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Abstract— A bumpless transfer method for discrete-time
switched linear systems is presented. It is based on an additional
controller which is activated at the switching time for reducing
the control discontinuities. Dwell time conditions to guarantee
the stability of the closed-loop system are provided. Simulation
tests on the Eisenhüttenstadt hot strip mill of ArcelorMittal are
shown.

I. INTRODUCTION

In practical control problems, several linear controllers are

often used to control the same non-linear plant, one for each

operating point. This strategy avoids the non-linear control

design, certainly more complicated. Nevertheless, switching

among more controllers implies control discontinuities and

undesired transient behaviors. Moreover, industrial systems

are often characterized by saturations due to the actuators

limits and do not accept these discontinuities. Consequently,

the dynamics performance can be largely modified and the

stability may not be guaranteed anymore. Slope saturations

of the control signal are well-known for their destabilizing

effect. The solution of this problem is called bumpless

transfer.

A description of most popular strategies for the bumpless

transfer problem can been found in [8], [9], [10] and [13].

One of the first bumpless transfer schemes is proposed by

[11] for non-linear plants. The idea consists in pre-setting

the off-line controller state in order to reduce the transient

behavior at the switching time. In [18] and [19], results

of [11] are generalized for controllers which are not bi-

proper and have a minimum phase. A linear quadratic (LQ)

optimization method is introduced to minimize the distance

between the on-line and the off-line controller output. In [5],

the discontinuity of the controller output is reduced resetting

the fast dynamics of the controller at the switching time. In

[21], the desired transient behavior is obtained using the L2

anti-windup structure [17].

Although the bumpless transfer problem has been widely

studied in literature, only few articles address the switched

systems framework. In [1], a bumpless transfer solution for

continuous-time switched systems where the order of the

controller is smaller than the order of the plant is given. The

idea consists in forcing the output of the activated controller
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to be equal to the plant input at the switching time. An

analogous strategy is proposed in [7] for continuous-time

LPV systems. However, as pointed out in [20] and [21], a

constraint on the controller output does not guarantee better

performances of the plant output.

In this article, a bumpless transfer control design for

discrete-time switched systems is presented. We propose an

additional controller which is activated at each switching

time. The controller and the plant output are forced to follow

a desired profile for a given period of time. This minimizes

the control discontinuity guaranteeing the plant output per-

formances. The solution is based on the LQ optimization

theory, that has been introduced on the bumpless transfer

framework by [19]. Stability of the closed-loop system is

guaranteed by LMI conditions [2] using multiple Lyapunov

functions [3] and the dwell time approach [15].

The article is organized as follows. In the next section,

the problem is formulated. In section III, the optimization

criterion to design the bumpless transfer controller (BT

controller) is detailed. In section IV, stability conditions

for the closed-loop system are investigated. In section V,

simulation results of the Eisenhüttenstadt hot strip mill

(Germany) are presented. Finally, a conclusion is given.

II. PROBLEM FORMULATION

Consider the discrete-time switched system

{

xk+1 = Aσ(k)xk + Bσ(k)uk

yk = Cσ(k)xk

(1)

where x ∈ R
n is the state, u ∈ R

r is the control signal,

y ∈ R
m is the output signal and σ(k) : N → Γ = {1, ..., N}

is the switching signal, which is assumed to be unknown a

priori but available in real time. The minimal interval of

time between two switchings Dj is assumed to be known.

Moreover, the pair (Aj , Bj) is supposed to be controllable

and the pair (Aj , Cj) observable, ∀ j ∈ Γ. Furthermore, the

state x is supposed to be available for feedback and the plant

matrices (1) are assumed to be well-known. A state-feedback

control law

uk = Kσ(k)xk (2)

which stabilizes the closed-loop system (1)-(2) is given.

In order to reduce the amplitude of the control signal

discontinuities, different strategies are possible. Here, a BT

controller which is activated at the switching time for the
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period of time τM
j < Dj is proposed, that is:

uk =

{

Kjxk + ubt
k if τj ≤ τM

j

Kjxk if τj > τM
j

(3)

where ubt ∈ R
r is the BT controller output and τj ∈ Ξ =

{1, ..., τM
j } the number of times between the present time k

and the last switching. For each mode j ∈ Γ, the closed-loop

system (Fig. 1) can be written as
{

xk+1 = (Aj + BjKj)xk + Bju
bt
k

yk = Cjxk.
(4)

ũk

ũk

xk

xk

ubt
k

ubt
k
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yk

Q1
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Q2
k
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supervisor

Fig. 1. Closed-loop system with Γ = {1, 2}

The BT controller Qj is designed in the next section. The

signal uk − ũ
j
k is minimized using a LQ criterion, where

ũj represents the desired profile of the control signal. For

simplicity reasons, a straight line is chosen as desired profile.

Let tj be the switching time from the subsystem i to the

subsystem j, ∀ (i, j) ∈ Γ × Γ. We can define

ũj
τj

= ũ0
j + pjτj (5)

where

ũ0
j = Kixtj−1 (6)

is the control signal value at the time before the switching

and pj determines the slope of the desired profile, i. e.

pj =
1

τM
j

(Kjxtj
− Kixtj−1). (7)

We obtain a value of p which depends on the control signal

discontinuity (Fig. 2). In order to guarantee the performances

of the plant output y, also the difference between y and the

desired plant output ỹ is minimized.

III. BUMPLESS TRANSFER CONTROLLER

DESIGN

In this section, the method to design the BT controller

is presented. In order to follow the desired profiles ũ and

ỹ, the problem is formulated as a classical LQ optimization

problem. In the bumpless transfer framework, this solution

u

ktj tj + τM
j

Kixtj−1

Kjxtj

pj

Fig. 2. u evolution with BT controller switched on (thick line) and switched
off (thin line)

has been proposed by [19], where the difference between

the on-line and the off-line controller output is minimized

before each switching. Moreover, the difference between

the on-line and the off-line controller input is minimized.

This strategy initializes the controller state and then reduces

the transient behavior on the plant output. Since the anti-

bumpless action consists in pre-setting the state of the off-

line controller before the switching, the method does not

address control systems without memory, such as state-

feedback control laws. Another problem concerns the sta-

bility of the closed-loop system, which is not guaranteed

when arbitrary switchings occur. To solve these problems, for

discrete-time switched systems we propose a BT controller

which is activated at each switching time. Stability conditions

for the closed-loop system are given in the next section. For

each mode j ∈ Γ, the design of the BT controller is based

on the minimization of the following quadratic cost function:

Jj = φ
j

T
j

f

+
1

2

T
j

f
−1
∑

k=0

[zu′

k Wu
j zu

k + z
y′

k W
y
j z

y
k ], (8)

with

zu
k = uk − ũ

j
k (9)

z
y
k = yk − ỹ

j
k (10)

φ
j

T
j

f

=
1

2
zu′

T
j

f

P jzu

T
j

f

(11)

where Wu
j and W

y
j are positive definite weighting matrices

of appropriated dimensions. T
j
f = τM

j + 1 is the terminal

time and P j is a positive semi-definite terminal weighting

matrix. For simplicity reasons, we consider ỹj = 0. The next

theorem shows how to compute the signal ubt. The proof,

which is based on the Pontryagin’s minimum principle [4],

is similar to the one given in [19].

Theorem 1: Given the system (4), the quadratic cost func-

tion (8) and the terminal time T
j
f , the BT controller which

minimizes the signals zu and zy is given by

ubt
k = Q

j
k





xk

ũ
j
k

g
j
k+1



 (12)
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with

Q
j
k =







(Ñ j
k+1Π

j
k+1Aj − Kj)

′

(I + Ñ
j
k+1Π

j
k+1Bj)

′

−Ñ
j′

k+1







′

(13)

and

Ñ
j
k+1 = −(Wu

j )−1B′
j(I − Πj

k+1B̃j)
−1,

∀ j ∈ Γ. The values of Πj and gj are given by the equations

Πj
k = A′

j(I − Πj
k+1B̃j)

−1Πj
k+1Aj + C̃j (14)

and

g
j
k = A′

j(I − Πj
k+1B̃j)

−1(gj
k+1 − Πj

k+1Bj ũ
j
k) (15)

with
B̃j = −Bj(W

u
j )−1B′

j

C̃j = C
′

jW
y
j Cj .

The bound condition is

Πj

T
j

f

= 0

g
j

T
j

f

= 0.
(16)

Remark 1: In the finite horizon approach, the knowledge

of all the future values of ũ is required in order to solve

(15) backward in time. Then, in general this method cannot

be applied to solve practical problems, as discussed in [19].

Nevertheless, from (5), in our case all the values of ũ can

be computed in the finite horizon Ξ. Only the knowledge

of xtj−1 and xtj
is needed. Since these informations are

available at each switching time, the method can always be

used.

IV. STABILITY ANALYSIS

In the previous sections, we assumed that the BT controller

is switched on for τM
j times. As the original controller (2)

has been designed without taking into account this fact, the

stability is not guaranteed anymore. Then, in this section, a

stability condition for the closed-loop system (4) is given.

For each mode j ∈ Γ, the closed-loop system

xk+1 = (Aj + BjKj)xk + Bju
bt
k (17)

can be written in the equivalent form

vk+1 = Yj(τj)vk (18)

where

vk =









xk

xk−1

ũ0
k

pk









is the augmented state and the signals ũ0 and p are defined in

section II. The representation of a switched system with an

augmented state approach is justified in [12]. We distinguish

two phases on the interval between two switchings:

– The bumpless transfer phase: the BT controller is on.

We find

Yj(τj)|τj=1 =











H̄
j
τj+1 L̄

j
τj+1 0 0

I 0 0 0
0 Ki 0 0

Kj

τM
j

− Ki

τM
j

0 0











and

Yj(τj)|2≤τj≤τM
j

=









Ā
j
τj+1 0 Ū

j
τj+1 P̄

j
τj+1

I 0 0 0
0 0 I 0
0 0 0 I









.

In this case, the stability of (18) is not guaranteed. The

construction of Yj is detailed in the appendix I.

– The recuperation phase: the BT controller is off. We

have

Yj(τj)|τj>τM
j

= Y s
j =















Aj + BjKj 0 · · · 0
I 0 · · · 0
0 · · · 0
...

...

0 · · · 0.















,

where Y s
j is Schur and constant ∀ j ∈ Γ.

Given the minimal interval of time between two switchings

Dj , the value of τM
j can always be reduced in order to

make the system (18) stable. Let define the transition matrix

between two switching times

Zj(Dj , τ
M
j ) =

τM
j
∏

τj=1

Yj(τj)|τj≤τM
j

Y s
j

(Dj−τM
j −1)

. (19)

The following theorem checks the closed-loop system

stability.

Theorem 2: Given Dj , if there exist positive definite ma-

trices PYj
= P ′

Yj
, PZj

= P ′
Zj

of appropriate dimensions and

scalars τM
j such that the LMIs

Y s′

j PYj
Y s

j − PYj
≺ 0 (20)

Z ′
jPZj

Zj − PZj
≺ 0 (21)

Z ′
jPYj

Zj − PZj
≺ 0 (22)

Y s′

j PZi
Y s

j − PYj
≺ 0 (23)

are verified ∀ (i, j) ∈ Γ × Γ, then the closed-loop system

(18) is asymptotically stable.

We give an idea of the proof. In the case of arbitrary

switching law, a necessary condition for the asymptotic

stability of the closed-loop system (18) is that each

subsystem is stable. Since for assumption Y s is Schur, from

(19) there exists a value of τM
j such that also the subsystem

Zj is Schur, ∀ j ∈ Γ. In Fig. 3, the system evolution is

shown for Γ = {1, 2}. For the closed-loop system stability,
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Fig. 3. System evolution

TABLE I

BT CONTROLLER DATA

H
H

H
H

j
2 3 4

Dj 64 38 30

τM
j 30 15 6

W u
j I 100I 10I

W
y
j I I I

we also must check that switching among the subsystems

leads to a stable behavior. This is the meaning of the LMIs

(22) and (23). Thus, the conditions of Theorem 2 guarantee

a decreasing trajectory after switching. This is equivalent to

say that the closed-loop system (18) is stable [16].

V. SIMULATION RESULTS

In this section, the strategy proposed in the previous

sections is applied to the Eisenhüttenstadt hot strip mill

(HSM) of ArcelorMittal. The rolling process consists in

crushing a metal strip between two rolls in inverse rotation

for obtaining a strip with constant and desired thickness. A

HSM is the association of several stands in a line, where each

stand is constituted by a set of rolls. The lateral movement

of the strip, with reference to the mill axis, may induce

a decrease of the product quality and rolls damage. Then,

in order to improve the reliability and the process quality,

this displacement must be reduced [6]. At the end of the

treatment, the strip leaves the stands one after the others.

Each time the strip leaves a stand, the system dynamics

changes. The HSM is modeled as a switched system with

four subsystems and three switchings [14]. For each subsys-

tem j ∈ Γ, a different discrete-time state-feedback control

gain Kj has been designed. Given the weighting matrices

Wu, W y and the minimal dwell time Dj for a product of

the HSM database, the choice of the τM
j values summarized

in Table I allow to find a solution for the LMI conditions

of Theorem 2. This guarantees the stability of the closed-

loop system. I denotes an identity matrix of appropriate

dimension. Since the system never switches back to the first

1285 1290 1295 1300 1305 1310 1315

−0.4

−0.2

0

0.2

stand 3

k

u
 

1350 1355 1360 1365 1370
−0.1

−0.05

0

stand 4

k

u
 

1390 1395 1400 1405 1410 1415 1420
−0.02

0

0.02
stand 5

k

u
 

Fig. 4. u
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−20

0

20

stand 4

k

y
 (

m
m

)

1280 1300 1320 1340 1360 1380 1400 1420

−40

−20

0

20
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k

y
 (

m
m

)

Fig. 5. y

subsystem, no BT controller is designed for j = 1.

The signal ubt is computed applying Theorem 1. Equations

(13) and (14) can be solved off-line. At the opposite, to

compute the equation (15) we need to know the xtj−1 value,

where tj is the switching time to the subsystem j. Then, it

can be computed only on-line, at the switching time. Since

the output signal y corresponds to the displacement that has

to be minimized, we choose ỹ = 0. Each stand is controlled

by a different control signal. For the simulated product,

switchings occur at the instants k = 1290, k = 1354 and

k = 1392. In Fig. 4 it is shown the controller output u for

the last three stands. For each stand, we propose a zoom of

the zone corresponding to the biggest bumps on u. The bold

line shows the u evolution without BT control whereas the

thinnest line shows the u evolution when the BT controller

is on. The evolution of the strip displacement y is shown

in Fig. 5. As expected, performances are better when the

BT controller is on (thinnest line). In particular, the strip

displacement in the exit of the system (stand 5 in Fig. 5) is

reduced from 40 to 8mm.

VI. CONCLUSION

In this article, a bumpless transfer method for discrete-

time switched systems has been proposed. The BT controller

has been designed using a LQ optimization method. The

idea consists in forcing the controller output and the plant
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output to follow a desired profile. This allows to avoid the

control signal discontinuities and to improve the system

performances. A LMI criterion guaranteeing the stability of

the closed-loop system is proposed. Simulation tests on the

Eisenhüttenstadt HSM of ArcelorMittal are provided.

APPENDIX I

CONSTRUCTION OF Yj

Consider the switching from the subsystem i to the sub-

system j. From Theorem 1, when the BT controller is on

ubt
k = Qj

τj





xk

ũj
τj

g
j
τj+1



 (24)

where

ũj
τj

= ũ0
j + pjτj (25)

with

ũ0
j = Kixtj−1 (26)

and

pj =
1

τM
j

(Kjxtj
− Kixtj−1). (27)

The evolution of the signal gj in (24) is given by (15),

which can be rewritten as

gj
τj

= Gj,u
τj

ũ0
j + Gj,p

τj
pj (28)

where

Gj,u
τj

= −

τM
j −τj
∑

η=0

(

τM
j +1−η
∏

ζ=τj+1

M
j
ζ

)

Πj
τj+1−ηBj ,

Gj,p
τj

= −

τM
j −τj
∑

η=0

(

τM
j +1−η
∏

ζ=τj+1

M
j
ζ

)

Πj
τj+1−ηBj(τM − η)

and

M j
τj

= A′
j(I − Πj

τj
B̃j)

−1.

The closed form (28) allows to express (15) as a function

of ũ0
j and pj . Then, the system (17) becomes

xk+1 =Ā
j
τj+1xk + (B̄j

τj+1 − BjÑ
j
τj+1G

j,u
τj+1)ũ

0
j+

(τjB̄
j
τj+1 − BjÑ

j
τj+1G

j,p
τj+1)pj

with

Āj
τj

= (I + BjÑ
j
τj

Πj
τj

)Aj

and

B̄j
τj

= Bj(I + Ñ j
τj

Πj
τj

Bj).

When τj = 1, tj = k. Then ũ0
j and pj can be initialized

as function of xk and xk−1. Using (26) and (27), we find

Yj(τj)|τj=1 =











H̄
j
τj+1 L̄

j
τj+1 0 0

I 0 0 0
0 Ki 0 0

Kj

τM
j

− Ki

τM
j

0 0











with

H̄j
τj

= Āj
τj

+
1

τM
j

(B̄j
τj

− BjÑ
j
τj

Gj,p
τj

)Kj

and

L̄j
τj

= (B̄j
τj
−BjÑ

j
τj

Gj,u
τj

)Ki −
1

τM
j

(B̄j
τj
−BjÑ

j
τj

Gj,p
τj

)Ki.

When 2 ≤ τj ≤ τM
j , ũ0

j and pj remains constant. We have

Yj(τj)|2≤τj≤τM
j

=









Ā
j
τj+1 0 Ū

j
τj+1 P̄

j
τj+1

I 0 0 0
0 0 I 0
0 0 0 I









with

Ū j
τj

= B̄j
τj

− BjÑ
j
τj

Gj,u
τj

and

P̄ j
τj

= τjB̄
j
τj

− BjÑ
j
τj

Gj,p
τj

.

When the BT controller is off ubt
k = 0, then

Yj(τj)|τj>τM
j

= Y s
j =















Aj + BjKj 0 · · · 0
I 0 · · · 0
0 · · · 0
...

...

0 · · · 0















is constant ∀ j ∈ Γ.
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