
 
 

 

  

Abstract—This paper deals with the improved design of 
stable model reference adaptive systems, by introducing a 
nonlinear adaptation gain. Uniform asymptotic stability of the 
system is demonstrated for both state and output feedback 
cases. A simulation example shows the effectiveness of the 
proposed approach when large parameter variations and 
disturbances are active. It is also being applied to control a real 
printing system.  
 
Keywords — adaptation gain, model reference adaptive control, 
Lyapunov function, printing systems. 

I. INTRODUCTION 
N adaptive control the controlled system monitors its 
performance and makes adjustments to improve that 

performance [1-6]. Model reference adaptive control 
(MRAC) is an example of an implicit adaptive controller. 
MRAC was first introduced by Whitacker in 1958. A block 
diagram of MRAC system is shown in figure 1. It can be 
regarded as an adaptive servo system in which the desired 
performance is expressed in terms of a reference model, 
which represents the desired response to a command signal. 
An adaptation mechanism keeps track of the process output 
yp and the reference model output ym and calculates a 
suitable parameter setting such that the difference between 
these outputs tends to zero. An important issue in MRAC is 
the design of the adaptive law. The adaptive law designs 
made first use of sensitivity models and later were based on 
the stability theory of Lyapunov and Popov’s hyperstability 
theory. These approaches are described in [7] and [8]. 
 
The adaptation gain Γ determines the rate at which the 
controller parameter will converge to the correct parameters. 
Moreover, the adaptation gain influences the performance of 
the system.  Hence, the adaptation gain should be properly 
chosen. A too high adaptation gain may lead to badly 
damped behavior while a too low adaptation gain will lead 
to an unaccepted slow response. Some methods are 
introduced in [6] to determine the adaptation gain. Two 
algorithms to tune the adaptation gain for a gradient based 
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parameter update law used for a class of nonlinear discrete-
time systems are proposed in  [3]. These algorithms depend 
on the knowledge of the system model and the system states. 
Moreover, it requires a lot of online computation time.  In 
[5-11] the adaptation gain is constant. We propose a 
nonlinear varying adaptation gain and do not require any 
knowledge of the parameters of the system. To improve the 
system performance, the adaptation gain could be chosen as 
a function of the controller parameters error. Unfortunately, 
the correct controller parameters depend on the process 
parameters which are usually unknown. However, the error 
between the outputs of the process and of the reference 
model gives also a good indication of the controller 
parameters error. Hence, we propose an adaptation gain as a 
function of the output error instead of controller parameters 
error. A new Lyapunov function is introduced to investigate 
the stability of both state and output feedback MRAC 
systems. A simulation example is given to illustrate the 
effectiveness of the proposed approach. 
In a printing system there are many challenging problems 
e.g. large changes in paper weight, humidity, speed, printing 
accuracy, etc. In this paper MRAC with a nonlinear 
adaptation gain is proposed to control a printing system.  

 
Fig. 1  Main structure of MRAC 

 

II. MODIFIED STATE FEEDBACK MRAC 
This section presents a MRAC design for processes with 
state feedback. We start with reviewing the state feedback 
MRAC design, then a modified design of MRAC is 
proposed based on a variable adaptation gain. 
 

A. MRAC State Feedback Review [6]  
Consider a SISO linear system described by  
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uBxAx pppp +=&                   (1) 

where n
p Rx ∈ is the process state vector, py is the process 

output, nxn
p RA ∈ , n

p RB ∈ are system matrices and u is 

the process input. Consider a stable reference model given 
by 

rBxAx mmmm +=&                   (2) 
 
Assume that both models are represented in the controller 
canonical forms, with [ ]TmB 100 L= and Rr ∈ . 

Consider the state feedback control law p
T
b xkrku += 0  

which can be written as wu Tθ=              (3) 
with 1][ +∈= nT

bo
T Rkkθ  are the controller parameters 

and 1][ +∈= nT
p

T Rxrw . Hence, the close loop system 

becomes rBxArkBxkBAx cpcpp
T
bppp )()()( 0 θθ +=++=&  

select error mp xxe −= , so 

rBBxAAeAe mcpmcm ))(())(( −+−+= θθ&  

Hence, the error derivative becomes 
 

wbeAe T
Im Φ+=&                      (4) 

  
where mθθ −=Φ  is the difference between the parameters 
of the controlled system and of the model, and 

( )T
Ib 10...0=  

By selecting a Lyapunov function ΦΓΦ+= −1TT PeeV  
 the adaptation law is 
 

wPbe I
TΓ−==Φ θ&&                        (5) 

 
with Γ a constant positive adaptation gain and P  a positive 
definite matrix yields  0)( <+= ePAPAeV m

T
m

T&  
 
Equation (5) provides a stable adaptive system. The choice 
of the adaptation gain Γ could be crucial for the 
performance. To improve the system performance, the 
adaptation gain should be properly chosen. 
  

B. MRAC Design with a Nonlinear Adaptation Gain 
 
In this subsection a new MRAC state feedback design is 
introduced based on a nonlinear adaptation gain. Γ is a 
function of the error e  such that if the error is high, Γ  will 
be large which means that the controller will adapt its 
parameters faster and faster error convergence can be 
obtained. Let the adaptation gain be 
 

 ,10 PeeTγγ +=Γ ,0>oγ 0,01 >> Pγ , so 0>Γ   (6) 
 
Now equation (5) with the adaptation gain as defined in (6) 
yields an adaptive law which provides a stable adaptive 
system. 

Lemma 1 Using the control law (3), the adaptation law (5) 
and the nonlinear adaptation gain (6), the closed loop 
system is asymptotically stable. 
 
Proof  
The candidate Lyapunov function is 

ΦΦ++= TTT PeePeeV )
2

( 0
1 γ

γ
            (7) 

where ,0>oγ ,01 >γ  and P  is a positive definite 
symmetric matrix. The time derivative of V will be 
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           (8) 

ΦΦ+++= &&&& TTTT ePePeePeeV 2))(( 01 γγ                    (9) 
 
Using the error equation defined in (4) and adaptation gain 
defined in (6), the time derivative of V yields 
 

ΦΦ+Φ++Γ= && TT
I

T
m

T
m

T wPbeePAPAeV 2)2)((      (10) 

Let the adaptation law be wPbe I
TΓ−==Φ θ&&  

then 0)( <+Γ= ePAPAeV m
T
m

T&    if  0≠eeT      
  
Remark: 
Both oγ and 1γ  are scalar design parameters.  The nonlinear 
adaptation gain (6) is more generic since the constant 
adaptation gain can be retrieved by choosing 01 =γ . 
 

III. OUTPUT FEEDBACK MRAC WITH A NONLINEAR 
ADAPTATION GAIN 

In practice, limited state information may be available, and 
only the process output may be measurable. A state 
reconstruction in such a case, for example by means of a 
Kalman-filter type of observer, is difficult because of the 
unknown process parameters. Several methods have been 
proposed for designing MRAC when using output feedback 
[5;11;12] 

 
One of these methods is known as “augmented error 
method”.  The augmented error method is a combination of 
a primary controller and a set of adaptive laws. The primary 
controller of the augmented error method is shown in figure 
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2, which indicates that two auxiliary signal generators 
(ASGs) produce vectors 1w and 2w , with 1−∈ n

i Rw .  The 
design of the ASGs is described in [7]. If the reference 
model is  
 

mmm

mmmm
xCy

rBxAx
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then it was shown in [5] that the output error mp yye −=1  

can be  written as  )(1 wGe T
m Φ=  where 

][ 21
T

p
TT wywrw = , mθθ −=Φ  is the parameter 

error vector, ][ 1
TT

o
T dkfk=θ , and 

mmmm BAsICG 1)( −−=  represents the reference model. 

The control law can be written as  wu Tθ=                     (11) 
The error equation is 
 

)( wBeAe T
mm Φ+=&                   (12) 

where Tneeete ][)( )1(
111

−= K&  
Assume that mG  is strictly positive real (SPR) and is 
represented in controller canonical form. So there exist 

0,0 >> QP  such that 
 

.

,
T
mm

m
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m

CPB

QPAPA

=

−=+
                       (13) 

 
By applying Lyapunov stability with the error equation (12) 
and the SPR property (13), it is found in [7] that the 
adaptation law will be we1Γ−==Φ θ&&         (14) 
where Γ is a constant adaptation gain. Again, to improve the 
system behavior, a nonlinear adaptation gain is considered. 

 

Lemma 2 Using the control law (11), the adaptation law 
(14) and the nonlinear adaptation gain (6), the closed loop 
system is asymptotically stable. 
 
Proof 
Consider the adaptation gain Γ  (6) and the candidate 
Lyapunov function V  (7). The time derivative of V will be 

ΦΦ+++
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&&&

&&&
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ΦΦ+++= &&&& TTTT ePePeePeeV 2))(( 01 γγ  
With (12): 

ΦΦ+Φ++Γ= && TT
mm

T
m

T wPeBePAPAeV 2))(2)((  
Applying SPR property (13) 

ΦΦ+Φ+−Γ= && TTT weeQeV 2))(2)(( 1  
Let the adaptation law be we1Γ−=Φ&   

then, 0)( <−Γ= eQeV T&  if 0≠eeT ,with Γ defined in (6). 
 
Remark: 
In case that mG  is not strictly positive real, it is necessary to 
add zeros to the error equation (12). This is achieved by 
adding an extra signal to the output error. The augmented 
error signal will be ve += 1ε . A detailed procedure for 
choosing  v  can be found in [7]. The error equation will be  

 
)( 1wLBeAe T

mm
−Φ′+=&            (15) 

where, L  is a design polynomial in the Laplace operator (s), 
which is chosen such that the product mLG is SPR, and 
 

 [ ]Tne )1( −= εεε K&                 (16) 
 
The adaptation law will depend on the augmented error 
instead of output error. Moreover, the adaptation gain will 
be a function of the augmented error. Using Lyapunov 
function (7) and the error equation (15) the adaptation law 
will be εθ )( 1wL−Γ−=& , with   Γ  defined in (6) and e  
defined in (16). The stability proof is straight forward.  
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Fig. 2  Primary controller structure of augmented error method 

IV. COMPARISON EXAMPLE 
 
This section presents a comparison example to compare the 
effectiveness of the nonlinear adaptation gain with a 
constant gain. Consider a second order process [7] 

82
12

2 ++
=

ss
G p   

and a reference model 

168
16

2 ++
=

ss
Gm  
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The objective is to design an adaptive controller such that 
the closed loop system behaves as the reference model. Two 
design cases are considered 

1. State feedback MRAC 
In this case, we assume that all the states are measurable. 
The controller is constructed using control law (3) and 
adaptive law (5). Figure 3 and 4 show the states responses 
and the states tracking error for nonlinear and constant 
adaptation gain.  It is clear that using the nonlinear 
adaptation gain (6) the convergence speed increases 
considerably. 

2. Output feedback MRAC 
In this case, only the output is measured, applying the 
augmented error method with the primary control structure 
shown in figure 2 and the adaptive laws with constant and 
nonlinear adaptation gain.  Figure 5 shows the system 
response in case of output feedback MRAC for both 
nonlinear and constant adaptation gain. The adaptation 
(implicit identification) phase is much shorter. 
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Fig. 3  State feedback for fixed and variable adaptation gain  
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Fig. 4  State tracking error  
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Fig. 5  Output feedback for fixed and variable adaptation gain  

 

V. APPLICATION OF MRAC FOR PRININTING SYSTEM 
 
In this section, MRAC with a nonlinear adaptation gain is 
applied to a laser printer. This section starts with describing 
the printing process, modeling of the system and finally 
showing some simulation results.  
 

A. Printing system description 
 

The laser printer mainly consists of several subsystems; e.g. 
a preheating system, an imaging unit, a toner transfer belt 
system and a drive system. The schematic representation of 
the system is shown in figure 6. 
 
In the preheating system, the paper is heated to a certain 
temperature before it reaches the fusing pinch. The imaging 
unit is used to produce the toner image. The transfer belt 
system is responsible for transporting the toner from the 
imaging unit to the fusing nip where the toner is fused on the 
paper.  The drive system determines the speed of the transfer 
belt which affects the productivity of the printing process, 
but limited power sources and high mass media are the 
limitations for the productivity. It is necessary to control and 
monitor the fuse temperature accurately because if the fuse 
temperature is too low, the toner will not penetrate the paper 
accurately and it will stick on the top of the paper, whereas 
if the fuse temperature is too high, the toner will melt and 
stick to any other surfaces. 
 
Important problems in the printing system are the varying 
time delay (depending on paper speed), changing parameters 
(paper size, weight, and humidity) and nonlinearities. These 
problems will influence the stability and performance of the 
closed-loop system. An adaptive control algorithm is a 
proper choice. The objective is to design a controller which 
can keep both the printing quality and the productivity as 
good as possible. Good quality means that the fusing 
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temperature should track a reference signal at all operating 
conditions. Based on the system behavior, the MRAC 
algorithm with a nonlinear adaptation gain is suggested. 
 

B. System modeling 

The system is divided into two subsystems: 
1. Preheating system 

The preheating system can be described by the following 
state space representation. 

pre

pre
pre

prepre

Ty

P
C

TvmAT

=

Ω++= ,1),(&

 

where A(m,v) is the system pole which is function of the 
paper mass (m) and the drive speed (v), Ω  is an uncertainty 
term of the system, preP  is the heating power and preC is 
the thermal capacity. 
 

2. Fusing system. 
The fuse temperature cannot be measured from the transfer 
belt. An estimation formula is used to estimate the fuse 
temperature. The fusing system can be described by a third 
order linear model with state noise. Due to industrial 
confidential reasons, the fusing model is omitted.  
 

C. Simulation results 
 
The most widely used industrial controller today is still the 
PID controller. PID controller is simple, easy to implement, 
and requires no accurate process model. But PID controller 
also has some shortcomings. Since PI controller is currently 
used in the printing system, this subsection presents a 
comparison of the tracking results of the MRAC with a 
nonlinear adaptation gain and PI controller. To have a fair 
comparison, the PI controller is well tuned first.  To simulate 
the parameter uncertainty, the paper mass and the drive 
speed are changed during the simulation. Figure 7 indicates 
the fusing temperature tracking error comparison. It is clear 
that the tracking performance of the MRAC is much better 
than that of the PI controller. Figure 8 shows the preheating 
temperature comparison in case of paper mass variations. In 
case of large paper mass, a sudden reduction in the 
preheating temperature happens and the MRAC can mange 
to track the desired temperature faster than the PI controller.  
The variation in the paper mass is depicted in figure 9. This 
simulation example shows that the MRAC with a nonlinear 
adaptation gain can handle the system efficiently in the 
presence of parameters with large variations. 
 

 
 

Fig. 6  Schematic diagram of printing system 
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Fig. 7  Error fuse temperature  
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Fig. 8  Comparison of preheating temperature in case of 

variation of paper mass 
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Fig. 9  Variation of the paper mass  

 

VI. CONCLUSION 
This paper proposed MRAC with a nonlinear varying 
adaptation gain. The adaptation gain has been chosen to be a 
function of the error to speed up the adaptation process 
when the error is large. The proposed design yields a faster 
error convergence for both state and output feedback 
compared with a constant adaptation gain. A new Lyapunov 
function has been introduced to proof the stability of the 
system when applying the proposed MRAC. The proposed 
MRAC is used to control a printing system. Simulations 
with the printing system illustrated the effectiveness of the 
technique. A good tracking and robust stability has been 
obtained in large parameters variations. 
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