
  

  

Abstract—In this paper, we present a delay-dependent robust 

model predictive control (MPC) algorithm for a class of 

discrete-time linear state-delayed systems subjected to 

polytopic-type uncertainties and input constraints. The 

state-feedback MPC law is calculated by minimizing an upper 

bound of the worst-case quadratic cost function over an infinite 

time horizon at each sampling instant. In contrast to existing 

robust MPC techniques, the main advantage of the proposed 

approach is that the algorithm is derived by using a descriptor 

model transformation of the time-delay system and by applying a 

result on bounding of cross products of vectors. This has 

significantly reduced the conservativeness. It has been shown 

that robust stability of the closed-loop system is guaranteed by 

the feasible MPC from the optimization problem. The 

effectiveness of the algorithm is demonstrated by a simulation. 

I. INTRODUCTION 

IME-delay often occurs in many dynamical systems, such 

as chemical processes, transportation systems, and 

communication networks etc. Time-delay often leads to 

serious deterioration of system stability and performance. 

Moreover, since it is difficult to obtain the exact model of 

system dynamics, thus uncertainties are unavoidable. 

Therefore, robust control of uncertain time-delay systems has 

received much attention, and many research results have been 

reported in control literature (see [1-4]). There are mainly two 

types of stabilization results: one is delay-independent and the 

other is delay-dependent. It has been shown that 

delay-dependent results taking into account the size of delays 

are generally less conservative than delay-independent ones, 

which do not include any information on the size of delays.  

Most of the literatures on time-delay systems have 

neglected input constraints, which normally represent 

physical limits (such as valve saturation and power limitations, 

etc) and widely exist in many processes. A well method with 

ability to handle constraints on input /output is the MPC
[5]
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At present, only a few results of MPC for delayed systems 

have been reported, such as [6-9]. A simple control method 

based on the receding horizon concept for delayed systems 

has been established in [6]. In [7], the authors have improved 

the technique of [6] by applying a cost function that includes 

two terminal weighting terms, which are crucial to guarantee 

closed-loop stability. In [6,7] both MPC algorithms have 

considered the continuous-time systems with state-delays. 

However, neither model uncertainty nor input constraints are 

considered. Constrained MPC for discrete-time system with 

state-delays has been addressed in [8,9]. In [8] the robust 

constrained MPC scheme for delay-free systems has been 

extended to a delayed system by simply employing equivalent 

augmented systems without delay. However, this is not an 

effective alternative for general time-delay systems, especially 

for systems with unknown delays or systems with 

time-varying delays because it could lead to a high degree of 

complexity in the control design. In [9], an MPC algorithm for 

uncertain systems with input constraints and unknown 

state-delay has been presented. Due to unknown delay indices, 

the authors relaxed the optimization problem that minimizes a 

cost function to two other optimization problems and checked 

the closed-loop stability under an assumption that the 

weighting matrix is fixed to a constant matrix at all time. The 

assumption is very restricted and may lead to conservatism. 

On all accounts, all these design methods with regard to MPC 

for the delayed systems are delay-independent. A delay 

-dependent robust constrained MPC for the uncertain delayed 

systems is developed to reduce conservatism compared with 

delay-independent ones, which motivates our research. 

This idea of this paper has been inspired by the method in 

[4]. The descriptor system approach and a bounding technique, 

which have been presented recently in [2] and [3] respectively, 

are used to develop a delay-dependent robust constrained 

MPC algorithm for a class of discrete time-varying systems 

with state-delay and polytopic uncertainties. Furthermore, we 

will prove the closed-loop stability of the proposed algorithm.  

II. PROBLEM STATEMENT 

Consider the following discrete-time uncertain 

time-varying systems with state-delay: 

)()()()()()()1( kukBdkxkAkxkAkx +−+=+           (1) 

subject to input constraints 

   ),0[allfor,0,)( ∞∈≥≤≤− kuukuu               (2) 

where n
Rkx ∈)( is the system state, m

Rku ∈)( is the control 
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input, d is a positive integer for time delay and 

0,)()( ≤≤−= kdkkx φ is the initial condition. Moreover, we 

assume that  
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This means that for every k there exist p nonnegative 

coefficients piki ,,2,1,)( L=λ such that 
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It is assumed that system (1) is stabilizable and that 

state )(kx is available at each time k . 

Our goal is to design a stabilizing state-feedback 

controller )()()( kxkKku = for system (1) by the MPC 

strategy and achieves the following robust performance index 

at each time k : 
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),0[,)|()()|( ∞∈≤+=+≤− jukjkxkKkjkuu       (8) 

where 0>Q and 0>R are given symmetric weighting 

matrices, )|( kjkx + and )|( kjku + denote the predicted state 

of the plant at time jk + and the future control move at 

time jk + , respectively, with )()|( jkxkjkx −=− for 0≥j . 

Eqs.(5)-(8) is a constrained min-max optimization problem 

corresponding to a worst-case infinite-horizon MPC with a 

quadratic objective. According to the principle of MPC, only 

the first computed input )|()()|( kkxkKkku = is implemented 

until the next sampling time. Updated by the actual state, the 

above optimization problem is repeated. 

Now set )|()|()|1( kjkykjkxkjkx +++=++ . Then we have 

    ∑
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As in [4], Eq. (7) can be transformed into an equivalent 

descriptor form as follows 
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Before ending this section, we present the following lemma. 

Lemma 1
[3]

:
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following inequality holds: 
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III. DELAY-DEPENDENT MPC ALGORITHM 

The exact solution to this min-max problem (5)-(8) is not in 

general tractable. To obtain a practical optimization problem, 

the following quadratic function is defined: 
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An upper bound on the worst value of the cost function )(kJ is 

obtained whenever the following inequality is satisfied for 

any Ω∈+++ )]()()([ jkBjkAjkA , 0≥j : 

]||)|(||||)|([||

))|(())|1((
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For )(kJ to be finite, we must have 0)|( =∞ kx . By the 

definition of )|( kjky + , we can obtain 0)|( =∞ ky . Hence 

0))|(( =∞ kxV .Summing both sides of the inequality (12) 

form 0=j to ∞=j yields )())|(( kJkkxV −≤− . Thus 
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Thus, from (13) the original min-max optimization problem 

(5)-(8) is turned into the following optimization problem that 

minimizes this upper bound ))|(( kkxV  

))|((min
211 ,,),(

kkxV
SSPkK

                        (15) 

subject to                 (8), (10) and (12)  

Theorem 1: Consider the time-delay system (1) with input 

constraints(2), and the system matrix )]()()([ kBkAkA belongs 

to a polytope Ω . For some prescribed scalar ε , if there exist 

matrices with appropriate dimension ,,,,0 KZYX >  

EWWWUU ,,,,0,0 32121 >>  and scalar 0>γ , such that the 

following semi-definite programming problem is solvable:  

                     γ
γ EWWWUUKZYX ,,,,,,,,,, 32121

min                        (16) 
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where 11 WdZZ ++=Θ Τ , 22 )( WdZBKYIAAX +−++−+=Θ ΤΤΤΤΤ
σσσ ε , 

33 WdYY +−−=Θ Τ , p,,1 L=σ , iiE is the i th diagonal 

entry of E and iu is the i th element of u .Then the MPC 

law 0,)|()|( 1 ≥+=+ − jkjkxXKkjku minimizes the upper 

bound ))|(( kkxV of the robust performance index. 
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 By the Schur complement we easily deduce (16) and (17). 

Using ))|(( kjkxV + defined in (11), we have 
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With descriptor system (10) and Lemma 1, we obtain 
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After substituting Eq. (22) into inequality (21) the following 

inequality is obtained 
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Replacing (12) with (24), inequality (12) can be written as: 
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In order to obtain LMI, we define  
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Pre- and post-multiplying (25) by },)({diag 2

2/112/1 UP −Τ− γγ  

and },{diag 2

2/112/1 UP −− γγ respectively. Pre- and 

post-multiplying (23) by },)({diag 1

2/112/1 UP −Τ− γγ  and 

},{diag 1

2/112/1 UP −− γγ respectively. Using the Schur 

complement, (25) is equivalent to 
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Since (26) and (27) are affine in terms of system matrices 

)]()()([ kBkAkA , which are satisfied for all 

Ω∈)]()()([ kBkAkA , if and only if inequalities (18) and 

(19) hold respectively. 

  In order to transform the input constraint (8) into LMI, we 

should introduce an invariant ellipsoid as follows 
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From definitions of K and Ξ , it is easily shown that (29) is 

equivalent to (20). This establishes (20) and the proof is 

complete. 

Theorem 1 has given a sufficient condition for the existence 

of the robust MPC controller at sampling time k . Feasibility 

and robust asymptotic stability of the closed-loop system are 

guaranteed in the following theorem. 

Theorem 2: Once a feasible solution of the optimization 

problem (16)-(20) is found, the state feedback MPC law 

obtained from Theorem 1 robustly asymptotically stabilizes 

the closed-loop system. 

Proof: Firstly, we check the feasibility of the optimization 

problem (16)-(20). Suppose that a feasible control sequence 

0),|( ≥+ jkjku exists in optimization problem (16)-(20) at 

time k . Then at the next time 1+k , a feasible solution is 

guaranteed to exist, since we can choose the following control 

sequence calculated at time k , which is a feasible solution, i.e. 

      0),|1()1|1( ≥++=+++ ∗ jkjkukjku               (30) 

where symbol ∗ denotes a solution obtained from the 

optimization problem at time k .The control sequence 

satisfies the input constraint (8) at time 1+k ,which implies 

that the optimization problem (16)-(20) is feasible at time 

1+k . Applying the same process, we observe that the 

optimization problem is feasible at all future instants. 

Secondly, we give the stability of the closed-loop system. 
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Moreover, it follows from (12) that 
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Since )|1()1|1( kkxkkx +=++  for any Ω∈)]()()([ kBkAkA  

and djkjkxkjkx ,,1,)|1()1|1( L=−+=+−+  considering 

definition of )|( kjky + , we have 
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We replace djkjkx ,,0,)1|1( L=+−+  and 

djkjky ,,1,)1|1( L=+−+  in the last inequality of (32) by 

djkjkx L,0,)|1( =−+ and djkjky L,1,)|1( =−+ , 

respectively. Combining this with (33), we obtain 
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Therefore, ))|(( kkxV ∗ is a monotonically non-increasing 

and bounded Lyapunov function. Hence, 0)( →kx  as 

∞→k , which completes the proof.      

Remark 1: In the moving horizon implementation of 

Theorem 1, )()|( lkxklkx −=− and )()1()|( lkxlkxklky −−+−=−   

dl ,,1 L=  are determined at the previous time instance and 

held fixed. Therefore, (16)-(20) is an LMI optimization 

problem (for fixed ε ) that can be efficiently solved 

numerically. 

Remark 2: The form of the invariant ellipsoid (28) given in 

Theorem 1 is different from the traditional MPC approach. 

Furthermore, our defined invariant ellipsoid is high 

dimensional for delayed systems, and similar methods can be 

found in [10]. 

Remark 3: Theorem 1 shows that the suggested MPC 

algorithm depends on the size of delay, unlike references [8] 

and [9] where the delay-independent MPC techniques are 

given. It was pointed out in [1] that delay-dependent 

conditions have better performances compared with 

delay-independent ones. This paper is to combine the 

bounding method [3] and the descriptor system approach [2], 

which is equivalent to the original system to developing a 

delay-dependent robust MPC algorithm for the uncertain 

time-delay systems. Compared with existing MPC method 

provided in [8,9], the advantage of the suggested MPC 

algorithms has reduced the conservatism. 

IV. A SIMULATION EXAMPLE 

In this section, the effectiveness of the proposed 

delay-dependent MPC algorithms is illustrated through a 

backing up control problem of a computer simulated 

truck-trailer. The model of truck-trailer is given as follows
[11]
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   (35) 

where the variables 321 ,, xxx and u denote the angle difference 

between the truck and the trailer, the angle of the trailer, 

the y -coordinate of the rear end of the trailer and the steering 

angle, respectively. The model parameters are given as 

5.0,2,1,5.5,8.2 0 ==−=== ttvLl .The constant ]1,0[∈a is 

the retarded coefficient. Here we assume 7.0=a .Using Euler 

first-order approximation with sampling time 1.0=T sec., 

system (35) is transformed to the uncertain discrete-time 

delayed system as follows:  

)(

0

0

1429.0

)(

)(

)(

00)(0218.0

000218.0

000218.0

)(

)(

)(

1)(4.0)(0509.0

010509.0

000509.1

)1(

)1(

)1(

3

2

1

3

2

1

3

2

1

ku

dkx

dkx

dkx

k

kx

kx

kx

kkkx

kx

kx















−

+

















−

−

−

















−

+

































−

−=

















+

+

+

α

αα
  (36) 

It is assumed that input constraints π≤|)(| tu and that the 

uncertain parameter ]5915.1,1[)( ∈kα is time-varying. 

Therefore we have 
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Simulation parameters are as follows: the time-delay 3=d , 

the initial value [ ]Τ
−= 575.05.0)0( ππx , the weighting 

matrices are )10,10,10(diagQ = and 1=R , choosing 5.1=ε . 

In order to test the advantage of the MPC algorithm 

proposed in this paper, which is compared with the technique 

presented in [8]. In [8] the robust MPC scheme can be 

extended to handle uncertain time-delayed system by 

transforming the original system into an equivalent augmented 

delay-free system. Fig1-(a), (b) show the state trajectories of 

closed-loop systems achieved by the above two MPC 

algorithms. It is obvious that our MPC algorithm has better 

performance as the state variables achieved to the steady state 

faster than that of the MPC given in [8].  Furthermore, in order 

to demonstrate that the input constraints are active, the 

delay-dependent MPC method without taking into account 
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input constraints of systems is applied, and the corresponding 

unconstrained closed-loop response is shown in Fig1-(c). 

Fig1-(d), (e) show the control inputs and the upper bounds of 

the cost function obtained by the three MPC methods 

respectively. From Fig1-(c), (d), it is clear that the 

unconstrained closed-loop responses is satisfied, but the 

corresponding control inputs are out of constraint range at 

some time. From Fig1-(d), it is apparent that control inputs 

calculated from the MPC proposed in this paper do not violate 

constraints. Moreover, from Fig1-(e), it is known that the 

upper bounds of the cost function obtained with our method is 

smaller than that obtained with the method in [8]. 

V. CONCLUSIONS 

In this paper, we present a delay-dependent MPC algorithm 

for uncertain time-varying systems with state-delay and input 

constraints. We assume that the uncertainty of the model is of 

polytopic type. We transform the system to an equivalent 

descriptor system and combine the new bounding technique 

with LMI method, thus a less conservative stabilizing MPC 

algorithm is developed. Comparing with a pre-existing 

delay-independent MPC algorithm, the advantage of the 

proposed MPC algorithm is illuminated by means of a 

simulation. 
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Fig. 1.  Performance comparison of the MPC algorithm presented in 

the paper (solid line), the MPC algorithm given in [8] (dashed line) and 

unconstrained MPC algorithm (dash-dotted line) 
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