel errors is considered

in [15]. Comprehensive surveys on the early results in this

emerging field can be found in [1], [3], [17].

We have considered Maximum Likelihood detection with

intermittent observations in [13], where the optimal decision

rule is derived and performance analysis is carried out.

Further, we have considered the performance of the Z-test

with intermittent observations in [12]. In this paper, we for-

mulate the detection problem with intermittent observations,

according to NP criterion.

III. PROBLEM FORMULATION

We consider the problem of a single passive sensor to

reader (detector) communication over a non-ideal channel.

Figure 1 illustrates an abstract representation for the problem.

The state of nature is sensed by a passive wireless sensor,

and the observation is transmitted over a Bernoulli wireless

channel to the local detector (reader). Information relaying

happens only when the reader polls the sensor data. The

objective is twofold: analyzing the detection performance

assuming a Bernoulli channel, and restoring the original

detector performance.

Information loss is expected with non-ideal channel.

Therefore, the first objective, performance analysis, is to

quantify the performance degradation in the detector. The

later objective, performance restoration, is achieved by es-

timating the channel drop rate, and using a pre-constructed

Delay-Drop Rate curve, to increase the number of samples.

We consider the binary hypothesis testing problem where

the state of nature is represented by one of two hypotheses,

H0 and H1. An observation vector, x, is used to statisti-

cally validate one of the two hypotheses. The decision is

governed by the NP criterion for maximizing the probability

of detection, PD, given the probability of false alarm, PFA.

The optimal test is the likelihood ratio test:

l(x)
H1

≷
H0

γ

The detector performance is given by:

PFA = P (l(x) > γ;H0) =
∫ ∞

γ

p(l;H0)dl (1)

PD = P (l(x) > γ;H1) =
∫ ∞

γ

p(l;H1)dl (2)

The relationship between PD and PFA is known as the

Receiver Operating Characteristics (ROC) curve.

In the centralized detection framework, the existence of

the unreliable channel is ignored, and, therefore, perfect

knowledge about the observations is assumed (a classical

example is a radar system). For the work presented in this

paper, we assume a Bernoulli channel with a probability of

failure, λ, for dropped observations. Therefore, the channel

is characterized by a random variable C with a Probability

Mass Function (PMF):

PC(c = 0) = λ

PC(c = 1) = 1− λ

Because of loss of information from the dropped observa-

tions, degradation in the detector performance is expected.

We analyze the performance of the detector for the non-

ideal channel, and compare with the ideal channel case, by

comparing the ROC curves in both cases. Also, in many

applications, it is required to restore the original performance

under degraded conditions. Since in all detection problems

there is always a trade-off between performance and delay

for detection, we quantify the extra delay required for

performance restoration, by defining the relationship between

the extra delay needed and the channel drop rate λ.
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Fig. 1. Adaptive NP detection for wireless passive sensor networks

IV. NP DETECTION PERFORMANCE WITH

BERNOULLI CHANNEL

In the case of an ideal channel between the reader and

passive sensor, the detector is designed based on a number

of observations N , received in a time period Tp, to satisfy

a required operating point (PFA, PD). However, in the case

of a Bernoulli communication channel, not all observations

are received at the reader. Therefore, in a time period Tp, the

number of observations received k ≤ N . The probability of

receiving k out of N observations, in Tp, is given by:

P (K = k) =
N∑

k=0

(
N

k

)
(1− λ)kλ(N−k)

Therefore, with every realization of K, the detector perfor-

mance pair (P k
FA, P k

D) is no longer a deterministic quantity,

but represents a pair of random variables. The performance

of the NP detector in this case can be described by the pair

of expected values (E[P k
FA], E[P k

D]):

E[P k
FA] =

N∑
k=0

(
N

k

)
(1− λ)kλ(N−k)P k

FA (3)

E[P k
D] =

N∑
k=0

(
N

k

)
(1− λ)kλ(N−k)P k

D (4)

The relationship between E[P k
D] and E[PFAk ] represents

the new ROC curve, to be compared with the ROC curve

for the detector with ideal channel. It should be noted that

Equations (3) and (4) reduce to Equations (1) and (2),

respectively, when λ = 0. Section V compares the ROC

curves for the classical DC level in WGN detection problem.

To overcome the performance degradation, one way is

to increase the number of samples N . This can be done

by increasing the decision time period Tp. Therefore, this

approach enhances the performance, with the penalty of

increasing the delay for detection. Section VI illustrates the

approach for performance restoration.

V. NP DETECTION-DC LEVEL IN WGN

A. DETECTION PERFORMANCE

The problem of detecting a known DC level in WGN is

formulated as:

H0 : x[n] = ω[n]
H1 : x[n] = A + ω[n]

where n = 0, 1, ..., N − 1, x[n] represents the sample

sequence, A is the known DC level to be detected, and w[n]
represents WGN with zero mean and variance σ2. If A > 0
it can be shown that the NP detector reduces to testing the

mean of the observations against a threshold value that is

defined by the desired PFA [6]. The detector performance is

given by:

PFA = Q

(
γ√

σ2/N

)
(5)

PD = Q

(
γ −A√
σ2/N

)
(6)

PD = Q

(
Q−1(PFA)−

√
NA2

σ2

)
(7)

where Q(.) is the error function defined by:

Q(x) =
∫ ∞

x

1√
2π

e−
1
2 t2dt

From Equation (7), the detection performance increases

with (NA2/σ2). This quantity is referred to as the deflection
coefficient, d2 [6]. Therefore, to get better detection perfor-

mance either the signal to noise ratio has to be high (which

is usually not under user control) or N should be increased,

which corresponds to a delay in detection.

Now we assume a non-ideal Bernoulli channel. We fur-

ther assume that the detector was designed based on the

assumption of ideal channel, and that the decision rule and

threshold, γ, are fixed. Therefore, at the end of every decision

period Tp, the detector compares the sample mean to the

original threshold γ, irrespective of the number of samples
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received. Accordingly, it can be easily shown that P k
FA and

P k
D are obtained from Equations (5) and (6), respectively, by

replacing N by k. Using Equations (3) and (4), the detector

performance is expressed as:

E[PFA] =
N∑

k=0

(
N

k

)
(1− λ)kλ(N−k)Q

(
γ√
σ2/k

)
(8)

E[PD] =
N∑

k=0

(
N

k

)
(1− λ)kλ(N−k)Q

(
γ −A√

σ2/k

)
(9)

Example 1. Assume it is required to design an NP detector

for DC level in WGN, with parameters A = 0.2, σ = 1, N =
100, and a constraint PFA = 0.05. From Equations (5) and

(6) we get γ = 0.1645, PD = 0.6387. Therefore, the detector

operating point is (0.05,0.6387).

Now the detector is designed with γ = 0.1645. Assuming

a non-ideal, Bernoulli channel with packet drop rate esti-

mated by λ = 0.2, and substituting in Equations (8) and

(9) we get E[PFA] = 0.0708, E[PD] = 0.6245. Therefore,

the new detector operating point is (0.0708,0.6245), so the

detector is working with higher probability of false alarm and

lower probability of detection than the ideal channel case.

B. ROC CURVE

Equations (8) and (9) represent the ROC curve for the

NP detector with intermittent observations. Using detector

parameters in Table I, the ROC curve is plotted in Figure 2

for different values of λ, including the ideal case (λ = 0).

The performance degrades with increasing values of channel

drop rate, for all values of the detector threshold. Therefore,

the degradation is irrecoverable using the original detector

sample size. This is intuitive since increasing the channel

drop rate represents a loss of information at the reader,

therefore the reader has to decide on the state of nature with

a subset of the original information.
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Fig. 2. ROC curve-NP detector with intermittent observations

To verify the analytical results, a Monte Carlo simulation

experiment is conducted. Samples are generated from two

different Gaussian distributions (corresponding to the two

hypotheses), and a Bernoulli channel is introduced in the

signal path to the detector. The detector calculates a running

TABLE I

DETECTOR PARAMETERS-ROC CURVE

Parameter A σ N PFA PD γ
Value 0.2 1 50 0.05 0.4088 0.2326

average, and it ignores dropped observations. The detector

compares the running average to a threshold value that varies

from −∞ to ∞, to generate the complete ROC curve. For

each value of the detector threshold, 5000 Monte Carlo

trials were performed to get accurate values for PFA and

PD. Table II lists the parameters used in the simulation

experiment.

TABLE II

DETECTOR PARAMETERS-MONTE CARLO SIMULATION

Parameter A σ N λ γ
Value 0, 0.2 1 100 0, 0.1 (−∞,∞)

Figure 3 shows the theoretical ROC curve (Equations (8)

and (9)) versus the ROC curve obtained from Monte Carlo

simulation, for λ = 0 and λ = 0.1. As illustrated in the

figure, the two ROC curves for each value of λ are almost

indistinguishable.
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Fig. 3. ROC curve-NP detector with intermittent observations-Monte Carlo
simulations

The degradation in the performance is clear from the new

ROC curve. For a fixed PFA, the original PD cannot be

obtained using the same number of samples. One way to

restore the original performance is to increase the number of

samples. By doing that, we obtain different ROC curves that

approach the original one. Figure 4 illustrates this fact, where

different curves correspond to different number of samples

N . For the detector with parameters as in Table I (λ = 0.2),

the number of samples required to obtain the same original

ROC curve is N = 63, compared to the original case of

N = 50 (see section VI for numerical results). So, the price

paid for the channel imperfection is an 28% increase of the

detection delay.

VI. ADAPTIVE DETECTOR DESIGN

To compensate for the degradation in the performance

of the detector, one solution is to increase the number of
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Fig. 4. ROC curve-NP detector with intermittent observations, increasing
samples

Algorithm 1 NP Detector Performance Adjustment

Input: PFA, PD, N, σ, λ
Output: Ñ , γ̃, P̃D

Ñ = N
P̃D = PD

while P̃D ≤ PD do
Ñ = N + 1
get γ̃ from PFA =

∑Ñ
v=0

(
Ñ
v

)
(1 −

λ)vλ(Ñ−v)Q

(
γ̃√
σ2/v

)

P̃D =
∑Ñ

v=0

(
Ñ
v

)
(1− λ)vλ(Ñ−v)Q

(
γ̃−A√
σ2/v

)
end while
return Ñ , γ̃, P̃D

observations to Ñ that achieves the same original perfor-

mance represented by (PFA, PD), possibly with a different

threshold γ̃. Algorithm 1 illustrates the steps to obtain Ñ and

γ̃ to restore the original detector performance. The basic idea

of the algorithm is to calculate iteratively the new number of

samples, Ñ , that achieves the original PFA, with P̃D ≥ PD.

In doing so, for every value of Ñ we solve Equation (8) to

get γ̃, and then substitute for γ̃ in Equation (9) to get P̃D.

The algorithm stops if P̃D ≥ PD. Equation (8) is an implicit

equation in γ̃, so it is solved iteratively with an initial guess.

The initial guess of γ̃ = γ (original detector threshold) is

found to speed up the convergence process.

Algorithm 1 is run on the detector with parameters listed

in Table I (λ = 0.2), and the numerical results are listed in

Table III.

TABLE III

NEW DETECTOR PARAMETERS

Ñ 51 52 53 ... 61 62 63

P̃D 0.3554 0.3600 0.3647 ... 0.4010 0.4054 0.4098
γ̃ 0.2581 0.2556 0.2532 ... 0.2359 0.2340 0.2321

An important result is that the increased number of sam-

ples, Ñ , that can be systematically computed, restores the

original performance for all values of PFA. In other words,

using Ñ , the new ROC curve can be made to coincide with

the original ROC curve. This fact is clearly shown in Figure

4, and this makes it possible to construct a Delay-Drop Rate
curve for every detector design, defined by Equation (7).

In the Delay-Drop Rate curve, the channel drop rate, λ, is

plotted on the abscissa (0 ≤ λ ≤ 1) and the corresponding

extra number of samples required to restore the performance,

Ñ , is plotted on the ordinate. Figure 5 illustrates the Delay-
Drop Rate curve for the example detector given in this paper,

with parameters as in Table I. It is shown that the number

of samples approximately doubles with a drop rate λ = 0.5,

and the curve exhibits an exponential behavior thereafter.
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Fig. 5. Delay-Drop Rate curve

The Delay-Drop Rate curve can be used for adaptive detec-

tor design. This is best illustrated by Figure 1. The channel

drop rate, λ, is estimated by statistical measurements, and

using the Delay-Drop Rate curve the new number of samples,

Ñ is obtained. The detector is then reconfigured online by

changing the original number of samples, N , to the new

value, Ñ .

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have addressed the problem of Neyman

Pearson detection with intermittent observations, modeled by

a Bernoulli channel. The motivation for this problem is the

emerging technology of passive wireless sensors and their

deployment in problems where event detection is of a prime

interest. We have studied the detection problem in a single

sensor to reader configuration. We formulated the detection

performance with intermittent observations modeled as a

Bernoulli random process. We presented a case study for

the problem of detecting a known DC level in WGN and

showed the degradation in the performance in terms of the

ROC curve. We have also presented an adaptive detector

architecture, where a pre-constructed Delay-Drop Rate curve

is used for detector reconfiguration.

The work in the paper presents the performance analysis of

the detector, given that the detector is already designed, with-

out considering the channel effect. We are currently working

on the optimal detector design, taking into account the chan-

nel effect. Also, the channel is modeled by a memoryless,

Bernoulli random process. In many practical applications,
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an error in the packet is usually caused by a bursty noise,

which causes an error in a number of subsequent packets.

This could be modeled, as an example, using a Markov chain

with finite memory. We are currently studying the detection

performance with such more sophisticated channel models.

Delay for detection is very important in a major class of

detection problems. Therefore, we are currently investigating

other possible solutions to restore the original performance

without introducing excess delay in the detection process.

Multiple sensors and data fusion are one of the solutions

currently under study.
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