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Abstract— In this paper, we study adaptive control redesign
problem of polynomial nonlinear systems with matching para-
metric uncertainties. By transforming the system into its corre-
sponding error dynamics, we will develop an adaptive control
scheme in attenuating the effect of the unknown parameters
on the controlled output, which is composed of tracking errors
and control efforts. To achieve better controlled performance,
the Lyapunov functions will be relaxed from quadratic to
higher order and the resulting controller gain is generalized
from constant to parameter dependent. The synthesis conditions
of adaptive control will be formulated as polynomial matrix
inequalities and are solvable by recast the resulting conditions
into a Sum of Squares (SOS) optimization problem, from which
the adaptive control law as well as the parameter adaptation
law are derived with zero tracking and parameter estimation
errors. An example is provided to demonstrate effectiveness of
the proposed adaptive control redesign approach.

Keywords: Adaptive control; parametric uncertainties;

higher-order Lyapunov function; SOS programming.

I. INTRODUCTION

Adaptive control estimates unknown constant or slow

varying parameters from on-line operating adaptive law

and implements the controller with estimated parameters

[18], [1], [9], [6]. Essentially, the adaptation of controller

parameters is based on the performance error y(t) − ym(t)
such that the closed-loop system adjusts itself towards an

operating condition at which the desired system performance

is achieved asymptotically, i.e., limt→∞(y(t) − ym(t)) = 0.

Interest in adaptive control of nonlinear systems was

stimulated by the inability of nonlinear feedback control

to handle the presence of unknown parameters. The first

series of adaptive nonlinear control schemes were restricted

to systems satisfying the matching condition [2], and sub-

sequently relaxed to the extended matching condition [11].

For a period of time, the extended matching condition

could not be crossed by Lyapunov-based designs, which

redirected researchers to estimation-based design. Nam and

Arapostathis [10], Sastry and Isidori [19] combined feedback

linearization with adaptation techniques from adaptive linear

control. However, these schemes required the nonlineari-

ties be restricted by linear growth conditions in order to

achieve global stability. The only nonlinear estimation-based

results which went beyond the linear growth constraints

were obtained by using Lyapunov functions to character-

ize relationships between nonlinear growth constraints and
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controller stabilizing properties [13], [15], but still somehow

restricted by matching conditions. The result presented in

[5] finally broke the extended matching barrier, which was

achieved with a new recursive design procedure called adap-

tive backstepping. Adaptive backstepping developed by [5]

confluenced the adaptive estimation idea. Currently, there are

two commonly used approaches for the design of nonlinear

adaptive controllers: Lyapunov-based and estimation-based

[6]. The distinction between Lyapunov-based and estimation-

based schemes is dictated by the type of parameter update

law and the corresponding proof of stability and parame-

ter convergence [14], [7], [23]. With the development of

backstepping techniques, significant progress has been made

on Lyapunov-based designs. Nevertheless, estimation-based

designs are more broadly applicable and allow a choice of

parameter update laws from a wide repertoire of gradient and

least-squares optimization techniques.

In spite of major development, adaptive control schemes

have not yet become systematic engineering design tools.

A potential drawback of adaptive control based on back-

stepping is lack of optimality and robustness. Moreover,

its somewhat complicated design process, restrictive mod-

eling assumption (such as linear parameterization), and poor

transient performance often hinder its wide applications to

practical problems and make it unfavorable from robustness

consideration. To improve robustness property of adaptive

control, recent studies in deterministic robust control (DRC)

area [24], [20] and adaptive or robust adaptive control (RAC)

area [4], [3] have been proposed to integrate robust and

adaptive control techniques together for nonlinear systems.

Adaptive robust control (ARC) was developed to preserve

the theoretical performance results of both RAC and DRC,

and prompt them to complement each other so that the

well-known practical performance limitations of each were

overcome [21], [22], [8]. Nevertheless, the developed robust

adaptive techniques have only emphasized on synthesizing an

adaptive control law and a parameter adaptation law based

on some simple types of Lyapunov functions, whereas no

optimality involved in. To overcome the limitation on exist-

ing Lyapunov functions, we propose an iterative algorithm to

relax the Lyapunov functions from quadratic to higher-order

and the resulting control gain is generalized from constant

to parameter dependent. By employing higher-order Lya-

punov functions and computationally effective optimization

approach to redesign adaptive control laws, it would help

provide more freedom on achieving a better performance

level, as will be shown in the example.

The notation used in this paper is fairly standard. We
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denote R
m×n as the set of real m × n matrices. In large

symmetric matrix expressions, terms denoted by “⋆” are to be

induced by symmetry. Given a vector x = [x1 · · · xn]
T
∈

R
n, ∂V

∂x
=

[
∂V
∂x1

∂V
∂x2

... ∂V
∂xn

]
is the derivative of V

with respect to x. A multivariate polynomial p(x) is a sum

of squares (SOS) if there exist polynomials p1(x), . . . , pℓ(x)
such that p(x) =

∑ℓ

i=1 p2
i (x).

II. STANDARD ADAPTIVE CONTROL SCHEME FOR

POLYNOMIAL NONLINEAR SYSTEMS

Consider a polynomial nonlinear system with matching

uncertainties as

ẋ = A(x)x + φT (x)θ + u, (1)

where the system state and control input x, u ∈ R
nx . φT (x)θ

describes the parametric uncertainties, which is composed of

given basis functions φT (x) ∈ R
nx×θ and unknown weights

θ ∈ R
θ . In addition, A(x) and φT (x) are restricted as

polynomial functions of state x. Let xd(t) be the command

output trajectory and z = x−xd(t) be the tracking error. The

desired trajectory xd(t) is assumed as continuous function

of time t. The actual value of the unknown parameter θ is

a constant. For standard adaptive control design, the goal is

to make z as small as possible. Therefore, it is important to

look at how the control input influences z:

ż = ẋ − ẋd(t) = A(x)x + φT (x)θ + u − ẋd(t).

To keep the transformed system in a clean form, we sepa-

rate the polynomial and non-polynomial terms in the state

equation. As a result, the transformed system is described

by

ż = Ã(z, xd)z + φ̃T (z, xd)θ + u + f(z, xd, ẋd), (2)

where Ã(z, xd) and φ̃T (z, xd) are polynomial functions of z

and xd. f(z, xd, ẋd) represents the nonlinear terms produced

by the introduction of xd through the transformation x =
z + xd.

The certainty equivalence principle assumes that the con-

trol law can be synthesized as if the system does not have any

parameter uncertainties when the online parameter estimate

θ̂ is used. Motivated by model reference adaptive control

(MRAC) design [12], we will have the adaptive control

scheme as following

u = um + us (3)

um = −(Ã(z, xd)z + φ̃T (z, xd)θ̂ + f(z, xd, ẋd)) (4)

us = −Kz, K > 0 (5)

˙̂
θ = Γφ̃(z, xd)z (6)

with a quadratic Lyapunov function

V (z, θ̃) = zT z + θ̃T Γ−1θ̃, (7)

where θ̃ = θ − θ̂ denotes the estimation error between θ̂

and its true value. Note that the control law consists of

two parts. The first part um is used to cancel out redundant

nonlinearities and approximate the unknown parameter θ by

its estimation θ̂. θ̂ is governed by its own dynamics, which

is the adaptation law as shown in eqn. (6). When θ̂ perfectly

matches with θ, ż is driven to zero with the control force um.

To compensate non-zero tracking error (z 6= 0) and stabilize

the transformed system, we need to include the second part

of control law us.

It has been proven that with the adaptive control law (3)-

(5) and the parameter adaptation law (6), all signals in the

system are bounded and the tracking error asymptotically

converges to zero [21]. However, the parameter estimation

error can only be guaranteed as bounded unless the persistent

exciting (PE) condition is satisfied. When the system is very

sensitive to the variation of the parameter, or in the situation

that the parameter is poorly estimated and performs bad so

that it has very large deviation from its true value, the oper-

ational accuracy of the entire system may be compromised.

III. ADAPTIVE CONTROL REDESIGN FOR PERFORMANCE

IMPROVEMENT

In this section, we will address the Lyapunov redesign of

adaptive control problem for improving system performance

with respect to certain optimality criteria. Specifically, we

will focus on how to minimize the effect of imperfect

parameter estimation on the controlled output. To this end,

the Lyapunov function will be not restricted to the simple

quadratic form as in (7), but relaxed to higher-order form,

which helps provide more freedom to synthesize a better

Lyapunov function. The direct consequences of this new

Lyapunov redesign strategy is that the optimization of the

performance level, the synthesis of adaptive controller gain

and adaptation law, the determination of the Lyapunov form

and its coefficients are all integrated into a simple but

systematic design procedure. We will firstly formulate the

optimization problem, then an iterative algorithm will be

proposed to recursively improve the performance level and

extend the Lyapunov function form.

Resort the system dynamics and define the performance

output as

ż = φ̃T (z, xd)θ̃ + us (8)

e =

[
Q

1

2

0

]
z +

[
0

R
1

2

]
us (9)

where Q ≥ 0, R > 0 are specified penalties on z and us. In

this formulation, θ̃ is treated as a system disturbance. This

disturbance term is special since it implicitly depends on

state z through its own dynamics. Our design objective is

to synthesize an adaptive control law (3) together with an

online parameter adaptation mechanism (6) so that the effect

of θ̃ is as small as possible on the controlled output e under

a suitable Lyapunov function V (z, θ̃), i.e.

min γ (10)

s.t. V̇ (z, θ̃) + (zT Qz + uT
s Rus) − γ2θ̃T θ̃ < 0

In the following, we will provide an adaptive control

synthesis condition for the disturbance attenuation problem

mentioned above.
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Theorem 1: For the system (8)-(9), if there exist a poly-

nomial function V (z, θ̃) = MT (z)P1M(z) + θ̃T P2θ̃, P1 >

0, P2 > 0, a matrix function K(z) and a scalar γ > 0 so

that following condition holds




{
Q − KT (z)∂M(z)T

∂z
P1N(z)

−NT (z)P1
∂M(z)

∂z
K(z) + KT (z)RK(z)

}
⋆

φ̃(z, xd)
∂M(z)T

∂z
P1N(z) − P2Γφ̃(z, xd) −γ2I


 < 0

(11)

where M(z) is a pre-specified monomial vector of z and

N(z) is a matrix function of z so that M(z) = N(z)z, then

problem (10) is solvable by an adaptive control law in the

form of (3) with controller gain K(z) and an adaptation law

(6).

This result can be easily shown and its proof is omitted

here. Nevertheless, the solvability condition (11) is bilinear

about matrix functions V (z, θ̃) and K(z). In general, there

does not exist a computationally efficient algorithm to solve

the condition (11). For this reason, we will resort to an

iterative computational scheme for its effective solution.

The iterative algorithm will start from the simplest case.

We start with a quadratic Lyapunov function, constant control

and adaptation laws as following

V (z, θ̃) = zT P1z + θ̃T Γ−1θ̃, P1 > 0, Γ−1 > 0 (12)

us = −Kz, K > 0 (13)

˙̂
θ = Γφ̃(z, xd)z. (14)

Then the condition in optimization problem (10) becomes

V̇ (z, θ̃) + (zT Qz + uT
s Rus) − γ2θ̃T θ̃

= żT P1z + zT P1ż +
˙̃

θT Γ−1θ̃ + θ̃T Γ−1 ˙̃
θ

+ (zT Qz + uT
s Rus) − γ2θ̃T θ̃

= [φ̃T (z, xd)θ̃ − Kz]T P1z + zT P1[φ̃
T (z, xd)θ̃ − Kz]

− zT φ̃T (z, xd)θ̃ − θ̃T φ̃(z, xd)z + (zT Qz + uT
s Rus)

− γ2θ̃T θ̃

= zT (Q + KT RK − KT P1 − P1K)z

+ zT [P1φ̃
T (z, xd) − φ̃T (z, xd)]θ̃

+ θ̃T [φ̃(z, xd)P1 − φ̃(z, xd)]z − γ2θ̃T θ̃

< 0.

By Schur complement, it is sufficient to solve the following

condition

Sitr0 :=



−M − MT ⋆ ⋆ ⋆

φ̃(z, xd) − φ̃T (z, xd)P
−1
1 −γ2

i ⋆ ⋆

Q
1

2 P−1
1 0 −I ⋆

R
1

2 M 0 0 −I


 < 0 (15)

where M = KP−1
1 . Note that the polynomial matrix

inequality (15) depends on variables zd, x with decision

variables M, P−1
1 , γ2

i . Therefore, it can be formulated as an

SOS optimization problem with compatible dimension free

variable v

min γ (16)

s.t. S0 := −vT
Sitr0v ∈ ΦSOS,

and solved by SOS programming tool such as SOSTOOL

[16], [17]. We will denote the controller gain K as K0 in

sequel. Sum-of-squares (SOS) technique provides an efficient

way to solve the polynomial matrix inequalities by recasting

them as SOS optimization problems. The basic tool for

testing if a given polynomial is a sum of squares is the

Gramian matrix associated to the polynomial. Specifically,

denote the monomial variable vector x̃ and multi-index p as

x̃ =
[
x̃1 . . . x̃nx+nv

]T

=
[
z1 . . . znx

v1 . . . vnv

]T

p = [p1, . . . , pn], p̄ =
n∑

i=1

pi

so that any monomial can be written as x̃p =
∏nx+nv

i=1 x̃
pi

i .

Then the representation of polynomial function S0 in (16)

with degree 2k is given by S =
∑

p̄≤2k S[i]x̃
p

[i], where k

is a positive integer, x̃
p

[i] is the ith monomial basis and S[i]

is the corresponding coefficient. The maximal value of i is

determined by k.

Now for fixed K0, one can generalize the Lyapunov

function to a higher order form

V (z, θ̃) = MT (z)P1M(z) + θ̃T P2θ̃, (17)

where P1 > 0, P2 > 0,M(z) is a pre-specified monomial

vector of z. Because the Lyapunov function is at least of

2nd order, any such M(z) could be represented as M(z) =
N(z)z, where N(z) is a matrix function of z. Clearly, when

N(z) = I , M(z) is the monomial vector of a quadratic

Lyapunov function. Re-deriving the condition in optimization

problem (10), we have

V̇ (z, θ̃) + (zT Qz + uT
s Rus) − γ2θ̃T θ̃

= −zT [KT
0

∂M(z)
T

∂z
P1N(z) + NT (z)P1

∂M(z)

∂z
K0

− Q − KT
0 RK0]z + zT [NT (z)P1

∂M(z)

∂z
φ̃T (z, xd)

− φ̃T (z, xd)Γ
T P2]θ̃ + θ̃T [φ̃(z, xd)

∂M(z)T

∂z
P1N(z)

− P2Γφ̃(z, xd)]z − γ2θ̃T θ̃

=
[
zT θ̃T

]



{
Q − KT

0
∂M(z)T

∂z
P1N(z)

−NT (z)P1
∂M(z)

∂z
K0 + KT

0 RK0

}

φ̃(z, xd)
∂M(z)T

∂z
P1N(z) − P2Γφ̃(z, xd)

⋆

−γ2I

] [
z

θ̃

]
< 0. (18)

Again, it is straightforward to solve this condition by trans-
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forming to its sufficient form

Sitr1 :=



{
Q − KT

0
∂M(z)T

∂z
P1N(z)

−NT (z)P1
∂M(z)

∂z
K0 + KT

0 RK0

}
⋆

φ̃(z, xd)
∂M(z)T

∂z
P1N(z) − Y φ̃(z, xd) −γ2I


 < 0,

(19)

where Y = P2Γ. By selecting an adaptation gain Γ, one can

get the Lyapunov matrices P − 1 and P2 = Y Γ−1. Since

P2 and Γ always show up in the multiplication form, it is

possible to simplify the synthesis of Y as the synthesis of

Γ by absorbing P2 into Γ so that the second part of the

Lyapunov function keeps a simple form of θ̃T θ̃.

For the polynomial matrix inequality (19) of P1, Y, γ2

involved, one can reformulate another SOS optimization

problem

min γ (20)

s.t. S := −vT
Sitr1v ∈ ΦSOS.

and solve it using SOSTOOL.

An interesting observation coming from the fundamental

mechanism of the adaptive control is the form of Lyapunov

function V (z, θ̃) = MT (z)P1M(z)+ θ̃T P2θ̃, P1 > 0, P2 >

0. The Lyapunov function involves not only the state z, but

also the parameter estimation error θ̃. This is motivated by

the fact that the dynamics of θ̃ is available and depends on

z as well. Therefore, augmenting the Lyapunov function to

include complete information of the system dynamics will

not obstruct determination of the Lyapunov function.

Keep in mind that whenever solving the synthesis condi-

tion (20), we will minimize the γ value simultaneously. From

this point of view, it is promising to obtain better γ value

through iteration because much more freedom is induced due

to the extension on both of the Lyapunov function and the

parameter adaptation forms.

Now we will state the iterative adaptive control algorithm

for performance improvement using higher-order Lyapunov

functions.

1) Let i = 0. Starting from a quadratic Lyapunov function

(12) and adaptation law (14), solve the SOS optimiza-

tion problem (16) to get the initial controller gain K0

and performance level γ0.

2) If problem (16) has a feasible solution, let i = i+1. For

the given M(z) and fixed Ki−1, solve the following

SOS optimization problem to get Yi, P1i > 0 and γi.

min γi (21)

s.t. − vT
Sitriv ∈ ΦSOS,

where

Sitri =









−KT
i−1(z)∂M(z)T

∂z
P1iN(z)

−NT (z)P1i
∂M(z)

∂z
Ki−1(z)

+Q + KT
i−1(z)RKi−1(z)






φ̃(z, xd)
∂M(z)T

∂z
P1iN(z) − Yiφ̃(z, xd)

⋆

−γ2
i I

]
.

3) Let i = i + 1. For the given M(z) and fixed P1(i−1),

solve an equivalent SOS optimization problem to get

Ki, Yi and γi.

min γi (22)

s.t. − vT
S̃itriv ∈ ΦSOS,

where

S̃itri =




{
−KT

i (z)∂M(z)T

∂z
P1(i−1)N(z)

−NT (z)P1(i−1)
∂M(z)

∂z
Ki(z) + Q

}

φ̃(z, xd)
∂M(z)T

∂z
P1(i−1)N(z) − Yiφ̃(z, xd)

R
1

2 Ki(z)

⋆ ⋆

−γ2
i I ⋆

0 −I





Note that Ki could be a z dependent polynomial

function with pre-specified polynomial form. If |γi −
γi−1| < ǫ or the iteration number i is sufficiently large,

let γ = γi and STOP. Otherwise, go back to step 2.

Although we start from a quadratic Lyapunov function,

the final Lyapunov function could be a complicated polyno-

mial form. With a polynomial representation of Lyapunov

function, it is possible to achieve a better closed-loop per-

formance γi < γi−1. In step 2, it is clear that (21) is always

feasible (at least M(z) = z,
∂M(z)

∂z
= I, N(z) = I, Yi = I

should work). When iterating on step 3, condition (22) to

be solved is also feasible (at least keep Ki−1 = Ki, Yi−1 =
Yi, P1(i−1) = P1i should work).

Finally, from derivation (18), it is clear that the iterative

algorithm guarantees

V̇ (z, θ̃) + (zT Qz + uT
s Rus) − γ2θ̃T θ̃

=
[
zT θ̃T

]
Sitri

[
z

θ̃

]
< 0.

The feasibility of above condition indicates that the function

of z, θ̃ is nonnegative and the squares of z(t), θ̃(t) are

integrable with respect to time, i.e. z(t), θ̃(t) ∈ L2. Then

by Barbalat’s lemma [18], equation (8) and (6) imply that

ż(t),
˙̃
θ(t) ∈ L∞ for any initial condition, which in turn

implies that z(t), θ̃(t) → 0 as t → 0.

IV. EXAMPLE

Consider a second-order uncertain nonlinear system with

one unknown parameter θ described by

ẋ = A(x)x + φT (x)θ + u,
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where

A(x) =

[
x2

1 x1x2

2x2 x2
2

]
φT (x) =

[
x1

0

]
.

The uncertain system can be transformed to its corresponding

error dynamics form with

Ã(z, xd) =




{
(z1 + xd1)

2

+z1xd1 + 2x2
d1

} {
(z1 + xd1)(z2 + xd2)

+z1xd2 + xd1xd2

}

2(z2 + xd2)

{
(z2 + xd2)

2

+z2xd2 + 2x2
d2

}




φ̃T (z, xd) =

[
z1 + xd1

0

]

f(z, xd, ẋd) =

[
x3

d1 + z1x
2
d2 + xd1x

2
d2

2z2xd1 + 2xd1xd2 + x3
d2

]
.

Given θ = 0.5, R =

[
1 0
0 1

]
, Q =

[
0.2 0
0 0.2

]
. We will

apply the proposed iterative algorithm to solve the adaptive

control problem.

Starting from a simple Lyapunov function (12) and an

adaptation law (14), solve condition (16) to get an initial

performance γ0 = 1.1853 and its corresponding control gain

K0 =

[
0.5350 0

0 0.5350

]
.

Then we will examine the performance of controller K0.

During simulation, we set references trajectories as following

x1d(t) =

{
2 + 0.4t, 0 ≤ t ≤ 7s,

4.8, 7s < t ≤ 10s.

x2d(t) =





−1 − 0.5t, 0 ≤ t ≤ 3s,

−2.5, 3s < t ≤ 7s,

−2.5 + 0.5(t − 7), 7s < t ≤ 10s.

The starting point is chosen as [x10; x20; θ0] = [0; 0; 0]. The

simulated performance of this initial adaptive controller is

shown in Fig. 1.

To improve adaptive control performance, we assume

that the Lyapunov function is 4th order function of z.

Specifically, V = MT (z)P1M(z) + θ̃T P2θ̃ with M(z) =
[z2

1 ; z1z2; z
2
2 ; z1; z2]. For fixed K0, we solve condition (21)

using SOSTOOL and obtain

γ1 = 1.1095

Y1 = 26.166

P1 =




0.0810 0 −0.0526
0 0.2272 0

−0.0526 0 6.7129
−0.0933 0 −0.0061

0 −0.0039 0

−0.0933 0
0 −0.0039

−0.0061 0
36.1680 0

0 30.4730



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(a) Tracking performance of states
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(b) Unknown parameter estimation

Fig. 1. Trajectories of states and adaptive parameter w.r.t their reference
values with an initial adaptive controller.

Then we fix P11 and specify the control gain K2 = K(z) =
K20 + K21z1 + K22z2. Solving condition (22) to minimize

γ, finally we have

γ = γ2 = 1.0410

Y2 = 36.405

K(z) =

[
14.511 + 0.1107z1 0.0117z2

−0.0014z2 14.019 + 0.0021z1

]

Select Γ = Y2, then P2 = 1. Through three iterations, we

are able to minimize the γ value by extending the Lyapunov

function from 2nd order to 4th order and generalizing the

control gain K from scalar form to parameter dependent

form.

For comparison purpose, we will use the same command

trajectories and initial conditions to conduct simulation.

Shown in Fig. 2(a) is the tracking performance of x1 and

x2. As can be seen, both of the states track the command

signals quickly compared with the initial adaptive controller.

Moreover, θ̂ converges to its true value as shown in Fig. 2(b).
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Fig. 2. Trajectories of states and adaptive parameter w.r.t their reference
values using redesigned adaptive controller.

V. CONCLUSION

In this paper, we developed an adaptive control redesign

approach to attenuate the effect of the unknown parameters

on the controlled output for a class of polynomial nonlinear

systems. Motivated by classical adaptive control theory,

the system is transformed into its error dynamics and the

adaptive control law as well as the parameter adaptation law

are synthesized through an iterative algorithm based on SOS

programming. To improve adaptive controlled performance,

the Lyapunov functions are relaxed from quadratic to higher

order and the control gain is generalized from constant to

parameter dependent. It has been shown that the system

trajectories track their command profiles and the estimated

parameters converge to their true value. All of the synthesis

conditions are formulated in the frame work of polyno-

mial/constant linear matrix inequalities and solvable using

available SOS programming software package. Our future

work will generalize the proposed nonlinear adaptive control

approach to uncertain nonlinear systems with unmatched

parameter uncertainties.
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