
Diesel Engine Emissions Prediction Using

Parallel Neural Networks

Bastian Maaß Prof. Richard Stobart Dr. Jiamei Deng

R.K.Stobart@lboro.ac.uk

Department of Aeronautical and Automotive Engineering

Loughborough University, LE11 3TU, UK

Abstract— Emission legislation has forced the pace of de-
velopment of engine management functions. Legislation that
will be applied to diesel engines during the period 2010-2020
continue to put great emphasis on both nitrogen oxides NOx

and particulate matter (PM). With the increasing effort to
reduce emissions and maintain fuel economy manufacturers
are focussing on engine control. Engine control requires data
acquisition and acquisition requires sensors, but hardware in
the form of sensors adds further cost to the production. As
a result, so called virtual sensors are introduced. These are
estimators that predict the required data, which is costly to
measure or simply incapable of measurement.

In this paper a parallel neural network structure is built.
It consists of three Non-linear autoregressive exogenous input
(NLARX) neural network models used to predict the smoke
emissions of a diesel engine operated in a Non-Road-Transient
Cycle. Existing resources from Matlab toolboxes are used in
order to monitor both the cost and computational expenses of
analysis. The data is re-ordered into training and validation
sets and processed. To overcome the weakness of the neural
network approach in respect of high frequency signals, the
data is divided into layers to split up the frequencies and
cut high amplitudes. Three horizontal layers of the signal are
processed in parallel through independent NLARX-models and
their performances are added to give an overall result.

Keywords: Diesel Engine, Emission, Smoke, Neural Net-

works, NLARX, Modelling

I. INTRODUCTION

In all parts of the world, emission standards for diesel

engines are becoming increasingly stringent. In particular, the

new legislation is focussed on severe reduction in nitrogen

oxides NOx and particulate matter (PM) [1].

The new goals require a more comprehensive under-

standing of input parameters to the combustion process.

However, monitoring and controlling of these parameters

brings growing complexity and increasing costs [2]. Costs

and computational demand are especially added by sensor

systems.

Instead of installing additional hardware and increasing

the delay of control systems by measuring and processing

data, estimators can replace the actual sensor. This approach

is called virtual sensing where an estimator predicts costly or

immeasurable data from available sensor signals. It is used

in different areas such as engine and emission monitoring

or vehicle dynamics. So called observers are more based

on physical equations or data-maps such as those used in

the work of Stéphant et al. [3] in a vehicle simulator. The

modern term virtual sensors is marked by their less required

understanding of physical processes. Black-Box modelling

is often used and enables to manage complex and uncertain

physics. Prokhorov [4] describes the use of neural networks

for different automotive applications such as misfire detec-

tion, torque monitoring or tyre pressure change detection. In

the work of Hanzevack et al. [5] a neural network is chosen

in on-board diagnostics and emission estimations for a SI

engine. Atkinson et al. [6] describe an approach to use a

neural network for the prediction of smoke in diesel engines.

Neural Networks not only satisfy with their ability to

manage system’s complexity, but also with their capability

of real-time calculations and adaptiveness toward new sit-

uations. This enables them to improve control strategies by

decreasing delay time. In addition, they can be used for fault

detection and the consequent error recovering.

Artificial neural networks are used in different areas of

automotive applications. For the case of real-time estimation

they are mainly built for control design purposes. The area

of engine development shows neural network models for

common control problems for instance such as fuel injection,

injection timing, output power and speed [7], [8]. Also

new control features like variable turbine geometry (VTG),

exhaust gas recirculation (EGR) or variable valve timing

(VVT) are in the focus of artificial network modelling [9].

Combustion and emission modelling promises to be another

satisfying area since these are the fields of focus. Prediction

of single combustion parameters as well as considering

the whole combustion process have been tried by different

authors [10], [11]. Parameters such as the Air-to-Fuel Ratio

(AFR) or pressure and temperature that are known for their

direct and big impact on combustion quality are estimated

by neural network models from Potenza et al. [10]. He et al.

[11] built a model that considers several engine parameters

such as boost pressure and EGR and it generates several

outputs amongst other things also soot emissions.

In this paper three parallel neural networks based on a

non-linear autoregressive exogenous input (NLARX) model

are used. They are trained and validated to predict the smoke

output of a heavy duty diesel engine. The smoke is assumed

as a good indicator for the description of particulate matter.

The engine is operated in the Non-Road-Transient Cycle

(NRTC) [12], shown in figure 2, as it is used for standards

certification in the EU and USA. An easily accessible model

of the neural network toolbox in Matlab is implemented in

order to minimise costs. Three data layers are build from the

training and validation set respectively. These three layers are

the base for the parallel structure of three neural networks.

This new approach tries to cope with the weakness of each

of the network’s slow response to high frequency patches in

the signal.

In Section 2 a short introduction and discussion toward

soot formation and the correlation with the NRTC signal

is given. Section 3 explains the implemented model ar-

chitecture. The experiment, the recorded signals and their
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processing is described in Section 4. Section 5 deals with

the newly implemented approach of dividing the signals into

three horizontal layers, which is followed by the presentation

of the estimation results, discussion and conclusion.

II. SMOKE SIGNAL RESPONSE TO NRTC SIGNAL

Despite the fact that the approach of black-box modelling

obscures physical processes it is necessary to identify the

influencing parameters. Initial parameters that can be inves-

tigated are the torque and speed signals of the NRTC. Closer

examination of the cycle characteristics and emission signal

have brought about the assumption that the cycle curve has

an observable impact on the smoke signal characteristics. In

this paper the smoke signal refers as an indicator for the PM

or soot amount.

The NRTC speed curve at the top of figure 2 has a

fast oscillating curve in the first half of the cycle. The

characteristics of the smoke signal in figure 3 show a visible

correspondence. A slower rise of the speed at about 100 s
with a following flat part till about 150 s lead to a flat part

in the smoke output signal. Comparable behaviour can be

determined in the second half of the curve where the NRTC

shows a fairly slow change in speed ranges. The emission

signal is marked by much less oscillations. Hence, it can be

assumed that fluctuations in the curve are a response to a

fast speed change during the cycle.

The behaviour identified can be traced back to the fact

that with a rapid change of speed the combustion conditions

also change. Soot formation is regulated by a number of

different parameters, which are indirectly influenced by the

change of loading conditions of the engine. On the one hand

the amount of oxygen that is available for building organic

compounds by oxidation reactions is critical. On the other

hand the formation of the spray is crucial. High injection

pressures ensure that a sufficient atomisation of the fuel

can take place because smaller droplets are less likely to

build soot formations. A third feature is a high combustion

temperature that leads to complete combustion and less in-

cylinder soot formation by breaking up fuel droplets through

oxidisation [13].

Taking these thoughts into account the smoke signal

(Figure 3) can be explained as follows. The first half of the

smoke signal is a result of rapid changes in engine speeds.

After such a change the engine stays in a transient condition

for a period of time. During this phase the amount of oxygen

that flows into the cylinder settles towards a steady state.

Whereas the fuel injected may rise due to a load increase.

This initial excessive fuel may coincide with a reduction

in oxygen flow and consequently soot is more likely to be

formed. In addition, the duration of combustion is dependent

on the amount of oxygen present and the engine speed.

Consequently, a shorter period of combustion with a decrease

in required oxygen can lead to incomplete combustion. The

second half of the signal is dominated by steady speed

resulting in a flat output signal. Small visible peaks breaking

this signal are due to the sporadic fast speed changes. Due

to fairly high speeds around 80% of the rated speed, the

temperature can rise and kept at a high level. Hence, the

conditions during the combustion process are more likely to

break up the fuel droplets. At the same time less fluctuations

mean less transient states with varying conditions favouring

the soot generation.

Other parameters such as fuel injection timing and dura-

tion or in-cylinder pressures and temperatures have also an

impact on observed engine behaviour. In this case however,

it was related principally to the controlled parameters of the

NRTC test cycle.

III. NLARX MODEL

Neural networks can be split into the following three

categories:

• Single-Layer Feedforward Networks (SLFN)

• Multi-layer Feedforward Networks (MLFN)

• Recurrent Neural Network (RNN)

In this paper a NLARX model is applied. It represents a

recurrent neural network (RNN), which fits the purpose of

non-linearity of the problem. This network is chosen for its

simplicity and the availability in the Matlab neural network

toolbox.

The NLARX model is an Input-Output recurrent model

and can be implemented with multiple inputs and outputs

[14]. Its feature of recurrence enables the model to take

into account precedent states and hence model dynamical

behavior.

The present multiple input and single output structure of

the NLARX model is illustrated in figure 1. The inputs are

represented by uk(t) and the output is described by y′(t).
The dynamical behaviour of this NLARX model can be

described by the formulation:

y(t+1) = F (y(t), ..., y(t−p+1), uk(t−mk), ..., uk(t−qk +1)) (1)

Where y(t) describes the output and uk(t) the input k at

time-step t. Consequently, k = 1, ..., 12 for the presented

model that has twelve inputs. The Matlab toolbox enables to

manipulate the recurrent output and inputs that are fed back

with the delay steps p and qk respectively. The parameter mk

and qk define the inputs that are used to predict the next time

step. The multilayer perceptron part of the NLARX model

is realised through a binary-tree structure that estimates the

non-linear behaviour. Its training is known as a nonlinear

unconstrained optimisation problem of the form:

min
Θ

FM (Θ, ZM ) =
1

2M

M∑

t=1

‖y(t) − y′(t|Θ)‖
2

(2)

where ZM = [y(t), uk(t)]t=1,...,M is a data set that

is split into training and validation parts. The y(t) and

uk(t) represent the measured outputs whereas y′(t‖Θ) is the

generated output at time step t from the NLARX model that

is dependent the weight vector Θ. This optimisation problem

minimises the averaged distance between the NLARX’s

outputs y′(t|Θ) and the target values of the training samples

y(t). In this paper, this training is realised by using the

MATLAB Neural Network Toolbox.
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Fig. 1. General NLARX - model [14]

IV. EXPERIMENT

The experiment was conducted on a heavy duty diesel

engine in the Perkins powertrain labs that is run under

the conditions of a Non-Road-Transient cycle (NRTC). This

cycle is applied to test and certificate non-road engines for

EPA- and EU-standards. It represents common scenarios

of load and speed changes for an engine. It is applied

to generate emission values for comparison with specified

values of the regulations. The graph in figure 2 shows the

normalised engine speed and torque over the 1200s test

period. The resulting smoke signal can be seen in figure 3.

A. Data Set

Different engine parameters are sampled at 1Hz under the

NRTC conditions. The whole data set consists of 12 inputs

and 5 outputs. Among NOx, HC CO and CO2 in this paper

the focus lies in the smoke output. Its signal is predicted on

the basis of 12 inputs such as torque, boost pressure, engine

speed, liquid pilot fuel quantity, final fuel injection, back

pressure, intake manifold temperature, exhaust temperature,

intake depression and coolant temperatures in and out. All
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Fig. 2. Non-Road Transient Cycle [12]

parameters were used from the beginning and investigated

and revised for their impact on the model.
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Fig. 3. Smoke output signal

B. Data Partitioning

The initial output signal shows two characteristic halves.

In the first half strong fluctuations and high peaks are typical,

whereas the second half displays a much flatter characteristic

with small oscillations. The approach of modelling and

estimating the signal requires a training and validation data

set. Therefore the signal is bisected. However, a training set

requires preferably a broad spectrum of features provided by

the signal. The signal is first divided into quarters accord-

ingly and then newly-arranged. As a result the training and

validation set cover a high oscillating part with high peaks

and a flat, low oscillating part - figure 4. Every set consists

of a correspondingly split smoke output and twelve inputs.

As well as the data partitioning a normalisation process is

applied to the inputs and output.

V. APPROACH OF DATA FILTERING

The NLARX model is known for its weakness towards sig-

nals with high-frequency components. In an initial approach

of modelling the signal with an single NLARX network it

was recognised that noise is introduced by the model. This

occurs especially then, if the signal contains large amplitudes
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Fig. 4. Processed smoke output signal

and high-frequencies. In Figure 5 the modelling results of a

single NLARX model are plotted over the measured signal.

The early phase of the signal is well predicted. However,

in the second phase of the characteristic the prediction data

starts oscillating in high-frequencies as well as an underly-

ing lower frequency. The model becomes unstable. This is

assumed to be forced by the training on high amplitudes in

the first stage and hence the development of a hypersensitive

behaviour. Other approaches are known to overcome those

issues such as fuzzy logic and wavelet networks [15]. They

offer a much better response to highly fluctuating signals.
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Fig. 5. Single NLARX model: Measured output signal correlated versus
predicted output signal

Among those approaches, Guoyin et al. [16] introduced

three classes of parallel network systems. Here, a parallel

network system with multiple tasks is chosen. Lee [17] states

that due to the approach of more than one network the risk

to get stuck in a local minimum decreases. Additionally, the

performance increases due to the fact that particular networks

handle a specific subspace instead of dealing with the whole

problem.

In the current work the signal is divided into different

vertical layers. Consequently the amplitudes are cut and the

frequency of the residual signal part is decreased. With lower

frequencies the NLARX model promises satisfying results
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Fig. 6. Layer approach with correlating divisions

regarding performance and cost.

By trial and error three layers are determined as a rea-

sonable amount of divisions. The first layer called lower

layer (LL) contains the signal noise and low frequencies.

The remaining part is split into a mid layer (ML) and a

top layer (TL). The ML covers a part of the signal with a

medium density of oscillations and peaks of a smoke value

up to y=0.3. The residual signal peaks are covered by the

TL. Its characteristic is marked by only a few single peaks,

the occurrence of which is not distracted by noise or smaller

peaks. The division borders in this approach are chosen as

outlined in table I and illustrated in figure 6.

TABLE I

DIVISION BORDERS OF THE APPROACH

0 < LL < 0.035 ⇒ ∆yLL= 0.035
0.035 < ML < 0.3 ⇒ ∆yML = 0.265

0.3 < TL < 1 ⇒ ∆yTL = 0.7

Each division is processed and estimated independently.

This leads to a parallel processing model structure as shown

in figure 7. The input vector U with its twelve input signals is

used for all three independent layers whereas the predicted

output is split into the three divisions, top, mid and low.

After estimation they are combined to y′

overall and compared

against the overall measured output.

VI. ESTIMATION RESULTS

An estimation with an artificial neural network (ANN)

is processed by initially training and then validating it

with the corresponding signals. Every layer is estimated

independently. The NLARX-model are initialised with an

arbitrarily state and taught with the corresponding training

data set. Based on this data the NLARX-model is designed

to estimate the desired output signal. The designing process

consists of changing the design parameters in Matlab by

teacher-forced learning until a satisfactory result is achieved.

Design parameters are the input/output delays.

A. Estimation Results for the Lower Layer

The lower part is marked by (1) the lowest values of the

higher oscillations of the signal and (2) small oscillations
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Fig. 7. Scheme of applied model structure

that are introduced by noise. By cutting off a lower part of

the signal a more homogeneous distribution of the height

of oscillations is generated. This enables a better estimation

with the chosen NLARX approach.
The training of the network generates a correlation be-

tween the measured and estimated signal of R2 = 97%. The
coefficient of determination R2 is expressed by equation 3,

R
2 = 1 −

t∑

i=1

(yi − y
′

i)
2

t∑

i=1

(yi − ȳi)
2

, (3)

where yi describes the measured data and y′

i the prediction

respectively.

Validating the network leads to a performance of R2 =
92%, which demonstrates the practicability of the chosen

design. However, the model introduces additional noise to the

signal. This effect is discussed in more detail in the following

sections.

B. Estimation Results for the Middle Layer

This middle layer represents the central section of the

high peaks and the medium peaks. The lowest values of

the large signal excursions are included in the lower layer.

Through training the NLARX model achieves a correlation

of R2 = 93% with the measured signal. The model’s

quality is confirmed by the validation set, which achieves a

performance of R2 = 90%. The performance is predictably

lower than in the first layer due to the higher frequencies.

Higher frequencies occur because of an expanded range of

y-values.

The characteristic of the graph is marked by noise in the

second, low oscillating part of the signal. It is assumed that

this noise is introduced as a result of the network design.

There is a fast response identified by the network when
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Fig. 8. Overall Performance: Training and validation sets estimation in
correlation to measured data

TABLE II

USING RMS AS PERFORMANCE INDICATOR OF MODEL OUTPUT

Layer NARX-Model
train valid

TL 0.8330 0.9163
ML 0.9328 0.9006
LL 0.9743 0.9164

Total 0.9706 0.9616

managing high oscillating signals. In consequence, this leads

to an oscillating estimation signal.

C. Estimation Results for the Top Layer

The top layer covers the high peaks of the signal. Conse-

quently high frequencies are introduced and a lower corre-

lation performance is expected. The design process achieves

a result of R2 = 83% compared to a R2 = 92% for

the validation data. Validation shows a better result because

the main peaks of the validation signal are predicted well,

whereas the training signal shows some missing details in

the middle part for three consecutive spikes.

D. Overall Estimation

The overall estimation is achieved by adding the three es-

timated signals together and correlating it with the measured

output. The comparison of the measured and predicted signal

shows a distribution around the linear correlation in figure

8. The reason that a cluster of points forms close to the

origin is due to the fact that the most of the data samples

are measured in the lower data scope. However, the results of

an overall correlations of the smoke output signal are about

R2 = 97% and R2 = 96% for training and validation set

respectively as illustrated in figure 9. It can be seen that parts

intially classified as difficult due to big amplitude differences

and high frequencies are modelled well. The patterns of

high peaks and high density of oscillations show appropriate

correlations. However, the flatter parts are marked by the

introduction of noise through the model design as mentioned

earlier in connection with the single NLARX attempt.
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VII. CONCLUSION

This paper uses a parallel neural network structure to pre-

dict the smoke output of a diesel engine based on NLARX-

models. The model is chosen due to its good generalisation.

Its weakness of not being capable of high-frequency signals

which is shown with a single NLARX model for comparison,

is overcome by a new approach of frequency filtering.

The NLARX architecture is cut into different layers to

reduce the frequency bands so that it can cope with the

present signal. A lower layer for the signal scope that covers

noise and the base of higher peaks, followed by a middle

layer for medium density of oscillations and a top layer for

the peak tops. Through this approach the frequencies are cut

into smaller bits the model can handle.

A parallel model structure is built, based on this approach,

which is used to process and estimate the layers indepen-

dently. It generates satisfactory results for the available data.

The overall performance lies at 97% and 96% for training

and validation data, respectively. It proves to be a well

designed model which is developed with a convenient and

simple approach.

The performance could probably be improved by intro-

ducing additional layers and decompose frequencies further.

In addition, the practicability of the approach needs to be

tested on further data sets. A further 10Hz smoke data set

is tested and suggests similar good results. It also shows the

generalisation capability by using the developed model on 26

different calibrated engine data runs. Indeed, the performance

decreases but settles at an acceptable level.
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