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Abstract— The problem of fault detection and isolation in
complex chemical/biochemical plants can be effectively ad-
dressed by a hierarchical strategy involving successive nar-
rowing of the search space of potential faults. A bond graph
network is one means of achieving a decomposition based
on a separation of the physical domains such as mechanical,
electrical, etc. In this work, bond graph theory is used with a
three-stage procedure to fulfill the tasks of fault detection and
isolation. First, the multivariate statistical method of principal
component analysis is used to remove outliers and reduce
the data dimensions. Second, the discrete wavelet transform
is applied to the resulting scores to abstract the dynamics at
different scales. In the third and final step, the Mahalanobis
distance is applied to the results found in step two to calculate
the confidence level. Based on the degree of violation from
the nominal probability level, the detection of a potential fault
is concluded to be true. Following a conclusion of true, fault
isolation is achieved by comparing the time scale at which the
violation of the nominal probability level occurred to the time
scale associated with each physical domain. Two examples are
presented to demonstrate these concepts.

I. INTRODUCTION

The complete reliance on human operators to cope with

process faults is increasingly difficult due to several factors.

Primary among these are the complexity and the size of

process. Furthermore, the unreliability of human operators

adds to inefficient, unreliable fault management. Without an

effective response to faults, minor local faults may evolve

to plant-wide failures, emergency shut-down, and sometimes

an environmental disaster with large economical losses and

occupational injuries. Effective and rapid fault detection and

isolation (FDI) is the first step in developing a successful

fault management system.

Majority of the past efforts on developing a fault manage-

ment systems focused on solving the problem as a two-stage

procedure, detection and isolation. The various methods

proposed can be divided into two categories according to

the extent of prior process knowledge, model and data-based

approaches. The former utilizes a mathematical model (often

based on conservation laws) to formulate the diagnostic

conclusion. While the latter relies on historical operating data

and evidential observations.

Most approaches on FDI are proposed at a single level

of abstraction. These non-hierarchical methods require suf-

ficient details to resolve faults at the unit level. For today’s
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complex plants, the cost to develop high resolution models

and collect data can be extremely expensive. Also non-

robust fault management systems may become unacceptably

inefficient because of the large plant scale and simultaneous

large search space. Finch and Kramer suggest that a multi-

tiered, hierarchical approach to FDI may be more suitable for

large or complex processes [1]. Thus, a modeling formalism

is needed to describe processes at an appropriate level of ab-

straction for rapid early-stage FDI. One example of a model

formalism is one that abstracts and represents the complex

and integrated system as subsystems that correspond to the

physical groups or functional behavior.

Bond graph [2], a graphical modeling language, provides

a model formalism that decomposes the process into subsys-

tems that map to the physical connections. The resulting sub-

systems are essentially physical fields including mechanics,

electronics, hydraulics, and chemistry. The time granularity

for these domains are usually distinct. For instance, the

dynamic response for a mechanical pump is usually on the

scale of milliseconds when compared to the consumption

or generation of a chemical species (usually on a scale of

minutes or greater). Thus, in this work, we propose a multi-

scale analysis based on the time features of the phenomena

for the purpose of an innovative FDI corresponding to the

process decomposition based on bond graph theory. It is ex-

pected that by narrowing the search space to locate the fault,

the response to correct the fault will be improved. Further,

the proposed approach is developed to detect single/multiple

fault(s) either intermittent or slow drift type. This multi-scale

analysis is accomplished by incorporating techniques such

as principal component analysis (PCA) and discrete wavelet

transform (DWT)to enhance the resolution of fault feature

analysis.

The paper is organized as follows. In section II, the

concepts of fault are introduced. In section III the necessary

theory on bond graphs is reviewed. In section IV, the

concept of a hierarchical FDI is introduced as the process

decomposition is developed based on its bond graph. The

procedures involved with detection & isolation, PCA and

DWT are introduced in section V. The detailed approach for

on-line detection and isolation is presented in section VI with

two examples to demonstrate the approach. Lastly, in section

VII a summary of the findings and some recommendations

are presented.
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II. FAULT DETECTION & ISOLATION

Simply stated, a fault is a malfunction of the system be-

cause of some unexpected change. The malfunction disturbs

normal operation and if unchecked may further deteriorate

the system performance. The underlying cause(s) of the fault,

such as failed equipments or drifting process parameters is

(are) defined as the root cause(s). It is noteworthy to compare

fault and failure. The term fault is usually used to indicate a

malfunction that may be tolerable at the present time, while

failure suggests a complete breakdown of a function. If a

fault cannot be detected and resolved, it is highly probable

that the fault may evolve into a failure.

As a fault is defined as an unpermitted deviation of at least

one characteristic property of a variable from its acceptable

range, the time dependency of a fault can be distinguished

as an abrupt fault, a drifting fault, or as an intermittent fault

[3]. An abrupt fault is rare, in contrast, the other two types

of faults frequently occur but are usually not readily detected

because of masking by process and measurement noise.

The task of responding to a fault event involves timely

detection, isolating the causal origin of the fault, estimating

the degree of the fault, and finally taking the necessary steps

to bring the process back to normal. This work will concern

itself only with detection and isolation.

A. Fault Detection

Fault detection usually involves making a binary decision,

either that something has gone wrong or that everything is

within normal accepted ranges. The outcome is simple, but

never the procedure to arrive at the outcome. For a single

variable not within its normal range, limit checking may be

enough to make a decision. But most industrial processes

consist of monitoring and collecting hundreds of process

variables. Moreover, process and measurement noise are

unavoidable and may contribute to false alarms. Thus, robust

detection must be a feature in the design of an effective

fault detection algorithm. Depending on the prior process

knowledge available for detection, the proposed approaches

can be broadly classified into two categories: first-principle

and historical-data approaches [3].

B. Fault Isolation

Also called fault localization, fault isolation locates the

possible root causes for the detected fault. Previous research

on fault isolation methods can be classified as either quantita-

tive or qualitative. Quantitative approaches, such as analytical

redundancy [4] and parity space [5], were proposed to

combine FDI as a one step procedure. In contrast, qualitative

methods, such as digraphs, focused on constructing and

searching using causal models.

There are several issues about isolation but perhaps of

primary importance is resolution. Resolution indicates the

depth of isolation, which determines the effort required

for fault recovery. With a finer resolution, such as at the

component level, the fault origin is clearly targeted but may

be too time consuming to be effective. On the other hand, a

coarser resolution, such as at the unit level, while more rapid

(smaller search space) may not reveal the true fault origin.

III. BOND GRAPH

Bond graph is an explicit graphical tool for capturing

the structures among the physical systems into an energy

network based on power exchanges [6]. Others [7]–[9] have

extended the bond graph concept to represent phenomena

such as chemical kinetics and to extract causal models and

control structures from the bond graph networks.

Power is the common variable among the different physi-

cal domains. Indeed, the product of variables such as voltage

(V) and current (A), pressure (N/m2) and flowrate (m3/s) is

power. In bond graph theory, these variables are referred to

as effort (e) and flow (f). Table I gives some examples of

effort and flow in different physical domains. The elements

of a system to be modeled in the bond graph framework

are called nodes. Bonds connect nodes and ports connect

bonds to nodes. The bond denotes the energy transferred

between nodes. The direction of the transfer of energy and

the associated flow between nodes is based on the orientation

of a half arrow (⇀) added to the bond. The bond graph of a

system reflects the physical structure in which the effort and

flow variables are used to construct a path between nodes

to track power exchanges and the dynamics associated with

power conversions.

TABLE I

POWER VARIABLES FOR DIFFERENT PHYSICAL DOMAINS.

Variables Electronic Hydraulic Mechanic Mechanic

(translation) (rotation)

Effort (e) Voltage Pressure Force Torque

Flow ( f ) Current Flowrate Velocity Frequency

Bond graph theory provides a series of standard elements

to model the flow of power among heterogeneous domains.

Each element can be mapped to a specific physical device

within a given domain [10]. A graphical representation of a

process using bond graph elements is defined to be a bond

graph network (see Fig. 2).

A. Basic elements

The basic bond graph elements provide mappings for

fundamental physical phenomena in various fields. Resis-

tance (⇀R) is introduced to represent power dissipation by

imposing a constitutive relationship between effort and flow,

e = R f f = e/R

The R-element is analogous to electrical resistors, mechani-

cal dampers or dashpots, porous plugs in fluid lines and other

passive power elements. The concepts of a capacitor (⇀C)

and inductance (⇀I) also are basic bond graph elements.

Both are power storage element, by imposing a time integral
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relationship between two power variables,

e = C
∫ t

0
f dt f = I

∫ t

0
e dt

A capacitor can be the idealization of springs in a me-

chanical system, a tank in a hydraulic system or reactants

in a chemical system. An inductance is used to represent

physical elements with inertial effects such as the mass in a

mechanical domain (see Fig. 2).

B. Converting between domains

Power variables from different domains cannot be con-

nected without some conversion. The transformer (TF) and

the gyrator (GY) bond graph elements provide this con-

version capability. Both TF and GY assure that power is

conserved. The TF element has the property that the ratio of

the efforts is the inverse of the ratio of the flows (ei/e j =
f j/ fi). For example, the boundary between the mechanic

and hydraulic domains in Fig. 2 is denoted by TF which

represents a pump that converts mechanical motion into

hydraulic motion. In the case of the GY element, the flow at

one port is dependent on the effort at the other. In some cases,

information rather than power is the link between domains,

for instance, hydraulic flow carrying reactants imposes a

modulating effect on the chemistry. In the bond graph

network, a dashed line is used to represent this non-energetic

interaction (see Fig. 2 - dashed line from the hydraulic to the

reaction domain.) By identifying TF and GY elements and

information bonds from the physical system, the boundaries

among the physical domains are naturally inherited by the

resulting bond graph network.

C. Representing measurement devices

In a bond graph network, either effort or flow within their

respective domain is measurable. To capture this concept of

sensing in a bond graph network, the bond graph elements

De and Df are used for effort and flow detection, respectively

(see Fig. 2). Thus, the location and type of measurement are

made explicit by the bond graph network. The real sensor and

its corresponding representation by effort or flow is necessary

to represent a measurement in a bond graph. The procedure

depends on the type of real measurements. In case of a

direct map between the physical sensor and the effort or flow

variable, the conversion is essentially to classify the sensor

as De or Df as well as the domain it belongs to. On the other

hand, if the sensor to either effort or flow is not a direct map,

a conversion is necessary to arrive at the corresponding effort

or flow variable.

With a complete representation of the system by a bond

graph network, it is claimed that the tasks of detection and

isolation can be done more efficiently. For example, if the

fault is due to a single equipment malfunction, it will not

be difficult to detect and isolate the equipment due to the

domain separation achieved by the bond graph network. With

the bond graph elements, these errors are isolated explicitly

in the bond graph network.

IV. PROCESS DECOMPOSITION

A. Hierarchical FDI

Since the tasks of fault detection & isolation are compli-

cated by the high dimensionality search space of the process

it is not unreasonable to consider a hierarchical approach to

narrowing the search space. Here a procedure is proposed

in which the isolation focus is rapidly narrowed from an

initially broad scope to a restricted, feasible space. In the

first pass, the faulty subsystems are isolated. The resolution

may be coarse but the tradeoff is efficiency. Then, detailed

fault identification can be applied about the isolated space in

question.

B. Domain decomposition

There are at least two distinct dimensions of decompo-

sition, a structural dimension corresponding to the physical

groupings of components, and a functional dimension relat-

ing the purpose of the equipment. In many instances, it is

not easy to discern functional from structural features of a

fault. In contrast, the domain decomposition natural to a bond

graph network is a hybrid between structure and function of

the process.

One disadvantage of functional decompositions is the

non-unique correspondence between the inspected fault and

candidate units. Frequently, a single unit may perform two

or more functions, while several units are collectively re-

sponsible for the performance of a single function. For

example, hydraulic tubing in a continuous process may be

used for fluid conductance, heat transfer, and/or material

holdup. In contrast, the process of heat transfer requires

hydraulic tubing and a heat exchanger. This makes narrowing

the search space for the root cause inefficient due to overlap

among multiple subsystems. Similar disadvantages exist for

a structural decomposition.

The domain decomposition provided by bond graph theory

resolves conflicts by imposing clear boundaries among the

physical domains with a unique mapping from the bond

graph elements to the physical units of the system. Consider

the hydraulic tubing mentioned above, the functions that the

hydraulic tubing performs are represented by one element

in the hydraulic domain for fluid conductance and another

in the thermal domain for heat transfer. Thus, by isolating

the origin of the fault to within distinct domains, the search

space for the following procedures is definitely restricted to

within a scope that has no overlap with other subsystems.

V. PROCEDURES

We propose an on-line approach to address fault detection

and isolation based on a domain decomposition provided by

an application of bond graph theory. We will apply Principle

Component Analysis (PCA) to reduce the data size and to

remove multivariate outliers. Next, an application of Discrete

Wavelet Transform (DWT) to the score representation of the

data signals to arrive at a multiple time scale decomposition.

At the final step, the Mahalanobis Distance (MD) is applied

to the results of the DWT. The steps in the on-line procedure

are illustrated in Fig. 1. Calibration is done off-line to
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Fig. 1. Scheme of the FDI procedure

provide a reference for on-line FDI. Based on the degree of

violation from the nominal probability level, the decision that

a potential fault(s) exists is made. It then follows that fault

isolation is accomplished by comparing the time scales at

which the violation of the nominal probability level occurred

to the time scales associated with each physical domain in

the bond graph network.

A. Multivariate process monitoring

Multivariate statistical analysis methods such as principal

component regression (PCR) and PCA are developed to assist

in the identification of process correlations [11].

Theoretically, PCA is based on an orthogonal decompo-

sition of the covariance matrix of the measured variables

along directions that explain the variability in the data. Let

X̂ represent a matrix of m sample data points of n variables.

Assume that X̂ can be normalized to X such that each

variable has a zero mean and unit variance. The application

of PCA, X = TP′+ Ex produces a set of projection vectors

or eigenvectors P′ of size r×n with r < n and a set of scores

T of size m× r (projection of X onto P). The residual Ex is

a measure of error in the fit. The columns of the T matrix

are orthogonal and represent linear combinations of the data

variables. The first column of P is the first eigenvector

and corresponds to the direction with the largest variability.

The second column describes the next dominant direction

of variability and so on. Determination of the number of

eigenvectors can be established by several techniques, such

as cross validation. Once a calibration model of normal

variations is established, it can be used to classify new data

points. That is given x(k), t(k) can be determined from

tk = x′kP. The new scores can be compared against expected

scores using different statistical measures.

B. Multi-resolution analysis using wavelet transform

The wavelet transform has been used to identify events that

are localized in time and space [12]. The wavelet transform

is essentially an alternative to the classical windowed Fourier

transform (WFT). Whereas the WFT uses a single analysis

window, wavelet transform uses short windows at high

frequencies (small time resolution) and long windows at low

frequencies (large time resolution). Basically, the wavelet

transform is a signal decomposition onto a set of basis

functions, called wavelets that are generated from a single

basic wavelet (mother wavelet). The family of wavelets are

generated by stretching (dilation), compressing, and shifting

(translation) the mother wavelet [13]. Similar to the Fourier

concept there are continuous, discrete and series wavelets.

In the case of a DWT, the signal is processed using

a band pass filter (highpass: g= [gm,gm−1 . . .g2,g1] and a

lowpass: h= [hm,hm−1 . . .h2,h1]). The results are two sets

of coefficients, one describing the details of the signal, and

the other describing a smooth approximation to the signal.

Application of the band pass filter can be done iteratively

to any number of scales by recursively applying the filter

to the smooth approximation at the previous scale. There

are corresponding reconstruction filters. Thus, the original

signal can be reconstructed without loss of information.

Alternatively, it is possible to construct a variant of the signal

using different combinations of the highpass and lowpass

filtered signals.

C. Off-line calibration procedure

(1) Convert the process sensors into bond graph elements

De or Df, based on sensor type and sensor location.

(2) Obtain a calibration model about the nominal historical

data using PCA.

(3) Apply DWT to each score. The number of filtered passes

is dependent on the slowest dynamic time constant.

(4) Reconstruct the reference signals for on-line FDI using

the highpass filter results at each scale.

D. On-line FDI procedure

(1) Find the score vector t(k) that corresponds to the new

measurement vector x(k) using the calibration model

found off-line.

(2) Apply DWT to a window of score data whose length is

based on the slowest time constant but also includes the

most recent score data. If there are r scores then there

are r datasets to be analyzed.

(3) Perform DWT on the first window of score data and

reconstruct the signal at each scale. Using the DWT

of the reference score set, calculate the MD for the

reconstructed data at each scale. Violation of MD about

a pre-specified probability level at any scale is classified

as a fault. In this work, the level is set at 0.01. If a fault

is detected in the most dominant score data, the fault

is classified as an intermittent fault. This work excludes

abrupt faults.

(4) Repeat step 3 using the second dominant score data, and

so on if no violation is found within the first dominant

score data. If a fault is found with a less dominant score

data, it can be classified as a slow drift. In the case of

no faults the process is proclaimed to be fault free.

(5) Isolate the location of the fault by comparing the time

resolution at which a violation is found to the natural

time constants in the domains of the bond graph net-

work. Depending on the complexity of the domain, the

resolution of the isolation may be coarse, but the search

space has been narrowed to that domain.

Remark: The defining feature between an intermittent and

a slow drifting fault is their temporal characteristics. The

former is characterized by sharp pulses over a short duration

of time, thus a technique such as PCA can readily pickup

the variability in the dominant score set. In contrast, the

variability found with a slow drifting fault is more likely

to be captured in the less dominant score set.
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VI. CASE STUDIES

A. Continuous-stirred tank reactor (CSTR)

A schematic of the CSTR is shown in Fig. 2. The chemical

reaction consumes incoming reactant A and produces the

product B. The reaction is occurring in a mixed solution

system of which the inlet stream of solution A is delivered

by a pump, and the outlet flowrate is controlled by a ball

valve. Three process variables, the pump speed ω , hydraulic

pressure P at the bottom of the CSTR, and the product

concentration CB at the outlet, are measured with a sampling

interval of 15 seconds. The dynamic time constant of the

reaction domain is approximately 120 minutes. To abstract

the slow dynamics from the original data requires dilation of

the wavelet. Nine applications of the DWT provide a time

scale of up to 0.25(29) min = 128 min, to represent the

slowest dynamic time constant.
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Fig. 2. CSTR. Left: Bond graph network. Right: Schematic.

Following the procedures presented in [14], a bond graph

network is developed (Fig. 2). A transformer element, TF,

indicates the boundary between the mechanic and hydraulic

domains, while only the dotted signal bonds link the hy-

draulic and reaction domains. Process measurements are

converted into De and Df to represent the measured effort

and flow variables.

1) Single slow drift: The friction coefficient of the pump’s

motor is decreased from its nominal value at t=200 min with

a slope of -5%/min for two minutes. In the bond graph

network there will be a change in the value of element

R3. Applying the aforementioned procedures an indication

of a fault is found in the analysis of the second score data

at t=201.25 min. From the DWT analysis (Fig. 3), with a

moving window size of 29, a violation of the MD is found

at the first two filtered scales. The time resolution of these

scales corresponds to that found in the mechanical domain

(∼30 seconds). The fault feature is captured in the second

score data set, t2, which is less dominant when compared to

t1, indicating that the fault type is a slow drift.

2) Single intermittent fault: An intermittent fault is in-

troduced to the pump by decreasing the friction coefficient

Fig. 3. Single drift fault - CSTR.

of the motor at t=200 min is a pulse disturbance applied

onto element R3. As shown in Fig. 4, detection of the fault

is found in the first score data (conclude that the fault is

intermittent) at t=201.75 min. The origin of the fault can

be isolated to the mechanical domain because the violation

shows up at scale levels 1 and 2. It is worth pointing out that

because fault propagation is based on the interactions among

domains, the interpretation of a single fault may indicate

that the root cause covers a wide range of time granularity

from multiple domains. For instance, in Fig. 4, a noticeable

violation is observed at scale level 4 that may lead to the

conclusion that the root cause is in the hydraulic domain.

Fig. 4. Single intermittent fault - CSTR.

B. Biochemical wastewater treatment process (WWTP)

Consider a WWTP whose primary unit operations are a

packed bed (PB) bioreactor in series with a set of tubular

(TR) bioreactors. A full description of the system can be

found in [15]. Positive displacement pumps move the fluid

through the hydraulic loop. The mechanical domain consists

of the pumps, and the hydraulic domain includes the piping

and the tanks. The PB reactor is represented in the bond

graph network by a CSTR, while the TR is approximated by

a series of CSTRs [16] (Fig. 5).
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Fig. 5. Top: Schematic of the WWTP. Bottom: Bond graph network of
the WWTP.

1) Multiple faults: Two faults with distinct origins are

introduced. Fault A imposes a slow drift (decrease) in the

friction coefficient of the feed pump at t=200 min while fault

B is a slow drift (increase) in the feed composition at t=160

min. The result of applying the proposed FDI method is

shown in Fig.6. Both faults are detected at different scales

from an analysis of the second score data. The first fault is

located in the mechanical domain because the MD violation

occurs at scale levels 1 and 3. The other is identified from

a violation at scale levels 7 to 9 with a corresponding time

resolution of ∼ 60 minutes, which points to the reaction

domain.

VII. SUMMARY

This work described and developed an efficient approach

to the FDI task. The approach is efficient because it is

based on a domain decomposition that is inherited from a

bond graph network of the process. The approach makes

use of data reduction by PCA and multiscale analysis by

wavelets. Two case studies were presented. The slow drift

and the intermittent fault are found through abstraction of

the features. The search space to locate the fault origins is

isolated explicitly due to the corresponding physical domain

decomposition natural to the bond graph network. Future

work focuses on a probability based FDI based on Bayesian

network, to consider the fault propagation and uncertainty

together [17].

Fig. 6. Multiple faults - WWTP.
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