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Abstract— This paper gives the sufficient and necessary
conditions to guarantee the existence of a linear change of co-
ordinates to transform a multi-output linear dynamical system
(modulo a nonlinear term depending on inputs and outputs) in
the observability Brunovsky canonical form.

I. INTRODUCTION

For a single output dynamical linear system the
observability rank condition is a necessary and sufficient
condition to transform it into the Brunovsky observability
normal form. In this last form, it is possible to use classical
observer such that [8] observer and, [5] observer. For
multi-input linear dynamical systems these condition were
given by [3]. For multi-output linear dynamical systems,
to our knowledge, there does not exist in literature an
equivalent result. However, for multi-output nonlinear
dynamical systems there are several works on the topic. All
this works dealt with the so-called : Observer linearization
error dynamic. This last notion was first addressed by [6]
for dynamical systems with a single output. [7] gave, for a
multi-output nonlinear system, the sufficient conditions to
solve the observer linearization error problem even with a
diffeomorphism on the outputs.
[11] gave the sufficient and necessary conditions to solve the
linearization problem for multi-output nonlinear systems.
After these two important works in the field of observers,
other interesting research was followed, we can quote for
examples: [1], [2], [4], [10].
Even if the results, obtained in the works quoted above,
can be used for multi-output linear dynamical systems.
In this paper, we will provide in an algebraic way the
necessary and sufficient conditions which ensure existence
of a linear change of coordinates to transform a multi-output
linear system into the Brunovsky normal form. This paper
is outlined as follows. In the next section, we give the
notations and the problem statement. In section 3, we
recall well-known facts about a matrix and deduce a first
preliminary result. In section 4, we will state our main
result. In section 5, we provide an algorithm to compute the
linear change of coordinates.
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II. NOTATION AND PROBLEM STATEMENT

Consider the following multi-output dynamical system:

ẋ = Ax + γ(y, u) (1)
y = Cx (2)

where:
• x ∈ Rn are the state variables, y = (yi)1≤i≤m are the

outputs and u is an input,
• A is a n × n matrix and γ is a vector depending on

input and outputs

• C =




C1

C2

..
Cm




is a m× n matrix with linearly independent components.
Before, to state the problem to solve here, let us recall
the so-called observability indices for dynamical systems
(1-2). For this, without loss of generality, we will assume
throughout this paper the following.

We assume that the pair (1-2) is observable thus, the
following observability rank condition:

rank




C
CA
..

CAn−1


 = n

is fulfilled.
Now, let us define s0 = rank[C] = m, and by induction:

sk = rank




C
CA
..

CAk−1


− sk−1.

The following definition is drawn from [9].
Definition 1: We call observability indices of the

dynamical system (1-2) the integers given for 1 ≤ s ≤ m
by:

ri = card{sj ≥ i for j ≥ 0}.

By definition, we have r1 ≥ r2 ≥ · · · ≥ rm and from the
observability rank condition II, we have obviously:

r1 + · · ·+ rm = n.
By reordering the outputs (yi)1≤i≤m, we can assume that
for 1 ≤ i ≤ m output yi has index ri. Thus we have:
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•

rank







C1

...
Cm




C1A
..

C1A
r1−1

C2A
..

C2A
r2−1

..
CiA
..

CiA
ri−1




= r1 + r2 + · · ·+ ri + m− i, (3)

•

CiA
ri =

i∑

k=1

rk∑

j=1

pi,k,jCkAj−1 +
m∑

k=i+1

qi,kCk. (4)

The problem that we will answer here can be stated as
follows.

Problem 1: Find the necessary and sufficient algebraic
conditions for the existence of a linear change of coordinates
z = Mx such that the dynamical system (1-2) becomes:

żi = Aizi + βi(u, z1,r1 , · · · , z1,rm
) (5)

z1,r1 = y1 (6)

zi,ri = yi +
i−1∑

j=1

αi,jyj for 2 ≤ i ≤ m (7)

where Ai =




0 · · · 0 0
1 · · · 0 0
...

. . .
...

...
0 · · · 1 0




ri×ri

,

and zi = (zi,j)1≤j≤ri
for 1 ≤ i ≤ m.

We will say that a dynamical system under (5-7) form is in
the Brunovsky observability canonical normal form modulo
an input-output injection.
In the (5-7) form , we can use the well-known Lunberger
observer with nonlinear input and output terms:

˙̂zi = Aiẑi −K(y − ŷ) + βi(u, ẑ1,r1 , · · · , ẑ1,rm) (8)

where for all 1 ≤ i ≤ m we set yi = zi,ri
and K is the gain.

Remark 1: If the case of system (1-2) without noise is
perfectly resolved by 8 it is not the case for noisy systems
For example, if the output measurement is corrupted by the
noise and the output acts quadratically in term then a bias
appears.

III. MATHEMATICAL BACKGROUND

In this section, we recall some facts about the structure
of a given n× n matrix =.
A matrix = is said to be cyclic if there exists a vector

v ∈ Rn such that the following family:

{v, , ..,=n−1v}

is a basis of Rn. This last fact is also equivalent to
saying that the minimal polynomial of = is equal to its
characteristic polynomial.
Therefore, for a cyclic matrix =, if we denote its transpose
by A = =T then, for A we need only to have a single
output y = Cx where C = vT such that the pair (A,C)
fulfils the observability rank condition. Thus,

rank




C
CA
..

CAn−1


 = n. (9)

In this case, the following linear change of coordinates
transforms the dynamical system (1-2) into the form (5-7)
(m = 1):

zn = Cx (10)

zn−k = CAkx +
k∑

i=1

pn−iCAk−ix (11)

for 1 ≤ k ≤ n − 1, where (pi)0≤i≤n−1 are the coefficients
of the characteristic polynomial of A :

PA(s) = p0 + p1s + ... + pn−1s
n−1 + sn (12)

and the vector field β(y, u) = (βi(y, u))1≤i≤n is given by:

βn = −pn−1y + Cγ(y, u)
βn−k = −pn−(k+1)y

+
k∑

i=1

pn−iCAi−1γ(y, u) + CAkγ(y, u)

for 1 ≤ k ≤ n− 1. To finish, take the derivative of z1 given
in (11), we obtain:

ż1 = CAnx +
n−1∑

i=1

pn−iCAn−ix + ϕ(y, u). (13)

Therefore, by Cayley-Hamilton’s theorem, we deduce from
(12) expression that:

ż1 = −p0y + ϕ(y, u) = β1(y, u).

Now, if a matrix = is not cyclic, then we need more outputs
to have the observability rank condition. Precisely, if the
Frobenius normal form or rational canonical form of A
contains p blocs then we need at least m ≥ p outputs to
have the observability rank condition. Indeed, assume that
the matrix

A = bloc diag [F1, .., Fm]

where Fi for 1 ≤ i ≤ m are the Companion matrices.
The characteristic polynomial M1 of F1 is the minimal
polynomial of A, and for 2 ≤ i ≤ m the characteristic

1167



polynomial Mi of the bloc Fi devised the characteristic
polynomial Mi−1 of the bloc Fi−1 such that:

PA = M1....Mp.

Moreover, if we denote by ri the degree of Mi, then
r1 + .. + rm = n.
It is well-known that there exists a family of vectors
{vi,1 for 1 ≤ i ≤ m} such that the family {vi,j =
Bjvi,1 for 1 ≤ i ≤ m and 0 ≤ j ≤ ri − 1} is a
basis of Rn. If we set

Ei = span{vi,j for 0 ≤ j ≤ ri − 1}
then it is a A-invariant vector subspace. Thus, AEi ⊆ Ei

and we have:
Rn = E1 ⊕ · · · ⊕ Em.

Let us sst
Ci = vT

i,1 for 1 ≤ i ≤ m

then, we have the following preliminary result:
Claim 1: ideal case

Assume A is cyclic and the output yi = Ci = vT
i,1, then there

exists a linear change of coordinates which transforms the
dynamical system (1-2) into the form (5-7) with αi,j = 0 in
the relation (7).

Proof: For 1 ≤ i ≤ m we have =Ei ⊆ Ei which
implies that:

CiA
ri =

ri∑

j=1

pi,jCkAj−1. (14)

This last equation plays the part of Cayley-Hamilton’s theo-
rem in the single output m = 1. Therefore the linear change
of coordinates is given as in the beginning of this section for
m = 1. For each 1 ≤ i ≤ m, we set:

zi,ri = Cix and, for 1 ≤ k ≤ ri − 1

zi,ri−k = CAkx +
k∑

j=1

pi,n−jCAk−jx

IV. GENERAL CASE

In this section, we assume that the number m of the
outputs is great or equal to the number p of Frobinus blocs
of the matrix A. As above (ri)1≤i≤m are the observability
indices of (1-2). Under assumption II and relations (3-4), we
have the following preliminary result.

Lemma 1: There exists a linear change of coordinates
which transforms the dynamical systems (1-2) into the fol-
lowing form:

żi = Aizi + βi(u, z1,r1 , · · · , z1,rm) (15)
z1,r1 = y1 (16)

zi,ri
= yi −

i−1∑

j=1

rj−ri∑

k=1

pi,j,rj−kCjA
rj−ri−kx (17)

for 2 ≤ i ≤ m

Proof: For sake of clarity, we will give the proof for
m = 2. Recall from equation (4) that we have:

C1A
r1 =

r1−1∑

j=1

p1,1,jC1A
j−1 + q1,2C2

C2A
r2 =

r1−1∑

j=1

p2,1,jC1A
j−1 +

r2−1∑

j=1

p2,2,jC2A
j−1.

Now, it is easy to see that the following change of coordi-
nates:

z1,r1 = C1x,

z1,r1−k = C1A
kx−

k∑

j=1

p1,j,r1−jC1A
k−jx,

and

z2,r2 = C2x−
r1−r2∑

j=1

p2,r1−jC1A
j−1x

z2,r2−k = C2A
kx−

k∑

j=1

p2,j,ri−jC2A
k−jx

−
r1−r2∑

j=1

p2,1,r1−jC1A
k+j−1x

do the work.
Remark 2: The dynamics (15) in lemma 1 are in the form

sought in (5). However, the outputs are not in the form of
(5). Indeed, for 2 ≤ i ≤ m the ith output yi depends on the
formers output y1, . . . , yi−1 and some of their derivatives as
we saw it in formula (17).
Now, we can deduce the following result from lemma 1.

Corollary 1: Assuming hypothesis II and relation (3) then
there exists a linear change of coordinates which solves the
problem 1 if and only if equation 4 is in the following form:

CiA
ri =

i∑

k=1

ri∑

j=1

pi,k,jCkAj−1 +
m∑

k=i+1

qi,kCk. (18)

Thus, for 2 ≤ i ≤ m we have pi,k,j = 0 for all 2 ≤ k ≤ i
and j > ri.

V. CHANGE OF COORDINATES

In this section, we will give the algorithm to compute the
change of coordinates. Let the following family of vectors
{τ1,i}1≤i≤m defined by the following algebraic equations :

CjA
k−1τi,1 = 0 for j < i and 1 ≤ k ≤ ri (19)

CiA
k−1τi,1 = 0 for 1 ≤ k ≤ ri (20)

CiA
ri−1τi,1 = 1 (21)

CjA
k−1τi,1 = 0 for j > i and 1 ≤ k ≤ rj . (22)

Now, we set for all:

τj,i = CiA
jτ1,i for 1 ≤ i ≤ m and 1 ≤ j ≤ ri − 1.

By the observability rank condition the family {τj,i} is a
basis of Rn. Let
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θ =




C1

C1A
..

C1A
r1−1

C2

..
Cm

..
CmArm−1




and let

Λ =
[

θτ1,1, ..., θτr1,1, θτ1,2, ..., θτrm,m

]

Now set M = Λ−1θ
Lemma 2: The change of coordinates z = Mx transforms

the dynamical system (1-2) into the form given in lemma 1.
Proof: Let us set for 1 ≤ i ≤ m for 1 ≤ j ≤ ri:

Mτi,j =
∂

∂zi,j
.

Now, take the derivative in the direction ∂
∂zi,j

of ż = Mẋ.
We obtain for 1 ≤ i ≤ m for 1 ≤ j ≤ ri − 1:

∂

∂zi,j
Mẋ = MAτi,j

= Mτi,j+1 =
∂

∂zi,j+1
.

Therefore, by integration, the dynamic (1) in the new co-
ordinates has the form (5) and the outputs have the form
(17).

Now, we will give the equivalent condition (18) of corol-
lary 1 by means of the vectors τi,j .

Corollary 2: Condition (18) is equivalent to the following:
for all 1 ≤ i ≤ m− 1 such that j < i and rj > ri

CjA
kτi,1 = 0 for rj − ri < k ≤ rj (23)

Remark 3: Condition (23) means that for 2 ≤ i ≤ m
output yi do not depend on the derivatives of outputs yj for
j < i.

VI. DISCUSSION ON THE NONLINEAR DYNAMICAL
SYSTEMS

Consider a multi-output nonlinear dynamical system in the
following form:

ẋ = f(x) (24)
y = h(x). (25)

where f is a smooth vector field and h a smooth function
with m-linearly independent components on a neighborhood
of 0 such that f(0) = 0 and h(0) = 0. Let us assume the
regular observability rank condition1. More precisely, if h =
(hi)1≤i≤m then, as for the linear case, there exist integers

1locally weakly observable without singularity, i.e. fixe observability
index

r1 ≥ r2 . . . rm (for more details see for example [7]) such
that:

rank{dh1, dLfh1, .., dLr1−1
f h1, .., dhm, .., dLrm−1

f h1} = m.

In [11], we can fund corresponding vector fields {τi,1}1≤i≤m

by the same equations as in (19-20). Thus: equations :

dLk−1
f hj(τi,1) = 0 for j < i and 1 ≤ k ≤ ri

dLk−1
f hi(τi,1) = 0 for 1 ≤ k ≤ ri

dLri−1
f hi(τi,1) = 1

dLk−1
f jτi,1 = 0 for j > i and 1 ≤ k ≤ rj .

And then, we define:

τi,j = [τi,j+1, f ] for 1 ≤ j ≤ ri − 1.

where the [, ] means the Lie bracket. Now, the main differ-
ence between the nonlinear and the linear case is that for the
nonlinear case, we assume in lemma 1 and corollary 2 that
vector fields τi,j commute:

[τi,j , τk,s] = 0. (26)

This last condition is always fulfilled in the linear case
because the vector fields τi,j are constant. Now, for condition
(23) is the same for both case linear one and nonlinear one.
To summer, the important thing to keep in mind is:

• Condition (26), which is always fulfilled in the linear
case, ensures the existence of the coordinate change in
which the dynamic is in form (5),

• Condition (23), ensures that the outputs in the new
coordinates are only functions of the outputs in the
former coordinates.

To end this discussion, we can say that the corollary (1)
provide a necessary condition for the multi-output nonlinear
dynamical systems. Indeed, if we set:

A =
∂f

∂x
(0) its linear part at 0

C =
∂h

∂x
(0) its linear part at 0

then, the existence of change of coordinates which transforms
the nonlinear dynamical system (24-25) into the canonical
form (5-6) implies the existence of a change of coordinates
which transforms the linear part (A,C) into the canonical
form (5-6). Obviously, it is only a necessary condition,
because this does not guarantee that the linear part is only
function of y and u.

VII. CONCLUSION

This paper dealt with the Brunovsky observability normal
form for a multi-output linear dynamical system. Then, it
gave a comparison between with the stated result and the
well-known results in the nonlinear case.
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