
 

 

 

Fine and simplified dynamic modelling of complex hydraulic systems 
Wilber Acuna-Bravo, Enrico Canuto, Stefano Malan, Davide Colombo, Marco Forestello and Riccardo Morselli

Abstract— This paper deals with the dynamic modelling of a 
complex electro-hydraulic system. Modelling is based on 
physical laws and the system knowledge. The main idea is to 
obtain a simple and reliable model that can be used for 
controller synthesis and implementation by using the 
architecture of Embedded Model Control. Simplifications are 
made by taking as basis the ideas of singular perturbation. A 
subsequent identification procedure is made in order to acquire 
some important parameters, required for carrying out a 
simulation. 

I.  INTRODUCTION 
 Model building is a constant issue in control engineering 
since it is needed for many different tasks, such as analysis, 
control design, training, etc. The accuracy level relies on the 
type of application it is intended for. 
The paper is concerned with fine and simplified modelling 
of hydraulic systems in view of control design and testing. 
The adopted approach follows the framework of the 
Embedded Model Control given in [1]. In this approach the 
control law is designed and implemented around a discrete-
time simplified dynamics of the plant to be controlled, 
enhanced with the uncertainty dynamics to be rejected to 
guarantee performance. The problem of model simplification 
is well known in the control literature, where the main goal 
is to look for efficient algorithms capable of reducing the 
dynamics within a specified bound of the modelling error 
between the complex and the simplified model under the 
same class of commands. Different techniques have been 
proposed: singular perturbations, singular values, etc., all of 
them addressing linear dynamics. 
Here a rather different approach is followed from two 
different standpoints. The so called ‘true’ model, here called 
‘fine model’, which for complex hydraulic systems is 
usually assembled from standard component models and 
commercial packages like AMESIM, is studied for each 
component to enhance the dynamics within a frequency 
bandwidth, which is sufficiently larger than the target 
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control bandwidth. Under this approach a simplified model 
version is obtained, which is referred as ‘neglected 
dynamics’ in [1] also called unstructured uncertainties in 
control literature. This is not an easy task, since component 
data from manufacturers do not care for dynamics but very 
often only for static performance, especially when the 
system includes hydraulic compensation devices designed 
and arranged to ensure them. On the other hand, such models 
do not need to be very accurate, say to know exact time or 
frequency responses, especially when their dynamics are 
expected to lie beyond the target control bandwidth. Usually, 
as it will be shown, a triple of dynamics have to be 
accounted for, namely, mass dynamics of the moving parts 
of valves, distributors, pumps, usually of the second order, 
pressure dynamics (continuity equation) of the lumped 
hydraulic capacities of each device; hydraulic links, of 
accumulators, usually first order dynamics, and finally 
electromechanical dynamics of driving solenoids when 
appropriate. The pressure dynamics is usually interconnected 
to mass dynamics through the flow permitted by the moving 
parts, where pressure enters in a nonlinear way if flow 
becomes turbulent. Solenoid dynamics is usually the fastest 
one, being regulated by appropriate electronics. The result is 
a set of nonlinear state equations with their working 
conditions and limits, where state variables are position, 
velocity, pressure, current; commands are solenoid driving 
voltage; measurements are pressures, flows, currents; 
disturbances are leakages, flows, discharge pressures, 
frictions, etc. An equilibrium point is then looked for, not for 
dynamic linearization but to fix the intermediate point of the 
different variables, for instance zero-hydraulic positions, and 
their working limits. 
Simplification method looks very similar to singular 
perturbation method [2][3] and may be facilitated to certain 
extent by hydraulic systems to be designed as the 
interconnection of well defined lumped dynamics. As a 
baseline when cut-off frequencies (or eigenvalues) of a set of 
equations are outside a pre-specified bandwidth, equations 
are reduced to be static by zeroing the derivative term on the 
LHS of the equations. From a hydro-mechanical standpoint 
it corresponds to assume negligible fluid volume variation 

/i i ip V β  [m3/s] due to pressure rate /i iV β , where iV  is the 
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capacitance volume, 1 / iβ  the fluid compressibility; to 
assume small inertia forces k km x  of the moving parts under 
the balance of hydraulic, visco-elastic and solenoid forces or 
to assume a small current error rate ( ) /refd I I dt− . This 
method assumes weak interconnection between different 
dynamics, which may not occur and therefore must be 
carefully examined by frequency or modal analysis of the 
overall equations or part of them.  
The paper is organized as follows, section 2 is devoted to 
system description and problem statement; section 3 boards 
the development of a fine model for the system under study. 
Sections 4 and 5 deal with the simplification of the complex 
obtained model, as well as the transfer function analysis; 
section 6 considers an identification process of some 
parameters. Finally some conclusions are presented.  

II.  PLANT DESCRIPTION 
A. The hydraulic circuit 
The plant under study is a subset of a more complex 
hydraulic circuit supplying loads to off-highway vehicles. 
The essential elements of the network shown in Fig. 1 are  
1) an axial-piston variable pump driven by an electro-

hydraulic actuator, 
2) a set of relief valves to limit pressure in the circuit, 
3) the hydraulic load, composed by several parallel loads, 

part of them to be continuously supplied (priority loads) 
and part of them on demand,  

4) a load-sensing control system, not represented in Fig. 1, 
fed by load measurements and in charge of regulating 
the pump flow according to load demand.  

The paper will restrict to the sole pump and the electro-
hydraulic actuator, while the load is simplified to be a 
passive pressure drop device as in Fig. 1 (port B).  

B. The pump 
The pump is an axial-piston variable type (see Fig. 2), the 
flow being varied by tilting a swash plate against a bias 
spring with stiffness bK . The plate tilting and the subsequent 
flow regulation may be obtained in two ways: 
1) active regulation: the plate tilt is measured by a suitable 

sensor and fed to a control loop commanding the 
electro-hydraulic actuators [4][5]; 

2) mechanical feedback: the hydraulic actuator stroke ax  
(the pilot cylinder in Fig. 2) is servoed to the spool 
position cx  of a proportional valve by means of an 
elastic link (the feedback spring in Fig. 2) having 
stiffness aK .  

The second (passive) solution is more compact and robust as 
the sensor becomes useless and only one pilot cylinder may 
be employed. Careful design ensures the pump flow pQ  to 
be proportional to the current si  of the pilot solenoid, under 
steady state conditions, less some hysteresis due to friction.  
The goal of the paper is to derive the state equations of the 
pump and the actuator (fine model) and then to simplify 
them (design LTI model) within the bandwidth required by 
the load-sensing control.  
A complete derivation of the open-loop pump dynamics, 
starting from the dynamics of each pump piston, can be 
found in the literature [6][7][8]. As shall be proved, pump 
dynamics is not the core of the target model, due to 
mechanical feedback which replaces the pump closed-loop 
and therefore simplifies current to flow dynamics.  

III.  FINE MODEL 
A. Mechanical equivalence 
The mechanical chain from solenoid to plate can be 
represented as in Fig. 3 by masses and springs. Hydraulics 
enters through the pressure forces. 

Relief valves

Hydraulic actuator

Axial‐ piston 
variable pump

Pilot cylinder Pilot valve Pilot solenoid

Load

Mechanical feedback

 
Fig. 1. Essential hydraulic circuit. 
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Fig. 2. Basic axial pump diagram. 
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Modelling assumptions are: 
1) electrodynamics of the solenoid is neglected, under 

assumption of a suitable current regulator, with 
bandwidth better than 1 kHz, 

2) each body is considered as a second order mass-spring 
system with position and rate as state variables; 

3) rigidly connected elements as plate and actuator body 
will be reduced to a single body; 

4) equations are given in a variational way with respect to 
a well specific equilibrium condition corresponding to 
zero spool position, namely 0cx = , and the central plate 
position, defined by the zero actuator stroke, i.e. 0ax = . 
note the resulting equations are not small variation 
equations, but large variations, holding in the whole 
range of the state variables. 

cAx

d lS Pγ
(disc)
Cradle

Actuator Spool
s sIϕ

,c cX v,a aX vdα

0,a aK F

aR cR

0,b bK F

bR

a aS P

,maxcx−

(piston)

0,c cK F
0,c cK F

 
Fig. 3. Mechanical equivalent 

At the end a state equation system of the sixth order is 
obtained, driven by the solenoid current si  and the pump 
discharge pressure lP , in the following referred to as line 
pressure. 
B. Spool equation 
According to sign conventions in Fig. 3 and the above 
guidelines, the second order spool equation is given by 

 
( ) ( ) ( )

( ) 0 ,max ,max max max

,

0 , ,
c c c c c c a c a a s s

c c c c c s

m x t A x x K K x K x i

x x x x x I i I

ϕ= − − + − +

= − ≤ ≤ − ≤ ≤
 (1) 

where cx  is the spool displacement,  cm  the spool mass, 
c aK K<<  the stiffness of the bias spring defining the spool 

rest position ,maxcx− . Finally, cA  accounts for friction and 
fluid forces, whereas sϕ  is the solenoid electro-mechanical 
constant. The symmetric current range defined by maxI  is the 
flow regulating range, corresponding to the actual current 
range 
 min min max min max0 2s sI I I i I I I< ≤ = + + ≤ + . (2) 
The current region below minI  is used to move the spool in 
the regulation range, an issue not treated here. 
C. Actuator equations 
As the pilot cylinder body is assumed to be rigidly 
connected to the swash plate through a spherical joint, only 
the hydraulic equation is considered here. Denote the current 
hydraulic volume with aV  and the active area with aS ; 
neglecting leakages, the continuity equation is written in 
terms of the total actuator internal pressure aP  as follows 

 ( ) ( ) ( ) ,  0,a a a a a
a

P t Q t S x t P
V
β

= − + ≥    (3) 

where β  is the compressibility coefficient and aQ  is the 
input/output flow, which is assumed as positive when going 
out [5]. Equation (3) must be completed with the flow 
equations  

 

( ) ( )
( )
( ) ( )

,

,

,  0, 0

0,  0

,  0, 0

2 / ,

a a in a c l a c l a

a c

a a out a c a c a

a a

Q t Q t x P P x P P

Q t x

Q t Q t x P x P

h

µ

µ

µ ρ

= = − < − ≥

= =

= = > ≥

=

 (4) 

where ρ  is the fluid density and ah  is the equivalent height 
of the orifice, assumed constant at any cx . Note the flow aQ  
is assumed to be proportional to the spool displacement cx  
which may be approximate at the extremes of the spool 
stroke. Note further the flow is zero for 0cx = . 
D. Plate dynamics 
As was already said, a simplified equation of the plate 
dynamics is reported, which is however coherent with the 
simplified equations reported in the literature [8]. By 
assuming actuator and plate rigidly connected, a single 
equation may be written, and directly in the actuator stroke 

ax , which is proportional to plate tilt dα  through the 
kinematic link  
 a d dx lα= , (5) 
with dl  being the actuator arm. Then, the force balance on 
the actuator and plate ensemble reads 

( ) ( ) ( )
,max ,max

,a a a a a b a a a c a a l d

a a a

m x t A x x K x K x x p S p S
x x x

= − − − + − −

− ≤ ≤
 (6) 

where aA  accounts for friction and fluid forces, am  is the 
equivalent mass of the ensemble and d aS S<<  is the total 
active area of the line pressure in the pump pistons, 
generating a force over the swash plate. Equation (6) being a 
variation equation in ax , has been written in terms of the 
pressure variations  
 ,  a a a l l lp P P p P P= − = −  (7), 
where the fixed pressures ,a lP P  are defined by the bias 
spring preload.  
E. Pump output dynamics 
The swash plate tilting allows to express the discharge fluid 
volume as proportional to dα  and then to ax . The rotation 
of the tilted pistons allows expressing flow as proportional to 
shaft angular frequency ( ) 12p pf ω π −=  in Hertz units, pω   
being the shaft angular rate. At the end, the pump flow 
equation can be written as follows, 

 ( ) ( ) ( )
,max

1
2

a
p p p p p

a

x t
Q t V f Q q t

x
 

= + = +  
 

 (8) 

i.e. as the sum of the mean flow pQ  and its variation ( )pq t .  
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Fig. 4. Block scheme of the simplified model. 

F. Load dynamics 
Load dynamics may be very complex; here it is assumed a 
single fluid volume lV  at the line pressure lP  supplied by 
the pump flow, and discharged by a variable flow depending 
on lP . Actually, the output flow must be complemented with 
the actuator input flow ,a inQ  only existing when 0.cx ≤ The 
corresponding equation holds 

 
( )( )

( )( )

1/

1/

,  0

,  0,

u

u

l p a u u l u c
l

l p u u l u c
l

P Q Q P P x
V

P Q P P x
V

γ

γ

β µ ξ

β µ ξ

= + − − <

= − − ≥
 (9) 

where the output flow may be driven by the load pressure 
u lP P≤  and/or the aperture degree 0 1uξ≤ ≤ , and 

1 2uγ≤ ≤ . 

IV.  SIMPLIFIED MODEL 
The methodology followed here takes advantage of the so 
called singular perturbation method [2][3][9], that averages 
state variables, inputs and outputs over a given time period 
T . To this end, small parameters, denoted as Tε τ= , pre-
multiplying the n -th derivative (for example, 1n =  for the 
case of continuity equations and 2n =  in case of mass-
spring equations), make them so small to be approximated to 
zero, except along small time intervals comparable with τ , 
playing the role of a time constant. Moreover, 

/ 5 msc c cm Kτ = ≤  holds for the spool equation, 
( )/ / 0.1 msa a a aV Q Pτ β= ×∂ ∂ ≤  for the actuator hydraulics 

and / 5 msb a bm Kτ = ≤  for the plate equation. Roughly 
speaking, if the load-sensing control averages over times 
longer than 50 msT = , the above dynamics can be 
neglected, with an error that can be evaluated by the 
perturbation method. 
A. Spool dynamics 
Singular perturbation applied to equation (1) and 

c aK K<< provides 

 s s
c a

a

i
x x

K
ϕ

= − , (10) 

showing the spool position playing the role of the control 
error between the current command and the actuator 
displacement; since 0cx =  at steady state condition, from 
equation (10) ax  is proportional to si and pump flow 
variation pq  in equation (8) can be rewritten as  

 ( )
max

s
p p p

i
q t V f

I
= , (11) 

which is the standard form of the linear pump characteristics. 
B. Actuator and plate equation 
Singular perturbation applied to equations (3) and (6) 
provides 

 
/a a a

b a s s l d b a s s
a

a a

x Q S
K x i p S K x i

p
S S

ϕ ϕ
=

+ + +
= − −

, (12) 

where second equation relates the actuator pressure to 
command and actuator displacement.  
C. Load equation 
Assuming for simplicity 1uγ =  in (9), and pq  from (8), the 
load equation holds 

 
( )( )

( )( )

,  0

,  0

l p a a a u u l u c
l

l p a u u l u c
l

p b x S x p p x
V

p b x p p x
V

β µ ξ

β µ ξ

= + − − <

= − − ≥
 (13) 

where ,maxp p p ab V f x= and lP  defines the equilibrium for 
a constant uP .  
The block diagram for this simplified version of model is 
depicted in Fig. 4. 

V.  TRANSFER FUNCTION ANALYSIS 
As a next step, a transfer function synthesis is done. As can 
be seen from equations (10)-(13), the simplified model 
remains non-linear for variations of aP  and lP , more 
specifically the signal aQ  is a non-linear function of the 
difference between the line and actuator pressure, whom in 
turn depends on the variation of spool position cx . Once 

∫s

aK
ϕsi

,max

p p

a

V f
x

cx ax
( )a cP xµ ∆

lqax

−

1

aS

aQ

lp

ax

0cx ≤

pq

lV
β

∫

u uµ ξ

lp

−

up

−

lp

ap
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again an analysis for each condition of cx  (positive or 
negative) must be done. 
The linearization procedure is based on fixating the 
variations of signals with respect to their nominal values. 
i.e., taking the functions aP  or l aP P− as a fixed 
parameter. 
A. Positive error 0cx >  

This situation corresponds to an increase of pump output 
flow, it means, there is no feedback flow to the pilot valve.  
From (10)-(13) and replacing the pilot valve flow (4), the 
linear system is given by 

0 0

0

0 1
0

a a a a s

a a sa a a

l l up u uu u

ll l

l a

pl l

P P
x x iS S K
p p pb

VV V

p x
bq p

µ µ ϕ

β βµ ξβµ ξ

   
 −  

        = +                −
     
    

=     
    
  (14) 
where lq  is the line flow (see Fig. 4). 
B. Negative error 0cx <  

This situation corresponds to a drop in the output pump 
flow. Additionally there is a flow request from the pilot 
valve, in order to reach a minimum pressure level to reduce 
the plate inclination. By following same guidelines as for 

0cx > , the linear state space is given by 

 

( )

0

0

0 0
0 1

,
0 0

a

a aa

l lp u u
p a

l l

a s

a a s

ua s u u

l a l

l a s
a s

l l up a
a

P
x xS
p p

b P
V V

P
S K i

pP
V K V

p x i
Pq p pb P

K

µ

β βµ ξ
µ

µ ϕ

βµ ϕ βµ ξ

µ ϕ
µ

 ∆
− 

    = +        − ∆ −
  

 ∆
 

  +   
 ∆ 

  
 

       
= +  ∆      − ∆         

 

(15) 

where l aP P P∆ = − .  
The matrix transfer function of systems (14) and (15) is 

( )
( ) ( )
( )( )( )

( ) ( )
( )( )

, ,

,
,

, ,
0

,

p l a z c u u

l u ua a p l a l u u

p l a z c

a a p l a

G s

f P P f s x
sVsS f P P sV

f P P f s x

sS f P P

ηβ βµ ξ
βµ ξµ βµ ξ

η

µ

=

 
 

++ + 
 =
 
 

+  

 (16) 

where s  stands for the Laplace variable, a s aKη µ ϕ=  and 
the functions 

 ( )
, 0

,
,  0

p c
z c

p a c

b x
f s x

b sS x
>=  + <

 (17) 

 ( ) , 0
,

,  0.
a c

p l a

l a c

P x
f P P

P P x

 >= 
− <

 (18) 

It is worth noting that transfer function given by (16) is valid 
for the non linear system as well; more exactly this 
approximation is valid in the case of small variations of 
terms ap  and lp . 
Function (17) reveals the existence of a zero when there is a 
flow drop in the pump. A further analysis to this fact reflects 
a time constant of the zero around 10 mszτ ≈ , which can be 
considered negligible with respect to predominant dynamics 
within the system. 
In order to complete the modelling process, some parameters 
must be estimated. To this aim, an identification process is 
effectuated, regarding, for a first instance, only the path from 

si  to lq , that is to say the element 2,1 of matrix (16). The 
proposed model obeys to a first order delayed system, i.e., 

 ( ) ( ) 0
21 ,

1
d dst st

id
GG s G s e e

sτ
− −= =

+
 (19) 

with ,dt τ  the time delay and time constant respectively and 
0G  corresponds to the DC gain. Note that the time delay dt  

(not present in model (16)) is added just to better fit the 
acquired data and it is due not only to the neglected 
dynamics but mainly to signal transmission delays and 
sensor delays of the experimental setting. The estimation 
procedure is based on a non linear least square optimisation 
process. 
As a first step in the identification, it is necessary to acquire 
the seed for the optimisation process. This initial information 
is obtained from the data of tests made over the plant. This 
identification process is effectuated only for the growing 
flow zone, i.e., 0cx > . 
The cost function to be minimized is given by  

 ( )2

, ,
1

,
N

l m l i
i

J q q
=

= −∑  (20) 

where terms , ,,l m l iq q are the measured and estimated flow 
respectively. The estimated flow is generated in the search 
process by evaluating the estimated parameters into (19). It 
should be clarified that the data set is finite and discrete, 
however, it is being evaluated in the continuous time transfer 
function (19) in order to generate the required sequence ,l iq . 
The used optimisation algorithm is called Nelder-Mead 
simplex search method and it is codified in Matlab under the 
fminsearch() function name. From the identification 
process, applied to nine different data sets of acquired 
signals, parameters value and uncertainty are obtained: 
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 0 100 0.7, 100 2 ms, 55 5.5 ms.dG tτ= ± = ± = ±   

VI.  SIMULATION RESULTS 
In order to show the effectiveness of the obtained models, 
some simulations were carried on and compared with the 
acquired data. 
Fig. 5 shows simulation results of the optimization process 
of Section V. , for one data set, and of the simplified model 
described in the block scheme of Fig. 4 of Section IV. Dash 
dotted and solid lines correspond to measured current input 
and measured flow output respectively. Dashed line 
represents the simulated flow output obtained at the end of 
the optimization procedure, while dotted line represents the 
simulated flow output obtained from block scheme of Fig. 4. 
Note that all these signals are normalized, for the sake of 
confidentiality, and that the measured signals are filtered in 
order to eliminate the dither contribution. 
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Fig. 5. Pump responses, measured and identified. 

Moreover, Fig. 6 presents the final estimation error 
( ) ( ) ( ), ,e l m l ie t q t q t= −  obtained.  

As can be seen, the distance between the responses is small 
enough as to be accepted the parameters. The variations 
observed in the plot, are mainly due to quantization effects 
within the measured signal. 

VII.  CONCLUSIONS 
In this note, a modelling process of a complex hydraulic 
system has been shown. The system under study is highly 
complex and non-linear, however as a first step just the basic 
feeding component has been analyzed, with a subsequent 
simplification of the obtained model. 
A key issue in this modelling process relies in the load 
attached to the pump, since this load may affect in a large 
extent the general system behaviour. Even though in the real 
system the load is composed of a set of mechanic-hydraulic 
elements such as non-return valves or load distributors, most 

of them with a local compensation, in the procedure shown 
here, for the sake of simplicity this load system has been 
assumed to be a pressure drop. The called fine model has 
been obtained from the physical system behaviour, together 
with the analysis of preloaded equilibriums. Once this fine 
model was presented, a simplified version was obtained, 
turning into a local linearized system model, that anyway 
shows a time behaviour strictly fitting actual acquired data. 
At the end of the paper a simple identification process was 
presented, with the purpose of acquire some important 
parameters required to complete the system modelling. 
Future work will be devoted to the analysis and modelling of 
the load system, as well as the corresponding simulation of 
the obtained model. 
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Fig. 6. Estimation error 
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