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Abstract— The continuous controllability Gramian is the
solution of an input Lyapunov equation in the controller
(companion) form or equivalently the infinite integral of an
outer product of a vector containing the impulse response and
its derivatives corresponding to a unity numerator transfer
function. In this paper we make use of both these viewpoints in
order to derive the simple zero plaid structure of this Gramian
and present the interesting links that the entries of the Gramian
have to the entries of the Routh table. Moreover, an expression
for the inverse of the Gramian is derived as a simple function
of the coefficients of the characteristic polynomial from the fact
that it is the solution of a Riccati equation.

We show how the controllability Gramian forms the core
part of closed form expressions of Gramians of more general
MIMO systems as well as solutions of general Sylvester equa-
tions. The controllability Gramian also appears in certain zero
optimization problems, either in a PID like controller setting or
in a model reduction setting. The inverse of the controllability
Gramian is a key element in such zero optimization.

While much of the results presented can be found in closely
related forms in published papers, we believe that they deserve
more attention as an effective tool in numerical computations
of small to mid-size systems.

I. INTRODUCTION

There exists extensive literature within the fields of or-
dinary differential equations, difference equations, matrix
theory and Laplace transforms on closed form expressions.
The majority of such results, however, predates the computer
era, and is not presented in a form that has onus on
efficient algorithmic implementations. This fact, somewhat
surprisingly, is still reflected in modern textbooks, e.g., in
control theory, in the area of signals and systems as well as
in mathematics. In these textbooks, the corresponding types
of results are presented in a restrictive setting, with little or no
attention to how they could be implemented in general algo-
rithms. Computer algorithms that have been developed over
recent decades, e.g., within control theory and mathematics,
on the other hand, are often based on general approaches
to numerical solutions of ordinary differential equations and
linear equations that do not make specific use of the structure
that lies in the closed form expressions.

Naturally, much attention has been given to numerical
methods during the past decades with the rapid devel-
opment of fast computers[1],[2]. Those generally provide
approximate solutions which are often applicable to large
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systems, see e.g., [3] regarding the computation of matrix
exponentials and [4] and [5] regarding the solutions of Lya-
punov equations. Despite the effectiveness and advantages of
such numerical methods, closed form time domain solutions
nevertheless provide direct, easy and accurate computation
for small to mid-size systems. Further, closed form solutions
open a window of opportunities definitely worth exploring,
e.g. in the control area for the design of controllers and
model reduction, both in their own right for small to mid-size
systems and by combining them with numerical methods for
large systems.

In this paper we focus on closed form expressions of
continuous Gramians. Within this area there are in fact
some recent papers that present closed form expressions for
symbolic computation[6],[7] or parametric presentation of
solutions[8],[9]. Three pioneering papers[10],[11],[12] deal
with numerical algorithmic aspects. While the work in these
papers was followed up in [13] and [14], it seems however
to have received relatively little attention. The controllability
Gramian forms the core part of closed form expressions for
Gramians of more general MIMO systems. It also appears
in certain zero optimization problems, either in a PID like
controller setting or in a model reduction setting[15]-[18].
Thus it is important to make use of the special zero-plaid
Hankel like structure that it turns out to have, also referred
to as alternating Hankel in [6] and a Xiao matrix in [12].

The structure can be derived directly from the Lyapunov
equations that they satisfy[10],[12],[14]. However, it is also
advantageous to view the controllability Gramian as the
infinite integral of an outer product of a vector containing
the impulse response and its derivatives corresponding to
a unity numerator transfer function. Naturally, we can also
view the impulse response as an initial value problem of
a homogeneous (unforced) differential equation having only
the (n − 1)-th derivative nonzero, i.e., unity. Closed form
expressions for Gramians were derived in [19] from this
viewpoint involving the eigenvalues of A, the partial fraction
coefficients of the unity numerator transfer function, as
well as the coefficients of the characteristic polynomial.
In this paper the relationship between both viewpoints is
exploited in order to derive and clarify the structure of
the controllability Gramian. By making use of the corre-
sponding Lyapunov equation, the derived expression for the
controllability Gramian only involves the coefficients of the
characteristic polynomial even if the focus remains on the
impulse response and its properties. An elementary argument
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for the link between general Gramians and the controllability
Gramian is also presented. Some initial results along these
lines were presented in [20]. The Hankel-like structure of
the controllability Gramian suggests the existence of some
regular pattern for its inverse. It is also suggested by [21]
where a formula for the discrete controllability Gramian is
derived which is expressed as an inverse of a form based
on the coefficients of the companion matrix. Here a formula
for the inverse of the controllability Gramian is obtained by
an elementary derivation from the Riccati equation that it
satisfies, involving only the coefficients of the underlying
companion matrix, along with a computationally efficient
recursive procedure for the evaluation of its elements. An
alternative presentation of the formula relates it to the
Gohberg-Semencul formulas as well as a number of related
formulations of inverses of Hankel matrices, see e.g. [22]
and [23].

The link between expressions of the controllability
Gramian and the general MIMO Gramians is presented in
section II. The zero-plaid structure of the controllability
Gramian is derived in section III from the properties of the
impulse response. Moreover, it is shown how its elements are
effectively determined from the coefficients of the character-
istic polynomial for A, revealing an interesting link to the
entries of the Routh table, a result originally derived in [10].
The derivation of the inverse of the controllability Gramian
from its underlying Riccati equation is contained in section
IV. Some concluding remarks can be found in section V.

II. RELATIONSHIP BETWEEN THE CONTROLLABILITY
GRAMIAN AND GENERAL GRAMIANS

Consider the general state space representation of MIMO
systems in the minimal form given by

ẋ = Ax+Bu
y = Cx

(1)

where A is an n× n matrix, B is n× p and C is r × n.
The matrix A has the characteristic equation det(sI −A) =∑n

i=0 ais
i = 0 where an = 1 and the rest of the a′is are real

numbers.
Now consider the continuous time Lyapunov equation

AP + PAH +BBH = 0. (2)

For a real symmetric BBH , this equation has a unique, real
symmetric solution an n × n matrix P iff no sum of any
two eigenvalues of A is zero (thus no eigenvalue of A is
zero)[24].

Remark 1: Consider the indefinite integral

Z(t) =
∫
etABBHetAH

dt (3)

which does not hold any constant terms. Then

AZ(t) + Z(t)AH =
∫

d
dt

(
etABBHetAH

)
dt

= etABBHetAH

+ C,
(4)

where C is a constant matrix. If no sum of any two
eigenvalues of A is zero then

∫
d
dt

(
etABBHetAH

)
dt does

not contain any constant terms and hence C = 0. It then
follows that

P = −Z(0) (5)

in this general case.
For a strictly stable A, the solution is the positive semidef-

inite input Gramian

P =
∫ ∞

0

etABBHetAH

dt. (6)

If in addition (A,B) is controllable, then P is positive
definite (P > 0).

Now assume that p = 1. Let (Ac, Bc) denote the controller
(companion) form, i.e.,

Ac =
[

0(n−1)×1 I(n−1)×(n−1)

−a0 −a1 · · · − an−1

]
(7)

and
Bc = ue =

[
0 0 · · · 1

]′
. (8)

Note that the transpose ′ is used for real valued entities in
place of the complex conjugate transpose H where applica-
ble. We shall refer to

P c =
∫ ∞

0

etAc

ueue
′etAc

′

dt (9)

which satisfies the Lyapunov equation

AcP c + P cAc
′
+ ueu

′

e = 0 (10)

as the controllability Gramian.
We now present an elementary derivation of how P can

be calculated from P c. If we have a nonsingular similarity
matrix T c such that

AT c = T cAc and B = T cBc, (11)

using (10) and (11) we obtain

AT cP c (T c)H + T cP c (T c)H
AH +BBH = 0 (12)

and hence from (2) that

P = T cP c (T c)H
. (13)

The similarity transformation T c to the controller form
can be derived as follows, where tc·i denotes the i-th column
of T c. We have[26]

AT c =
[
Atc·1 Atc·2 · · · Atc·n

]
, (14)

T cAc =
[
−a0t

c
·n tc·1 − a1t

c
·n tc·2 − a2t

c
·n · · ·

· · · tc·(n−1) − an−1t
c
·n

]
(15)

and
B = T cBc = T c

[
0 · · · 0 1

]′
= tc·n (16)

It then follows directly from (11) that

tc·n = B
tc·(n−1) = AB + an−1B

tc·(n−2) = Atc·(n−1) + an−2B
...

tc·2 = Atc·3 + a2B
tc·1 = Atc·2 + a1B.

(17)
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This recurrence can also easily be derived from the Faddeeva
algorithm (see e.g. [25]) and can also be expressed as

T c = CHu (18)

where

Hu =


a1 a2 · · · an−1 1
a2 1
...

an−1 1 0
1

 (19)

is an upper Hankel matrix and

C =
[
B AB · · · An−1B

]
(20)

is the controllability matrix. Thus, if we know P c, we can
readily compute P from (13) and (17).

Remark 2: The following expression is derived for the
input Gramian P in [20]:

P =
n−1∑
i=0

n−1∑
j=0

πijA
iBBH

(
AH
)j

(21)

based on a closed form polynomial expression for etA. Here,

πij = ã
′

i+1P
cãj+1, (22)

where ãi denotes the i-th column vector of the Hu matrix.
We can form a matrix from the scalars πij

Π = {πij}n×n = HuP
cHu (23)

and then we can rewrite (21) as

P = CΠCH = CHuP
cHuCH (24)

which agrees with (13) and (18). In the general multiple input
(MI) case where p ≥ 1 we may likewise express

P = CΠ⊗ IpCH = CHuP
cHu ⊗ IpCH , (25)

where ⊗ is the direct matrix product and Ip is an p × p
identity matrix such that

Π⊗ Ip =

 π11Ip · · · π1nIp
...

...
πn1Ip · · · πnnIp


np×np

. (26)

Hence (25) effectively amounts to treating each of the p
columns of B separately.

Remark 3: Note that the solutions (24) and (25) of the
Lyapunov equation are still valid if A is not strictly stable,
provided no sum of any two eigenvalues of A is zero. In
this case we can express P = −Z(0) as in (5) and it is not
positive (semi)definite. Further, if (A,B) is not controllable,
then P is not of full rank and is therefore not positive
definite.

Remark 4: Closed form expressions for the output and the
cross Gramians as well as for the solution of the Sylvester
equation are also derived in [20] depending on πij . The
implication is that these can thus also be computed from
expressions for the controllability Gramian.

III. STRUCTURE AND DIRECT COMPUTATION OF THE
CONTROLLABILITY GRAMIAN

Let yb(t) denote the solution of

y
(n)
b (t)+an−1y

(n−1)
b (t)+ . . .+a0yb(t) = δ(t), t > 0,

(27)
or equivalently the solution of

y
(n)
b (t) + an−1y

(n−1)
b (t) + . . .+ a0yb(t) = 0 (28)

satisfying the initial conditions

y
(k)
b (0) = 0, k = 0, 1, 2, . . . , n− 2, y(n−1)

b (0) = 1.

Now assume that the system is strictly stable, thus
limt→∞ y

(i)
b (t) = 0 for i = 0, 1, . . . , n−1. The vector Yb(t)

contains the basic response yb(t) and its derivatives, i.e,

Yb(t) =
[
yb(t) ẏb(t) · · · y

(n−2)
b (t) y

(n−1)
b (t)

]′
.

(29)
Now observing that Yb(t) = etAc

ue we have that

P c =
∫ ∞

0

Yb(t)Yb(t)
′
dt. (30)

It follows directly by repeated integration by parts that P c

will have the following plaid like structure[18]

P c =



Y0 0 −Y1 0 Y2 · · ·
0 Y1 0 −Y2 0
−Y1 0 Y2 0 −Y3

0 −Y2 0 Y3 0

Y2 0 −Y3 0
. . .

...
. . . Yn−1


,

(31)
where

Yi =
∫∞
0

(
y
(i)
b (t)

)2

dt. (32)

Thus, in order to evaluate P c we only have to evaluate Yi,
i = 0, 1, . . . , n − 1. The same argument holds true in the
more general case where we can express P = −Z(0) as in
(5) and therefore the plaid structure remains valid as long as
no sum of any two eigenvalues of A is zero.

Remark 5: It follows from Lyapunov’s stability theo-
rem, that for a strictly stable system the matrix P c =∫∞
0
Yb(t)Yb(t)

′
dt is positive definite, also easily noted by

the fact that for any nonzero column vector σ, we have
that σ

′ ∫∞
0
Yb(t)Y

′

b (t)dtσ =
∫∞
0

(σ
′
Yb(t))2dt > 0, since the

elements in Yb(t) are linearly independent.
This structure (31) was derived in [10] and in [12] where

it is referred to as a Xiao matrix. In both cases the derivation
was an algebraic one based on (10). For a similar derivation,
see also [14]. In [6] it is referred to as an alternating Hankel
form. Note that by permuting rows and columns so that
all the odd numbered rows and columns precede the even
numbered ones, the matrix transforms into a 2-block diagonal
matrix, each block being a Hankel matrix.

Remark 6: The last line in the Lyapunov equation (10)
can be written as

(AcP c)n·+((AcP c)·n)
′
+
[

0 · · · 0 1
]

= 01×n. (33)

5347



It readily follows that when n is odd

a0 a2 · · · · · · an−1 0 · · · · · · 0
0 a1 a3 · · · an−2 1 0 · · · 0
0 a0 a2 · · · · · · an−1 0 · · · 0
0 0 a1 · · · · · · an−2 1 · · · 0
...

...
. . .

...
...

... 0 a1 a3 · · · · · · 1
0 0 · · · 0 a0 a2 · · · · · · an−1


×
[
Y0 −Y1 Y2 −Y3 · · · Y(n−1)

]′
=
[

0 · · · 0 1/2
]′

(34)
and when n is even:

a0 a2 · · · an−2 1 0 · · · 0
0 a1 a3 · · · an−1 0 · · · 0
0 a0 a2 · · · an−2 1 · · · 0
0 0 a1 · · · · · · · · · 0
...

...
. . .

...
...

... a0 a2 · · · · · · 1
0 0 · · · 0 a1 a3 · · · an−1


×
[
Y0 −Y1 Y2 −Y3 · · · −Y(n−1)

]′
=
[

0 · · · 0 −1/2
]′
.
(35)

Again these equations have a unique, real solution iff no sum
of any eigenvalues of A is zero.

Remark 7: Applying Gauss elimination to the system
(34), we can
• first replace the

[
a0 a2 · · · an−1

]
subvector in rows

3, 5, . . . , n by
[

0 β1,1 · · · β
1,n−1

2

]
where β1,i =

a2i − a0
a1
a2i+1, i = 1, 2, . . . , n−1

2
, (setting an = 1).

• Next we replace the
[
a1 a3 · · · an−2 1

]
subvector

in rows 4, 6, . . . , n−1 by
[

0 β2,1 · · · β
2,n−1

2

]
where

β2,i = a2i+1 − a1
β1,1

β1,i+1, i = 1, 2, . . . , n−1
2

, (setting
β

1,n+1
2

= 1).

• We then replace the
[
β1,1 · · · β

1,n−1
2

]
subvector

in rows 5, 7, . . . , n by
[

0 β3,1 · · · β
3,n−3

2

]
where

β3,i = β1,i+1 − β1,1
β2,1

β2,i+1, i = 1, 2, . . . , n−3
2

,
etc.. Similarly for system (35). Thus we end up with the
upper triangular system

a0 a2 · · · · · · an−1 0 · · ·
0 a1 a3 · · · an−2 1 0
0 0 β1,1 · · · · · · β

1,n−1
2

0

0 0 0 β2,1 · · · β
2,n−3

2
1

...
0 · · · · · · · · · · · · · · · · · ·

. . .

. . .

· · · · · · 0
· · · · · · 0
· · · · · · 0
0 · · · 0

...
βn−3,1 1

· · · 0 βn−2,1


×



Y0

−Y1

Y2

−Y3

...
Y(n−1)

 =



0
...
...
...
0

1/2


(36)

that is readily solved by backward substitution. Thus the total
number of operations required to evaluate the Yb coefficients
from the ai-coefficients is O(n2). It is of interest to note that
the nonzero vectors in the upper triangular half are exactly
the vectors of the inverse Routh table i.e.
s−n a0 a2 · · · · · · an−1

s−(n−1) a1 a3 · · · an−2 1
s−(n−2) β1,1 · · · · · · β1, n−1

2

s−(n−3) β2,1 · · · β2, n−3
2

1
...
s−2 βn−3,1 1
s−1 βn−2,1

s−0 1
(37)

Remark 8: When A is not strictly stable, some of the
elements in the first column of (37) may become zero. In
this case, the procedure in Remark 7 has to be modified by
appropriate row permutations.

IV. CLOSED FORM INVERSE OF THE CONTROLLABILITY
GRAMIAN

In optimal zeros problems, the controllability Gramian
arises directly, in a linear system of equations of the form
P cρ = σ. Thus, it is also of interest to obtain closed form
expressions for Xc = (P c)−1.

We now present an elementary derivation of Xc = (P c)−1

in terms of the coefficients ai, i = 0, 1, . . . , n− 1, under the
assumption that P c is nonsingular. Since

AcP c + P c(Ac)
′
+ ue(ue)

′
= 0 (38)

it follows by multiplying from both sides with Xc = (P c)−1

that Xc satisfies the simple Riccati equation

XcAc + (Ac)
′
Xc + (Xcue) (Xcue)

′
= 0. (39)

We further note that since P c is symmetric and zero plaid,
the same must hold true for Xc, i.e.

Xc =



x11 0 x13 0 x15 · · ·
0 x22 0 x24 0
x13 0 x33 0 x35

0 x24 0 x44 0

x15 0 x35 0
. . .

...
. . . xnn


. (40)

Introducing the matrix

Î =



0 1 0 · · · 0
...

. . . . . . . . .
...

...
. . . . . . 0

...
. . . 1

0 · · · · · · · · · 0


(41)

and the vector a =
[
a0 a1 · · · an−1

]′
we can rewrite

(39) as:

XcÎ − x·na
′
+ Î

′
Xc − ax

′

·n + x·nx
′

·n = 0, (42)
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where x·n denotes the last column vector of Xc. Comparing
the entries in the last column on each side of (42) and
keeping in mind the zero-plaid structure of (40), we get

−xnnai−1 + (xnn − an−1)xin = 0 i = n, n− 2, . . .
(43)

Assume first that xnn 6= 0. This holds in particular when
P is positive definite because then xnn > 0. Then we can
conclude

xin = 2ai−1 i = n, n− 2, . . . (44)

whereas it follows from the zero plaid structure of (40) that

xin = 0 i = n− 1, n− 3, . . . (45)

If on the other hand xnn = 0, we must have that an−1 = 0
otherwise it would follow from (43) that the last column of
X would be zero, contradicting the assumption that X is
nonsingular. Thus (44) still holds for i = n. To see that it
must hold for i = n− 2, n− 4, . . . , we compare in a similar
fashion column n− 2 on each side of (42) resulting in

−x(n−2)nai−1 + (x(n−2)n − an−3)xin = 0 (46)

for i = n − 2, n − 4 . . . If now also x(n−2)n = 0 we must
have an−3 = 0 for (44) to hold, then we go on and compare
column n− 4, etc. Introducing the vectors

γ =
{ [

a0 0 a2 0 · · ·[
0 a1 0 a3 · · ·

· · · 0 an−3 0 an−1

]′
n odd

· · · 0 an−3 0 an−1

]′
n even

(47)
and

γ̂ = a− γ (48)

we thus have that
x·n = 2γ. (49)

Rewriting (42) as:

XcÎ + Î
′
Xc − x·n

(
a− 1

2
x·n

)′
−
(
a− 1

2
x·n

)
x
′

·n = 0,

(50)
substituting from (44) and (45) we also have from (50) that

XcÎ + Î
′
Xc − 2γγ̂

′
− 2γ̂γ

′
= 0. (51)

Noting that the first row of Î
′
Xc is zero whereas the first

row of XcÎ starts with a zero followed by the first n − 1
elements of the first row of Xc we conclude directly from
(51) that

x1(1···(n−1)) = 2a0 ×
{ [

a1 0 a3 0 · · ·[
a1 0 a3 0 · · ·

· · · an−4 0 an−2 0
]
n odd

· · · 0 an−3 0 an−1

]
n even

(52)
Note that a0 6= 0, a consequence of the Gantmacher condi-
tion for the existence of a unique, real, symmetric solution
P c.

Finally, noting that for i = 2, 3, . . . , n, the ith row of Î
′
Xc

will be the (i−1)st row of Xc whereas the ith row of XcÎ
′

starts with a zero followed by the first n− 1 elements of the
ith row of Xc, we derive from (51) the following recurrence
for i = 2, 3, . . . , n

xi(1···(n−1)) = −x(i−1)(2···n) + 2ai−1

×


[

0 a2 0 a4 · · · 0 an−1

]
n odd and i even[

a1 0 a3 0 · · · an−2 0
]

n odd and i odd[
0 a2 0 a4 · · · an−2 0

]
n even and i even[

a1 0 a3 0 · · · 0 an−1

]
n even and i odd.

(53)
This recurrence along with the boundary conditions (49) and
(52) defines Xc in terms of the coefficients a0, a1, . . . , an−1.
Such a recurrence is to be expected from the Hankel-like
structure of Pc and the Gohberg-Semencul formulas [22].
Thus e.g. when n = 6 we obtain[18]:

Xc = 2


a0a1 0 a0a3

0 a1a2 − a0a3 0
a0a3 0 a2a3 − a1a4 + a0a5

0 a1a4 − a0a5 0
a0a5 0 a2a5 − a1a6

0 a1a6 0

· · ·

· · ·

0 a0a5 0
a1a4 − a0a5 0 a1a6

0 a2a5 − a1a6 0
a3a4 − a2a5 + a1a6 0 a3a6

0 a4a5 − a3a6 0
a3a6 0 a5a6

 .
(54)

Introducing the lower Toeplitz matrix

Tl =


a0 0 · · · 0

a1
. . . . . .

...
...

. . . . . . 0
an−1 · · · a1 a0

 , (55)

and the matrix

Ĩ =


1 0 · · · · · · 0
0 −1 0 · · · 0
...
0 · · · · · · 0 (−1)n−1

 , (56)

we have
Xc = TlĨHu + ĨTlĨHuĨ (57)

since the right hand side of (57) clearly satisfies (49), (52)
and (53). Note that adding ĨTlĨHuĨ simply imposes the
zero pattern onto Xc and doubles the nonzero entries. Note
that formula (57) has a close resemblance with some of
the formulae that have been derived for inverses of Hankel
matrices, see e.g. [23]. Also note that Xc is computed more
efficiently by making use of (49), (52) and the recurrence
(53) rather than expression (57).

V. CONCLUSIONS AND FUTURE WORK

The continuous controllability Gramian is the solution
of an input Lyapunov equation in the controller (compan-
ion) form or equivalently the infinite integral of an outer
product of a vector containing the impulse response and
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its derivatives corresponding to a unity numerator transfer
function. In this paper we make use of both these viewpoints
in order to derive the simple zero plaid structure of this
Gramian and present the interesting links that the entries of
the Gramian have to the entries of the Routh table. Moreover,
an expression for the inverse of the Gramian is derived as
a simple function of the coefficients of the characteristic
polynomial from the fact that it is the solution of a Riccati
equation.

We show how the controllability Gramian form the core
part of closed form expressions of Gramians of general
MIMO systems, the input Gramian, as well as the output
Gramian. Closed form expressions for the cross Gramian and
the solution of the general Sylvester equation are also easily
computed from the controllability Gramian.

The controllability Gramian also appears in certain zero
optimization problems, either in a PID like controller setting
or in a model reduction setting. The inverse controllability
Gramian is a key element in such zero optimization prob-
lems. Further, it is of interest to explore whether similar
methods to those used in the derivation of the inverse
Gramian can be applied to derive a direct solution of more
complicated Riccati equations. Indeed the zero optimization
problem is a special case of the LQR problem.

The emphasis in this work has been on the derivation
of computationally efficient formulations of closed form
expressions. The short term motivation has simply been to
provide another tool in the linear systems toolbox to be used
along with methods that have already been developed based
on numerical approaches. Thus while much of the results
presented can be found in older papers in closely related
forms, we believe that they deserve more attention as an
effective tool in numerical computations of small to mid-size
systems. Initial computation tests reveal that solving (35)
or (34) for the controllability Gramian by using Matlab’s
backslash command can handle considerably larger systems
than Matlab’s standard lyap command.
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