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Abstract—A sufficient condition to solve an optimal control
problem is to solve the Hamilton-Jacobi-Bellman (HJB) equation.
However, finding a value function that satisfies the HJB equation
for a nonlinear systems is challenging. Previous efforts have uti-
lized feedback linearization methods which assume exact model
knowledge, or have developed neural network (NN) approxima-
tions of the HJB value function. The current effort builds on our
previous efforts to illustrate how a NN can be combined with
a recent robust feedback method to asymptotically minimize a
given quadratic performance index as the generalized coordinates
of a nonlinear Euler-Lagrange system asymptotically track a
desired time-varying trajectory despite general uncertainty in
the dynamics. A Lyapunov analysis is provided to examine the
stability of the developed optimal controller.

I. INTRODUCTION1

Optimal control theory involves the design of controllers
that can satisfy some objective while simultaneously mini-
mizing some performance metric. A sufficient condition to
solve an optimal control problem is to solve the Hamilton-
Jacobi-Bellman (HJB) equation. For the special case of linear
time-invariant systems, the HJB equation reduces to an alge-
braic Riccati equation (ARE); however, for nonlinear systems,
finding a value function that satisfies the HJB equation is chal-
lenging because it requires the solution of a partial differential
equation that can not be solved explicitly. If the nonlinear
dynamics are exactly known, then the problem can be reduced
to solving an ARE through feedback linearization methods (cf.
[1]–[5]).
Motivated by the desire to eliminate the requirement for ex-

act knowledge of the dynamics for a direct optimal controller
(i.e., where the cost function is given a priori), [6] developed
a self-optimizing adaptive controller to yield global asymp-
totic tracking despite LP uncertainty provided the parameter
estimation error could somehow converge to zero. In [7], we il-
lustrated how a Robust Integral of the Sign of the Error (RISE)
feedback controller could be modified to yield a direct optimal
controller that achieves semi-global asymptotic tracking. The
result in [7] exploits the implicit learning characteristic [8]
of the RISE controller to asymptotically cancel LP and non-
LP uncertain dynamics so that the overall control structure
converges to an optimal controller.

1The authors would like to gratefully acknowledge the support of the
Department of Energy, grant number DE-FG04-86NE37967. This work was
accomplished as part of the DOE University Research Program in Robotics
(URPR).

Researchers have also investigated the use of the universal
approximation property of neural networks (NNs) to approx-
imate the LP and non-LP unknown dynamics as a means to
develop direct optimal controllers. Specifically, results such as
[9]–[14] find an optimal controller for a given cost function
for a partially feedback linearized system, and then modify
the optimal controller with a NN to approximate the unknown
dynamics. Specifically the tracking errors for the NN methods
are proven to be uniformly ultimately bounded (UUB) and
the resulting state space system, for which the HJB optimal
controller is developed, is only approximated.
The efforts in this paper investigate the amalgam of the ro-

bust RISE feedback method with NN methods to yield a direct
optimal controller. The utility of combining these feedforward
and feedback methods are twofold. Our previous efforts in [15]
indicate that modifying the RISE feedback with a feedforward
term can reduce the control effort and improve the transient
and steady state response of the RISE controller. Hence, the
combined results should converge to the optimal controller
faster. Moreover, combining NN feedforward controllers with
RISE feedback yields asymptotic results [16]. Hence, the
efforts in this paper provide a modification to the results in
[9]–[14] that allows for asymptotic stability and convergence
to the optimal controller rather than to approximate the optimal
controller.
As is typical with previous nonlinear direct optimal con-

trollers the unknown LP and non-LP dynamics are temporarily
assumed to be known so that a controller can be developed for
a residual system based on the HJB optimization method for
a given quadratic performance index. The original uncertain
nonlinear system is then examined, where the optimal con-
troller is augmented to include the RISE feedback and NN
feedforward terms to asymptotically cancel the uncertainties.
A Lyapunov-based stability analysis is included to show that
the RISE and NN components asymptotically identify the
unknown dynamics (yielding semi-global asymptotic tracking)
provided upper bounds on the disturbances are known and
the control gains are selected appropriately. Moreover, the
controller converges to the optimal controller for the a priori
given quadratic performance index.

II. DYNAMIC MODEL AND PROPERTIES
The class of nonlinear dynamic systems considered in this

paper is assumed to be modeled by the following Euler-
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Lagrange [17] formulation:

M(q)q̈ + Vm(q, q̇)q̇ +G(q) + F (q̇) + τd (t) = τ(t). (1)

In (1), M(q) ∈ Rn×n denotes the inertia matrix, Vm(q, q̇) ∈
Rn×n denotes the centripetal-Coriolis matrix, G(q) ∈ Rn
denotes the gravity vector, F (q̇) ∈ Rn denotes friction,
τd (t) ∈ Rn denotes a general nonlinear disturbance (e.g.,
unmodeled effects), τ(t) ∈ Rn represents the input, and q(t),
q̇(t), q̈(t) ∈ Rn denote the position, velocity, and acceleration
vectors, respectively. The subsequent development is based
on the assumption that q(t) and q̇(t) are measurable and
that M(q), Vm(q, q̇), G(q), F (q̇) and τd (t) are unknown.
Moreover, the following properties and assumptions will be
exploited in the subsequent development.
Property 1: The inertia matrix M(q) is symmetric, positive
definite, and satisfies the following inequality ∀y(t) ∈ Rn:

m1 kyk2 ≤ yTM(q)y ≤ m̄(q) kyk2 , (2)

where m1 ∈ R is a known positive constant, m̄(q) ∈ R
is a known positive function, and k·k denotes the standard
Euclidean norm.
Property 2: The following skew-symmetric relationship is
satisfied:

ξT
³
Ṁ (q)− 2Vm(q, q̇)

´
ξ = 0 ∀ξ ∈ Rn. (3)

Property 3: If q(t), q̇(t) ∈ L∞, then Vm(q, q̇), F (q̇) and
G(q) are bounded. Moreover, if q(t), q̇(t) ∈ L∞, then the
first and second partial derivatives of the elements of M(q),
Vm(q, q̇), G(q) with respect to q (t) exist and are bounded,
and the first and second partial derivatives of the elements of
Vm(q, q̇), F (q̇) with respect to q̇(t) exist and are bounded.
Property 4: The nonlinear disturbance term and its first two
time derivatives, i.e. τd (t) , τ̇d (t) , τ̈d (t) are bounded by
known constants.
Property 5: The desired trajectory is assumed to be designed
such that qd(t), q̇d(t), q̈d(t),

...
q d(t),

....
q d(t) ∈ Rn exist, and

are bounded.

III. CONTROL OBJECTIVE
The control objective is to ensure that the system tracks

a desired time-varying trajectory, denoted by qd(t) ∈ Rn,
despite uncertainties in the dynamic model. To quantify this
objective, a position tracking error, denoted by e1(t) ∈ Rn, is
defined as

e1 , qd − q. (4)

To facilitate the subsequent analysis, filtered tracking errors,
denoted by e2(t), r(t) ∈ Rn, are also defined as

e2 , ė1 + α1e1 (5)

r , ė2 + α2e2, (6)

where α1 ∈ Rn×n, denotes a positive, constant, gain matrix,
and α2 ∈ R is a positive constant. The filtered tracking error
r(t) is not measurable since the expression in (6) depends on
q̈(t).

IV. OPTIMAL COMPUTED CONTROLLER DESIGN

In this section, a state-space model is developed based on
the tracking errors in (4) and (5). Based on this model, a
controller is developed that minimizes a quadratic performance
index under the (temporary) assumption that the dynamics
in (1), including the additive disturbance, are known. This
development motivates the control design in Section V, where
a NN and a robust controller are developed to identify the
unknown dynamics and additive disturbance.
To develop a state-space model for the tracking errors in

(4) and (5), the time derivative of (5) is premultiplied by the
inertia matrix, and substitutions are made from (1) and (4) to
obtain

M (q) ė2 = −Vme2 − τ + h+ τd, (7)

where the nonlinear function h(q, q̇, qd, q̇d, q̈d) ∈ Rn is
defined as

h ,M (q̈d + α1ė1) + Vm(q̇d + α1e1) +G+ F. (8)

Under the (temporary) assumption that the dynamics in (1) are
known, the control input can be designed as [7]

τ , h+ τd − u, (9)

to yield the state-space model

ż = A (q, q̇) z +B (q)u, (10)

where u (t) ∈ Rn is an auxiliary control input that will be
designed to minimize a subsequent performance index, and
A (q, q̇) ∈ R2n×2n, B (q) ∈ R2n×n, and z (t) ∈ R2n are
defined as

A (q, q̇) ,
∙
−α1 In×n
0n×n −M−1Vm

¸
,

B (q) ,
£
0n×n M−1

¤T
,

z(t) ,
£
e1 e2

¤T
,

where In×n and 0n×n denote a n × n identity matrix and
matrix of zeros, respectively. The quadratic performance index
J (u) ∈ R to be minimized subject to the constraints in (10)
is

J (u) ,
Z ∞
0

1

2
zTQz +

1

2
uTRu dt. (11)

In (11), Q ∈ R2n×2n and R ∈ Rn×n are positive definite
symmetric matrices to weight the influence of the states and
(partial) control effort, respectively. As stated in [9], [10],
the fact that the performance index is only penalized for the
auxiliary control u(t) is practical since the gravity, Coriolis,
and friction compensation terms in (8) can not be modified by
the optimal design phase.
To facilitate the subsequent development, let Ω(q) ∈

R2n×2n be defined as

Ω(q) =

∙
K 0n×n
0n×n M

¸
(12)
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where K ∈ Rn×n denotes a gain matrix. If α1, R, and
K, introduced in (5), (11), and (12), satisfy the algebraic
relationships

K = KT = −1
2

¡
Q12 +QT

12

¢
> 0 (13)

Q11 = αT1K +Kα1, (14)
R−1 = Q22, (15)

where Qij ∈ Rn×n denotes a block of Q, then Theorem 1 of
[9] and [10] can be invoked to prove that Ω(q) satisfies the
Riccati differential equation, and the value function Va(z, t) ∈
R

Va =
1

2
zTΩz

satisfies the HJB equation. Lemma 1 of [9] and [10] can be
used to conclude that the optimal control u (t) that minimizes
(11) subject to (10) is

u (t) = −R−1BT

µ
∂Va(z, t)

∂z

¶T
= −R−1e2. (16)

V. CONTROL DEVELOPMENT
In general, the bounded disturbance, so the controller given

in (9) can not be implemented. However, if the control input
contains some method to identify and cancel these effects,
then z(t) will converge to the state space model in (10)
so that u(t) minimizes the respective performance index.
In this section, a controller is developed that exploits the
universal approximation property of NNs and the implicit
learning characteristics of the RISE feedback to identify the
nonlinear effects and bounded disturbances to enable z(t) to
asymptotically converge to the state space model.
The universal approximation property indicates that weights

and thresholds exist such that some continuous function
f(x) ∈ RN1+1 can be represented by a three-layer NN as
[18], [19]

f (x) =WTσ
¡
V Tx

¢
+ ε (x) . (17)

In (17), V ∈ R(N1+1)×N2 and W ∈ R(N2+1)×n are bounded
constant ideal weight matrices for the first-to-second and
second-to-third layers respectively, where N1 is the number
of neurons in the input layer, N2 is the number of neurons
in the hidden layer, and n is the number of neurons in the
third layer. The activation function2 in (17) is denoted by
σ (·) : RN1+1 → RN2+1, and ε (x) : RN1+1 → Rn is
the functional reconstruction error. Based on (17), the typical
three-layer NN approximation for f(x) is given as [18], [19]

f̂ (x) , ŴTσ
³
V̂ Tx

´
, (18)

where V̂ (t) ∈ R(N1+1)×N2 and Ŵ (t) ∈ R(N2+1)×n are sub-
sequently designed estimates of the ideal weight matrices. The
estimate mismatches for the ideal weight matrices, denoted by
Ṽ (t) ∈ R(N1+1)×N2 and W̃ (t) ∈ R(N2+1)×n, are defined as

Ṽ , V − V̂ , W̃ ,W − Ŵ ,

2A variety of activation functions (e.g., sigmoid, hyperbolic tangent or radial
basis) could be used for the control development.

and the mismatch for the hidden-layer output error for a given
x(t), denoted by σ̃(x) ∈ RN2+1, is defined as

σ̃ , σ − σ̂ = σ
¡
V Tx

¢
− σ

³
V̂ Tx

´
. (19)

One of the NN estimate properties that facilitate the subse-
quent development is described as follows.
Property 6: (Boundedness of the Ideal Weights) The ideal
weights are assumed to exist and be bounded by known
positive values so that

kV k2F = tr(V TV ) ≤ V̄B (20)

kWk2F = tr(WTW ) ≤ W̄B (21)

where k·kF is the Frobenius norm of a matrix, tr (·) is the
trace of a matrix.
To develop the control input, the error system in (6) is

premultiplied by M (q) and the expressions in (1), (4), and
(5) are utilized to obtain

Mr = −Vme2 + h+ τd + α2Me2 − τ . (22)

To facilitate the subsequent stability analysis the auxiliary
function fd (qd, q̇d, q̈d) ∈ Rn, which is defined as

fd ,M(qd)q̈d + Vm(qd, q̇d)q̇d +G(qd) + F (q̇d) , (23)

is added and subtracted to (22) to yield

Mr = −Vme2 + h̄+ fd + τd + α2Me2 − τ , (24)

where h̄ (q,q̇,qd,q̇d,q̈d) ∈ Rn is defined as

h̄ , h− fd. (25)

The expression in (23) can be represented by a three-layer
NN as

fd =WTσ
¡
V Txd

¢
+ ε (xd) . (26)

In (26), the input xd(t) ∈ R3n+1 is defined as xd(t) , [1
qTd (t) q̇Td (t) q̈Td (t)]

T so that N1 = 3n where N1 was
introduced in (17). Based on the assumption that the desired
trajectory is bounded, the following inequalities hold

kε (xd)k ≤ εb1 kε̇ (xd, ẋd)k ≤ εb2 (27)
kε̈ (xd, ẋd, ẍd)k ≤ εb3 ,

where εb1 , εb2 , εb3 ∈ R are known positive constants.
Based on the open-loop error system in (22), the control

input is composed of the optimal control developed in (16),
a three-layer NN feedforward term, plus the RISE feedback
term as

τ , f̂d + μ− u. (28)

Specifically, μ(t) ∈ Rn denotes the RISE feedback control
term defined as [20]

μ(t) , (ks + 1)e2(t)− (ks + 1)e2(0) (29)

+

tZ
0

[(ks + 1)α2e2(σ) + β1sgn(e2(σ))]dσ,
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where ks, β1 ∈ R are positive constant control gains. The
feedforward NN component in (28), denoted by f̂d(t) ∈ Rn,
is generated as

f̂d , ŴTσ
³
V̂ Txd

´
. (30)

The estimates for the NN weights in (30) are generated on-line
(there is no off-line learning phase) as

·
Ŵ = proj(Γ1σ̂

0
V̂ T ẋde

T
2 ) (31)

·
V̂ = proj(Γ2ẋd(σ̂

0T Ŵe2)
T )

where σ
0
(V̂ Tx) ≡ dσ

¡
V Tx

¢
/d
¡
V Tx

¢
|V Tx=V̂ Tx, and Γ1 ∈

R(N2+1)×(N2+1), Γ2 ∈ R(3n+1)×(3n+1) are constant, positive
definite, symmetric matrices. In (31), proj(·) denotes a smooth
convex projection algorithm that ensures Ŵ (t) and V̂ (t)
remain bounded inside known bounded convex regions. See
Section 4.3 in [21] for further details.
The closed-loop tracking error system is obtained by sub-

stituting (28) into (22) as

Mr = −Vme2 + α2Me2 + fd − f̂d + h̄+ τd + u− μ. (32)

To facilitate the subsequent stability analysis, the time deriv-
ative of (32) is determined as

Mṙ = −Ṁr − V̇me2 − Vmė2 + α2Ṁe2 (33)

+α2Mė2 + ḟd −
·
f̂d +

·
h̄+ τ̇d + u̇− μ̇.

Using (17) and (30), the closed-loop error system in (33) can
be expressed as

Mṙ = −Ṁr − V̇me2 − Vmė2 + α2Ṁe2 (34)

+α2Mė2 +WTσ
0
V T ẋd −

·
ŴT σ̂

−ŴT σ̂
0
·

V̂ Txd − ŴT σ̂
0
V̂ T ẋd

+ε̇+
·
h̄+ τ̇d + u̇− μ̇,

where the notations σ̂ and σ̃ are introduced in (19). Adding
and subtracting the terms WT σ̂

0
V̂ T ẋd+ ŴT σ̂

0
Ṽ T ẋd to (34),

yields

Mṙ = −Ṁr − V̇me2 − Vmė2 + α2Ṁe2 (35)

+α2Mė2 + ŴT σ̂
0
Ṽ T ẋd + W̃T σ̂

0
V̂ T ẋd −

·
ŴT σ̂

−ŴT σ̂
0
·

V̂ Txd +WTσ
0
V T ẋd −WT σ̂

0
V̂ T ẋd

−ŴT σ̂
0
Ṽ T ẋd + ε̇+

·
h̄+ τ̇d + u̇− μ̇.

Using (16) and the NN weight tuning laws in (31), the
expression in (35) can be rewritten as

Mṙ = −1
2
Ṁ(q)r + Ñ +N − e2 −R−1r (36)

−(ks + 1)r − β1sgn(e2),

where the fact that the time derivative of (29) is given as

μ̇ = (ks + 1)r + β1sgn(e2) (37)

was utilized, and where the unmeasurable auxiliary terms
Ñ(e1, e2, r, t), N

³
Ŵ , V̂ , xd, t

´
∈ Rn are defined as

Ñ , −1
2
Ṁ(q)r +

·
h̄+ e2 + α2R

−1e2 (38)

−V̇me2 − Vmė2 + α2Ṁe2 + α2Mė2

−proj(Γ1σ̂
0
V̂ T ẋde

T
2 )

T σ̂

−ŴT σ̂
0
proj(Γ2ẋd(σ̂

0T Ŵe2)
T )Txd

N , ND +NB. (39)

In (39), ND(t) ∈ Rn is defined as

ND =WTσ
0
V T ẋd + ε̇+ τ̇d, (40)

while NB

³
Ŵ , V̂ , xd

´
∈ Rn is further segregated as

NB = NB1 +NB2 , (41)

where NB1

³
Ŵ , V̂ , xd

´
∈ Rn is defined as

NB1 = −WT σ̂
0
V̂ T ẋd − ŴT σ̂

0
Ṽ T ẋd, (42)

and the term NB2

³
Ŵ , V̂ , xd

´
∈ Rn is defined as

NB2 = ŴT σ̂
0
Ṽ T ẋd + W̃T σ̂

0
V̂ T ẋd. (43)

Segregating the terms as in (40)-(43) facilitates the devel-
opment of the NN weight update laws and the subsequent
stability analysis. For example, the terms in (40) are grouped
together because the terms and their time derivatives can
be upper bounded by a constant and rejected by the RISE
feedback, whereas the terms grouped in (41) can be upper
bounded by a constant but their derivatives are state de-
pendent. The terms in (41) are further segregated because
NB1

³
Ŵ , V̂ , xd

´
will be rejected by the RISE feedback,

whereas NB2

³
Ŵ , V̂ , xd

´
will be partially rejected by the

RISE feedback and partially canceled by the adaptive update
law for the NN weight estimates.
In a similar manner as in [20], the Mean Value Theorem

can be used to develop the following upper bound3°°°Ñ(t)°°° ≤ ρ (kyk) kyk , (44)

where y(t) ∈ R3n is defined as

y(t) , [eT1 eT2 rT ]T , (45)

and the bounding function ρ(kyk) ∈ R is a positive globally
invertible nondecreasing function. The following inequalities
can be developed based on Property 4, (20), (21), (27), (31)
and (41)-(43):

kNDk ≤ ζ1 kNBk ≤ ζ2

°°°ṄD

°°° ≤ ζ3 (46)°°°ṄB

°°° ≤ ζ4 + ζ5 ke2k . (47)

In (46) and (47) ζi ∈ R (i = 1, 2, ..., 5) are known positive
constants.
3Details of the bound in (44) are available on request.
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VI. STABILITY ANALYSIS
Theorem: The nonlinear optimal controller given in (28)-

(31) ensures that all system signals are bounded under closed-
loop operation and that the position tracking error is regulated
in the sense that

ke1(t)k→ 0 as t→∞. (48)

The result in (48) can be achieved provided the control gain
ks introduced in (29) is selected sufficiently large, and α1, α2
are selected according to the following sufficient conditions:

λmin (α1) >
1

2
α2 > β2 + 1, (49)

where λmin (·) ∈ R denotes the minimum eigenvalue, and βi
(i = 1, 2) are selected according to the following sufficient
conditions:

β1 > ζ1 + ζ2 +
1

α2
ζ3 +

1

α2
ζ4 β2 > ζ5, (50)

where ζi ∈ R, i = 1, 2,..., 5 are introduced in (46)-(47),
β1 was introduced in (29), and β2 is introduced in (53).
Furthermore, u (t) converges to an optimal controller that
minimizes (11) subject to (10) provided the gain conditions
given in (13)-(15) are satisfied.
Remark 1: The control gain α1 can not be arbitrarily se-

lected, rather it is calculated using a Lyapunov equation solver.
Its value is determined based on the value of Q and R.
Therefore Q and R must be chosen such that (49) is satisfied.
Proof: Let D ⊂ R3n+2 be a domain containing Φ(t) = 0,

where Φ(t) ∈ R3n+2 is defined as

Φ(t) , [yT (t)
p
P (t)

p
G(t)]T . (51)

In (51), the auxiliary function P (t) ∈ R is defined as

P (t) , β1

nX
i=1

|e2i(0)|− e2(0)
TN(0)−

tZ
0

L(τ)dτ, (52)

where e2i(0) is equal to the ith element of e2(0) and the
auxiliary function L(t) ∈ R is defined as

L(t) , rT (NB1(t) +ND(t)− β1sgn(e2)) (53)
+ėT2 (t)NB2 (t)− β2 ke2(t)k

2 ,

where βi ∈ R (i = 1, 2) are positive constants chosen accord-
ing to the sufficient conditions in (50). Provided the sufficient
conditions introduced in (50) are satisfied4

tZ
0

L(τ)dτ ≤ β1

nX
i=1

|e2i(0)|− e2(0)
TNB(0). (54)

Hence, (54) can be used to conclude that P (t) ≥ 0. The
auxiliary function G(t) ∈ R in (51) is defined as

G(t) =
α2
2
tr
³
W̃TΓ−11 W̃

´
+

α2
2
tr
³
Ṽ TΓ−12 Ṽ

´
(55)

4Details of the bound in (54) are available on request.

Since Γ1 and Γ2 are constant, symmetric, and positive definite
matrices and α2 > 0, it is straightforward that G(t) ≥ 0.
Let VL(Φ, t) : D × [0,∞) → R be a continuously

differentiable positive definite function defined as

VL(Φ, t) , eT1 e1 +
1

2
eT2 e2 +

1

2
rTM(q)r + P +G, (56)

which satisfies the following inequalities:

U1(Φ) ≤ VL(Φ, t) ≤ U2(Φ) (57)

provided the sufficient conditions introduced in (50) are satis-
fied. In (57), the continuous positive definite functions U1(Φ),
and U2(Φ) ∈ R are defined as U1(Φ) , λ1 kΦk2, and
U2(Φ) , λ2(q) kΦk2 , where λ1, λ2(q) ∈ R are defined as

λ1 ,
1

2
min {1,m1} λ2(q) , max

½
1

2
m̄(q), 1

¾
,

where m1, m̄(q) are introduced in (2). After taking the time
derivative of (56), V̇L(Φ, t) can be expressed as

V̇L(Φ, t) = 2e
T
1 ė1+eT2 ė2+

1

2
rT Ṁ(q)r+rTM (q) ṙ+ Ṗ +Ġ.

By utilizing (5), (6), (36), and substituting in for the time
derivative of P (t) and G (t), V̇ (Φ, t) can be simplified as

V̇L(Φ, t) = −2eT1 α1e1 − (ks + 1) krk
2 − rTR−1r (58)

+2eT2 e1 + rT Ñ(t)− α2 ke2k2 + β2 ke2(t)k
2

+α2e
T
2

h
ŴT σ̂

0
Ṽ T ẋd + W̃T σ̂

0
V̂ T ẋd

i
+tr

µ
α2W̃

TΓ−11

·
W̃

¶
+ tr

µ
α2Ṽ

TΓ−12

·
Ṽ

¶
.

Based on the fact that

eT2 e1 ≤
1

2
ke1k2 +

1

2
ke2k2

and using (31), the expression in (58) can be simplified as

V̇L(Φ, t) ≤ rT Ñ(t)− (ks + 1 + λmin
¡
R−1

¢
) krk2(59)

− (2λmin (α1)− 1) ke1k2

− (α2 − 1− β2) ke2k
2 .

By using (44), the expression in (59) can be rewritten as

V̇L(Φ, t) ≤ −λ3 kyk2 −
h
ks krk2 − ρ(kyk) krk kyk

i
, (60)

where λ3 , min{2λmin (α1)−1, α2−1−β2, 1+λmin
¡
R−1

¢
};

hence, α1, and α2 must be chosen according to the sufficient
condition in (49). After completing the squares for the terms
inside the brackets in (60), the following expression can be
obtained:

V̇L(Φ, t) ≤ −λ3 kyk2 +
ρ2(kyk) kyk2

4ks
≤ −U(Φ), (61)

where U(Φ) = c kyk2, for some positive constant c, is a
continuous, positive semi-definite function that is defined on
the following domain:

D ,
n
Φ ∈ R3n+2 | kΦk ≤ ρ−1

³
2
p
λ3ks

´o
.
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The inequalities in (57) and (61) can be used to show that
VL(Φ, t) ∈ L∞ in D; hence, e1(t), e2(t), and r(t) ∈ L∞ in
D. Given that e1(t), e2(t), and r(t) ∈ L∞ inD, standard linear
analysis methods can be used to prove that ė1(t), ė2(t) ∈ L∞
in D from (5) and (6). Since e1(t), e2(t), r(t) ∈ L∞ in D,
the assumption that qd(t), q̇d(t), q̈d(t) exist and are bounded
can be used along with (4)-(6) to conclude that q(t), q̇(t),
q̈(t) ∈ L∞ in D. Since q(t), q̇(t) ∈ L∞ in D, Property 3 can
be used to conclude that M(q), Vm(q, q̇), G(q), and F (q̇) ∈
L∞ in D. Thus from (1) and Property 4, we can show that
τ(t) ∈ L∞ in D. Given that r(t) ∈ L∞ in D, (37) can be
used to show that μ̇(t) ∈ L∞ in D. Since q̇(t), q̈(t) ∈ L∞
in D, Property 3 can be used to show that V̇m(q, q̇), Ġ(q),
Ḟ (q) and Ṁ(q) ∈ L∞ in D; hence, (36) can be used to show
that ṙ(t) ∈ L∞ in D. Since ė1(t), ė2(t), ṙ(t) ∈ L∞ in D, the
definitions for U(y) and z(t) can be used to prove that U(y)
is uniformly continuous in D.
Let S ⊂ D denote a set defined as follows:

S ,
½
Φ(t)⊂ D | U2(Φ(t)) < λ1

³
ρ−1

³
2
p
λ3ks

´´2¾
.

(62)
The region of attraction in (62) can be made arbitrarily large
to include any initial conditions by increasing the control gain
ks (i.e., a semi-global type of stability result) [20]. Theorem
8.4 of [22] can now be invoked to state that

c ky(t)k2 → 0 as t→∞ ∀y(0) ∈ S. (63)

Based on the definition of y(t), (63) can be used to show that

ke1(t)k→ 0 as t→∞ ∀y(0) ∈ S. (64)

The result in (63) indicates that as t→∞, (32) reduces to

f̂d + μ = h+ τd. (65)

Therefore, dynamics in (7) converge to the state-space system
in (10). Hence, u (t) converges to an optimal controller that
minimizes (11) subject to (10) provided the gain conditions
given in (13)-(15), (49), and (50) are satisfied.

VII. CONCLUSION
A control scheme is developed for a class of nonlinear

Euler-Lagrange systems that enables the generalized coordi-
nates to asymptotically track a desired time-varying trajectory
despite general uncertainty in the dynamics such as additive
bounded disturbances and parametric uncertainty that do not
have to satisfy a LP assumption. The main contribution of this
work is that a feedforward NN and RISE feedback method
is augmented with an auxiliary control term that minimizes
a quadratic performance index based on a HJB optimization
scheme. Like the influential work in [9]–[14], [23], [24] the
result in this effort initially develops an optimal controller
based on a partially feedback linearized state-space model
assuming exact knowledge of the dynamics. The optimal
controller is then combined with a feedforward NN and RISE
feedback. A Lyapunov stability analysis is included to show
that the NN and RISE identify the uncertainties, therefore the
dynamics asymptotically converge to the state-space system

that the HJB optimization scheme is based on. A preliminary
numerical simulation is included to support these results.
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