
  

  

Abstract—This paper presents a novel method for identifying 
in real time the mass of an off-road vehicle using measurements 
of sprung and unsprung mass acceleration.  The online estimate 
can be used for vehicle control strategies such as active safety 
control, traction control, and powertrain control.  The online 
estimate is needed for vehicles whose mass varies significantly 
from one loading condition to another.  Existing off-road mass 
estimation strategies that use suspension measurements 
typically require either known suspension force actuation or a 
priori knowledge of terrain characteristics.   

Our unique method for estimating online the mass of an off-
road vehicle addresses existing limitations by applying base-
excitation concepts to make the measured unsprung mass 
acceleration become a known input to the recursive least-
squares estimator.  We present computer simulations to 
demonstrate the method, and conclude that the method 
provides a practical solution for real-time, off-road vehicle 
mass estimation. 

I. INTRODUCTION 
HIS paper presents a novel method for online 
identification of off-road vehicle sprung mass.  This 

estimate of sprung mass is to be used by online vehicle 
control systems including traction control, active safety 
control, and powertrain control systems.  It is especially 
critical for vehicles whose mass varies greatly due to vast 
differences in cargo. 

The literature contains many innovative papers and 
patents that address the problem of vehicle mass 
identification for on-road vehicles.  Mostly, these techniques 
use longitudinal vehicle dynamics for mass identification.  
For discussion of these methods, see [1] and the references 
therein.  Off-road terrain conditions, including the roughness 
of the terrain, rapidly changing road grade, reduced traction, 
and obstacles in the road unfortunately undermine many of 
the assumptions underlying these techniques and, therefore, 
add uncertainties that limit the effectiveness of these on-road 
techniques for use in off-road conditions. 

While off-road terrain conditions limit the effectiveness of 
the longitudinal dynamics for mass identification, the 
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vertical excitation they provide presents opportunities for 
identifying mass via suspension dynamics. 

A few papers discuss ways to identify vehicle parameters 
including sprung mass using suspension dynamics.   

Researchers have developed methods to identify the 
sprung mass when the input to the tire is specified by the 
user or is known prior to estimation, such as when a shaker 
table is used to simulate the ground input.  Lin and Kortüm 
[2] used a four DOF model and a least squares method to 
identify vehicle mass, tire stiffness, and other unknown 
suspension parameters.  Best and Gordon [3] integrated 
suspension dynamics equations to obtain impulse-
momentum equations and used least-squares estimation to 
identify sprung mass.  Shimp [4] derived a polynomial chaos 
expansion representation of a quarter-car model, and 
updated estimation parameters using the MIT rule.   

Other researchers focused on estimating sprung mass from 
identifying the oscillations due to the free (or unforced) 
response of the vehicle.  Tal and Elad [5] recommended 
using Fourier transforms to identify the natural frequency of 
vertical oscillations of the vehicle, then identified sprung 
mass from this knowledge and knowledge of the suspension 
spring stiffness constant. 

Researchers have also exploited knowledge of suspension 
actuator forces in active or semi-active suspensions for 
sprung mass estimation.  In [6], Rajamani et al. obtained an 
estimate of vehicle mass by using an adaptive observer to 
simultaneously obtain estimates of suspension states and 
parameters.  Their method was for active suspensions in 
which a suspension force actuator provided a known forcing 
input.  Ohsaku and Nakai [7] used a method in which they 
measured the pneumatic damping force.  They used a least 
squares estimation method to identify sprung mass. 

Finally, researchers have simultaneously estimated the 
ground input and vehicle mass using dual recursive least-
squares [8].  

This paper presents a novel base-excitation with recursive 
least-squares method that uses two acceleration signals plus 
the suspension spring force/displacement characteristic to 
estimate the sprung mass.  The unsprung mass acceleration, 
instead of the ground displacement or suspension actuator, is 
treated as the system input.  Thus the proposed method 
avoids the requirement of knowing or estimating the ground 
input, and no active suspension is required.  

The remainder of the paper is formatted as follows:  
Section 2 discusses the solution formulation; Section 3 
discusses the simulation set-up; Section 4 presents 
simulation results; Section 5 discusses simulation results, 
and Section 6 provides conclusions and recommendations. 
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II. SOLUTION FORMULATION 
This section introduces the base-excitation model of the 

quarter-car suspension, discusses the filtering of base 
excitation measurements as an alternative to their 
integration, and presents the least-squares sprung mass and 
suspension damping estimation algorithm. 

A. Quarter-car Base-excitation Model 
A common approach to modeling the complex kinematics 

and dynamics of a quarter-car suspension system is to use 
the simplified two degree-of-freedom (DOF) system shown 
in Figure 1.  Researchers (e.g. [9]) have analyzed the validity 
of this simplified model and offered analytical and 
experimental ways to identify the lumped parameters for this 
simplified system. 

 

 
Fig. 1. 2-DOF Quarter-Car Suspension Model. 

 
Using the full 2 DOF model for sprung mass estimation 

requires knowledge of the ground input zg.  Instead, the 
proposed method uses a base-excitation suspension model 
which treats the (measured) unsprung mass acceleration as 
the system input. It is developed as follows.  Consider a free 
body diagram (see Figure 2) of the sprung mass from the 
system shown in Figure 1.  The system equations follow 
from the free body diagram: 
 
 

 0 (1) 

 
Letting x = zs-zu, and moving the last  term to the right-
hand side, the equation becomes as follows: 
 
     (2) 
 

The unsprung mass acceleration  can be viewed as the 
input to the system.    

 
Fig. 2. Sprung Mass Free Body Diagram 
 
 

B.  Filtering of Acceleration Signals 
We would like to be able to use only sprung and unsprung 

acceleration signals for mass identification.  Equation 1, 
however, is also a function of suspension displacement and 
velocity.  In the absence of noise we could simply integrate 
the acceleration signals to obtain displacement and velocity, 
however, even a small amount of signal noise causes the 
integration to quickly drift.  An alternative to directly 
integrating the acceleration signals is to use filtering: 
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where  represents a time domain signal  

filtered by the Laplace domain filter , and Λ s  is a 

polynomial in  such that the filter  is causal: e.g. 
2  where  and  are the filter 

damping ratio and natural frequency.  Equation 3 is no 
longer a function of suspension displacement and velocity.  
Rewriting Equation 3 in a form that is more suited for 
parameter estimation gives the following: 
 
  1

 

 

(4) 

For brevity, Equation 4 will be written as: 
 
    (5) 
 

 

C. Recursive Least-Squares Estimation 
We simultaneously estimate the vehicle sprung mass and 

suspension damping coefficient using recursive least-squares 
estimation.  The recursive least squares estimate is 
calculated by [11] 
 
    (6) 
 
 

1 ,  (7) 

 
where P is a 2 by 2 symmetric covariance matrix and  is 
the least-squares estimate of .  Both P and  require 
initialization (see [11]).  The vectors ,  , and  were 
defined in Equations 4 and 5, and  is an estimate of the 
unknown parameter vector . 
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III. SIMULATION SETUP 

A. Simulation Parameters 
This paper presents simulations of the quarter-car system 

(see Figure 1) using parameter data from an analysis of a 
HMMWV vehicle (see [10]).  The values used in the 
simulation are shown in Table 1.  The suspension damping 
force with respect to velocity was piece-wise linear.  Other 
system components were modeled as linear.  

 

 
 

B.  The Terrain Model 
This work used an autoregressive integrated moving 

average ARIMA(8,1,0) model to simulate an off-road terrain 
profile and to provide a vertical ground input zg to the 
quarter-car simulation.  Kern suggested this type of terrain 
model and gave example ARIMA(8,1,0) coefficients [12].  
A plot of the resulting terrain profile is shown in Figure 3. 

 

 
Fig. 3.  Sample Realization of ARIMA Terrain Profile 
 

IV. SIMULATION RESULTS 
This paper presents simulation results to demonstrate the 

effect of varying a number of simulation parameters 
including the effect of suspension nonlinearities, sensor 
noise, filter tuning, and vehicle speed.  Unless otherwise 
specified, the values for these parameters are as shown in 
Tables 1 and 2.  

  

 
 
The simulation results are illustrated in Figures 4 through 

8.  Figure 4 shows the convergence of the proposed method 
for four cases:  

1. No signal noise and no suspension nonlinearities.  
2. Additive Gaussian white signal noise with standard 

deviation of 0.37 m/s2 (25 dB signal-to-noise ratio) 
and no suspension nonlinearities. 

3.  No signal noise but with piecewise linear suspension 
damping with a damping ratio of 0.24 for extension 
and 0.74 for compression. 

4. Both signal noise with standard deviation 0.37 m/s2 

and piecewise linear suspension damping with a 
damping ratio of 0.24 for extension and 0.74 for 
compression.   

Numerical values corresponding to Figure 4 are given in 
Table 3. 
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TABLE II 
NOMINAL VALUES FOR SIMULATION VARIABLES 

Symbol Description Value Unless Specified 
Below 

Vel Vehicle speed 8 m/s 
Λ s   Filter denominator 2

  Filter natural 
frequency 

6 rad/s 

  Filter damping ratio 0.1 
SNR Signal-to-noise ratio 25 dB 

  Gaussian white noise 
standard deviation 

0.37 m/s2 

 

TABLE I 
QUARTER-CAR SIMULATION AND MODEL PARAMETERS 

Symbol Description Value 

Ts Sampling Period 0.005 s 
ms Vehicle sprung mass 803 kg 
ks Suspension spring 

stiffness 
63,528 N/m

bs,ext Damping coefficient 
for extension 

3,428 N-s/m 

bs,cmp Damping coefficient 
for compression 

10,571 N-s/m 

ζs,ext Damping  ratio for 
extension 

0.24 

ζs,cmp Damping  ratio for 
compression 

0.74 

mu Vehicle unsprung 
mass 

98 kg 

ku Tire stiffness 
coefficient 

204,394 N/m 

bu Tire damping 
coefficient 

0 N-s/m 

P(0) Initial estimator 
covariance matrix 

1000 0
0 1000  

0  Transpose of the 
initial estimate vector 

0 0  

All units are SI: “s” indicates second; “kg” indicates kilogram; “N” 
indicates Newton; and “m” indicates meter. 
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Fig. 4.  Impact of Sensor Noise and Suspension Damper 
Nonlinearity on Estimator Performance   
 
 

 
 
 Figure 5 shows simulation results for varying the filter 
natural frequency  from 1 to 20 rad/s.  The five cases 
shown are as follows:  

1. 1 radians per second 
2. 3 radians per second 
3. 6 radians per second 
4. 10 radians per second 
5. 20 radians per second 

As seen in the figure, if  is too low (signal 1), then the 
estimate tends to drift.  When  is too high (signal 5), the 
estimate becomes less accurate.  For the given simulations, 
the estimate was most accurate for  in the range of 3 to 10 
rad/s.  These values correspond to signals 2-4 in Figure 5.  
Table 4 summarizes the simulation results for varying . 
 

 
Fig. 5: Results of varying the filter natural frequency .   
 

 
 

 In Figure 6, the damping ratio  of the filter Λ s  was 
varied between 0.01 and 0.5.  The five signals shown are for 

1. 0.01 
2. 0.05 
3. 0.1 
4. 0.25 
5. 0.5 

Table 5 summarizes the results for varying . 
 

 
Fig. 6: Results for varying the damping ratio  from 0.01 to 0.5.   
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TABLE IV 
SIMULATION RESULTS FOR VARYING  

 
Mass
(kg) 

Error 
(%) 

Damping
(N‐s/m) 

1 737 8.2%  5602

3  710  11.5%  5634 

6  741  7.6%  5902 

10  713  11.1%  5839 

20  594  26%  4734 

Note: The true sprung mass was 803 kg.  Estimation 
errors are based on estimates after 200 seconds.

TABLE III 
SIMULATION RESULTS CORRESPONDING TO FIGURE 4 

Run  
Mass 
(kg) 

Error 
(%) 

Damping
(N‐s/m) 

1  803  0%  7000

2  781  2.7%  6773 

3  759  5.4%  6075 

4  742  7.6%  5902 

Note: The true sprung mass was 803 kg.  For the 
linear runs (1 and 2), the true Damping was 7000 N‐
s/m.  For runs 3 and 4, the damping was piecewise 
linear.  Estimation errors are computed based on 
mass estimates after 200 seconds. 
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Figure 7 shows the effect of varying the vehicle speed 
between 2 m/s (4.5 mph) and 16 m/s (36 mph).  The five 
results displayed are for  

1. 2 meters per second 
2. 4 meters per second 
3. 8 meters per second 
4. 12 meters per second 
5. 16 meters per second 

For speeds of 8 meters per second and above, the excitation 
to the tire was large enough to cause the tire to leave the 
ground.  For 8 m/s, the tire was off ground for 0.05% of the 
time.  For 12 m/s, the tire was off ground for 0.78% of the 
time, and for 16 m/s, the tire was off ground for 4.45% of 
the time. 
 Table 6 summarizes the results for different longitudinal 
vehicle speeds. 
 
 

 
Fig. 7.  Effect of Vehicle Speed on Estimator Performance 
 
  

 
 
Figure 8 and Table 7 show the effect of varying the 

amount of additive Gaussian white noise on the convergence 
of the proposed method.  The signals used for estimation 
were the acceleration signals of the sprung and unsprung 
masses.  The signal-to-noise ratio (SNR) in decibels was 
calculated by the following equation:  

 

 20
 
 20   

 
where  is the sample standard deviation of the signal, 
and  is the standard deviation of the noise.  The second 
equality holds when both the signal and noise are zero mean.  
 We ran simulations for signal-to-noise ratios between 
infinite (no noise) and 15 dB.  The five runs displayed are as 
follows: 

1. No noise 
2. 30 decibels signal-to-noise ratio 
3. 25 decibels signal-to-noise ratio 
4. 20 decibels signal-to-noise ratio 
5. 15 decibels signal-to-noise ratio 

Figure 8 shows that as the amount of noise increased, the 
accuracy decreased. 
 

 
Fig. 8. Impact of Sensor Noise on Estimator Performance  
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TABLE VI 
SIMULATION RESULTS FOR VARYING VEHICLE SPEED 

Vehicle 
Speed 

Mass
(kg) 

Error 
(%) 

Damping
(N‐s/m) 

2 m/s 786 2.2%  6697

4 m/s  775  6.5%  6493 

8 m/s  741  7.6%  5900 

12 m/s  770  4.1%  6241 

16 m/s  750  6.6%  6011 

The true sprung mass was 803 kg.  Errors 
correspond to estimates at 200 seconds. 

TABLE V 
SIMULATION RESULTS FOR VARYING  

 
Mass 
(kg) 

Error 
(%) 

Damping
(N‐s/m) 

0.01  709  11.8%  5173

0.05  740  7.9%  5846 

0.1  741  7.6%  5902 

0.25  720  10.4%  5737 

0.5  680  15.3%  5394 

The true sprung mass was 803 kg.  Errors 
correspond to estimates at 200 seconds. 
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V. DISCUSSION OF RESULTS 
For a typical case, such as Run 4 of Figure 4 and Table 3, 

the estimate of vehicle mass converged to within 8% of the 
true value in less than 100 seconds.   

An important point to note from Figure 4 is that for the 
linear suspension model with noiseless signals (signal 
marked “1”), the proposed method converged to the exact 
values of sprung mass and suspension damping illustrating 
the fact that the filtering method of Equation 3 is an exact 
equation.  Thus by filtering, we were indeed able to remove 
the need of directly measuring the suspension velocity and 
displacement signals.   

The proposed method was sensitive to tuning the filter 
Λ s  parameters  and .  Filtering eliminates the need for 
integrating the acceleration measurements to obtain 
suspension velocity and displacement signals.  Lower values 
of  and  cause the filter to respond like an 
integrator/double integrator over a broader range of 
frequencies.  However, if the values of  and  are chosen 
to be too low, they cause the filtered signals to drift resulting 
in inaccurate estimates.  Such cases are illustrated by Run 5 
in Figures 5 and 6 and Tables 4 and 5.  A good range for  
was found to be between 3 and 10 radians per second, and a 
good range for  was found to be between 0.05 and 0.25. 

Finally, the sprung mass estimate degrades almost 
proportionally to the amount of sensor noise as seen in 
Figure 8 and Table 7. 

 

VI. CONCLUSIONS 
This paper has introduced a novel method of estimating 

vehicle mass using only sprung and unsprung mass 
acceleration signals and has demonstrated its effectiveness 
via simulation.  The method required no a priori knowledge 
of ground input and no suspension force actuator.  The 
method was derived from a base-excitation model of a 
quarter-car suspension, making the unsprung mass 
acceleration a measured system input.  Estimates of 
suspension velocity and displacement were obtained via 
filtering.  A second order, recursive, least-squares estimator 
was used to simultaneously estimate vehicle sprung mass 
and (average) damping coefficient.  The sprung mass 

estimates typically converged to within 8% of the true value 
in less than 100 seconds. 

The proposed method was sensitive to filter parameters 
and signal noise.  However, simulation results suggest that 
the proposed estimator may prove viable for practical sprung 
mass estimation in off-road vehicles using inexpensive 
instrumentation.  Ongoing work considers using a recursive 
total least squares estimator, which accounts for both 
regressor and signal noise, and is therefore expected to 
perform better than the least squares method.  Also, ongoing 
work is directed towards further validation of the proposed 
estimator using higher-fidelity validation models and 
experimental data.  
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TABLE VII 
SIMULATION RESULTS CORRESPONDING TO FIGURE 8 

SNR* 
Mass 
(kg) 

Error 
(%) 

Damping
(N‐s/m) 

Infinite  759  5.4%  6075

30 dB  751  6.5%  5990 

25 dB  741  7.6%  5902 

20 dB  718  10.6%  5653 

15 dB  665  17.2%  5100 

*Signal‐to‐noise ratio.  The true sprung mass was 
803 kg.  Errors correspond to estimates at 200s. 
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