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Abstract— This paper studies the model reduction problem
for linear continuous-time systems over finite frequency inter-
val. Different form the existing methods in the literature, we
resort the problem to the aid of recently developed Generalized
Kalman-Yakubovich-Popov (GKYP) lemma. A finite frequency
H∞ model reduction design method is presented in terms of
solutions to a set of linear matrix inequalities (LMIs). Numerical
examples are included for illustration.

I. INTRODUCTION

The problem of model reduction is one of the fundamental
problems of system theory and has been extensively
investigated in the last three decades [1] [2]. In general, it
can be stated as follows: Given a full order model G(s), find
a lower order model Gr(s) such that G and Gr are close in
some sense (such as H∞, L∞,H2). Many approaches have
been proposed in the literature [3] [4].

As have been pointed by many researchers (see [5]-[25] et
al), many model reduction problems are inherently frequency
dependent, i.e., the requirement on the approximation
accuracy at some frequency ranges are more important
than others. The behavior of the reduced-order model
near resonances or at a priori known operating frequency
interval should often be as close as possible to that of
the high-order model, even at the expense of larger errors
at other frequencies. To cope with such problems, the
balanced truncation method and optimal Hankel-norm
approximation method have been extensively extended. In
this paper, the extensions of balanced truncation are mainly
concerned since the balanced truncation method deals with
the model reduction problem in H∞ norm while the optimal
Hankel-norm approximation method considers the model
reduction problem in the sense of L∞ norm. Generally
speaking, there are two classes of extension for the balanced
truncation. One is frequency weighted balanced truncation
(see [5] [7] [8] [10] [11] [12] [18] [19] [20] [22] [24] et al),
the basic idea is to introduce proper weighting functions for
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emphasizing the pre-specified frequency interval, however,
the process of selecting appropriate weighting functions
can be tedious and time consuming. The other is frequency
Grammian-based balanced truncation, by extending the
definitions of controllability/observability Grammian form
entire frequency range to a given frequency interval, [12]
[13] [14] [15] [16] [17] [25] suggested an alternative way to
deal with the finite-frequency model reduction problem, in
which the given information about the considered frequency
interval can be combined directly. In some cases, the
frequency Grammian-based balanced truncation method
may produce a better reduced-order model than balanced
truncation. Whereas, worse reduced-order model may be
resulted in other cases. More important, those two extensions
all provide no intrinsic connection between the reduced-
order model design and the desired performance index
(i.e., the maximum singular value of the approximation
error transfer function over the given frequency interval),
and we will show those observations by examples in the
forthcoming section II.

This paper follows a different approach to revisit the
finite-frequency H∞ model reduction problem. In the recent
papers [27] [29] [28], Iwasaki and Hara has generalized
the fundamental machinery of dynamical systems analysis,
the Kalman-Yakubovic-Popov lemma. By generalized
KYP lemma, many finite-frequency characterized design
performance specification can be treated directly. With the
aid of the GKYP lemma, an LMI-based finite frequency
reduced-order model design approach is proposed in this
paper.

The main contributions of the paper include: I) GKYP
lemma is introduced to deal with the finite-frequency model
reduction problems for the first time. II) A proper structure
of the key slack variable matrix is firstly proposed, which
converts the finite-frequency model reduction problem into
a convex programming problem expressed in terms of LMIs.

II. PRELIMINARY/REVIEW AND BACKGROUND

A. Problem formulation

In this paper, we consider the problem of continuous -time
H∞ model reduction over finite-frequency ranges. It can
be generally stated as follows: Given a stable, nth− order
continuous-time transfer function G(s) with the following
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state-space realization:

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t) (1)

where G(s) = C(sI − A)−1B + D, s = jω, and a user-
specified frequency range ω ∈ Θ. Θ is defined in Table
I, where LF, MF, and HF stand for low, middle, and high
frequency ranges, respectively. The reduced-order stable rth-

TABLE I
DIFFERENT FREQUENCY RANGES

LF MF HF
Θ |ω| ≤ ωl ω1 ≤ ω ≤ ω2 |ω| ≥ ωh

order (r < n) continuous-time transfer function Gr is
supposed to be a linear time-invariant operator, which can
be written in the following state-space realization

ẋr(t) = Arxr(t) + Bru(t)
yr(t) = Crxr(t) + Dru(t) (2)

where Gr(s) = Cr(sI −Ar)−1Br + Dr.

The dynamics of (1) and (2) can be rewritten as the following
augmented error system:

ξ̇(t) = Āξ(t) + B̄u(t)
e(t) = C̄ξ(t) + D̄u(t) (3)

where e(t) = yr(t)−y(t) is the approximation error, ξ(t) =
[ xr(t)T x(t)T ]T , and

[
Ā B̄
C̄ D̄

]
=

[
Ar 0 Br

0 A B
−Cr C−Dr + D

]

The H∞ optimal model reduction problem is to find a
reduced-order system (2) to minimize the worst case approx-
imation error e(t) over energy bounded input u(t), this is

min sup
‖u(t)‖2 6=0

‖e(t)‖2
‖u(t)‖2

(4)

This is equivalent to minimizing the H∞ norm of the transfer
function Geu between the input and the approximation error,
which is to find a reduce-order system (2) such that

max
ω
‖Geu(jω)‖∞ = max

ω
‖G(jω)−Gr(jω)‖∞ < γ (5)

However, in this paper, we mainly consider the H∞ model
reduction over limited frequency interval, so condition (5) is
converted to

max
ω
‖Geu(jω)‖∞ =< γ, ω ∈ Θ (6)

B. Review of Related Work and Motivation

B.1 Frequency Weighted Balanced Truncation (FWBT)

The technique details are omitted here for the reasons of
space, please see [1] [5] [7] [8] [10] [11] [12] [18] [19]
[20] [22] [24] and references therein for details. Let us see
the following example.

Example 1: [6] [9] [23]
Consider the 4th order transfer function given by:

G(s) =
(s2 + 0.2s + 1.01)(s2 + 3s + 9.01)
(s2 + 0.8s + 4.01)(s2 + s + 16.02)

(7)

The objective is to compute a 2nd order reduced model which
approximate this transfer function on the particular frequency
range (0.1,2) rad/s. To emphasize the specified frequency
interval, Scroletti et al [23] suggest the use of following
weighting function

Wo(s) =
4(s + 26.5)(s + 0.03774)

(s + 2)2(s2 + 0.02653s + 1)
Wi(s) = 1 (8)

see [23] for details. In the Table II, the reduced-order
transfer functions and the maximal singular value of the
error system σ(E(jω)) = σ(G(jω) − Gr(jω)) over the
specified frequency range are obtained via BT and FWBT
respectively. It can be seen that FWBT does not improve

TABLE II
EXAMPLE 1: BT VS FWBT

Methods Gr(s)
‖E(jw)‖∞
ω ∈ [0.1, 2]

BT 1.051s2+2.771s+2.086
s2+1.091s+14.78

0.7542

FWBT s2+0.2813s+0.9568
s2+0.6191s+8.72

0.7319

the desired performance index significantly (only 2.96%
improvement achieved in this example). In other words,
the selected weighting functions Wi(s),Wo(s) (8) are not
good enough. However, choosing an appropriate weighting
function can be a quite difficult task.

B.2 Frequency Grammian-based Balanced Truncation
(FGBT)

The technique details are omitted here for the reasons of
space, please see [12] [13] [14] [15] [16] [17] [25] and
references therein for details. Let us study the following
example.

Example 2.
Consider the following 4-th order original system:

A =

2
64
−2.218 −1.974 0.306 −1.287
−1.529 −2.809 0.909 −1.141
−1.049 −0.050 −2.144 −1.210
−1.299 1.745 0.345 −2.141

3
75

B =
ˆ −1.712 −0.089 −0.671 −1.800

˜T

C =
ˆ −0.877 −1.252 0.774 −0.111

˜
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Here, the specified frequency range is |ω| ≤ 2. Based on BT
and FGBT, the following 2rd reduced-order model can be
attained ( See Tabel III)

TABLE III
EXAMPLE 2: BT VS FGBT

Methods (Ar, Br, Cr)
‖E(jw)‖∞|ω| ≤ 2

BT

Ar1 =

» −0.4956 −1.2894
−1.2894 −5.9626

–

Br1 =
ˆ

0.6120 0.9584
˜T

Cr1 =
ˆ

0.6012 0.9584
˜

0.1533

FGBT

Ar2 =

» −0.3714 −0.2700
0.2700 −0.1707

–

Br2 =
ˆ

0.5448 −0.0629
˜T

Cr2 =
ˆ

0.5448 0.0629
˜

0.2597

It can be seen that FGBT even gives a worse result than
the standard BT method for this example. In fact, provides
no intrinsic connection between the design method and the
desired maximum singular value of the error systems over
given frequency interval. In other words, FGBT cannot be
considered as a reliable solution for finite frequency model
reduction problem although it works well for many numerical
examples.

C. Preliminaries

The following preliminaries are essential to the later
developments.

Lemma 1: (GKYP Lemma, Iwasaki and Hara [27] [29])
Consider a transfer function matrix G(jω) = C(jωI −
A)−1B + D, and let a symmetric matrix Π be given, the
following statements are equivalent:
i) The finite frequency inequality

[
G(jω)

I

]T

Π
[
G(jω)

I

]
< 0,∀ω ∈ Θ (9)

ii) There exist symmetric matrices P and Q of appropriate
dimensions, satisfying Q > 0, and

[
A I
C 0

]
Ξ

[
A I
C 0

]T

+
[
B 0
D I

]
Π

[
B 0
D I

]T

< 0 (10)

where
Ξ =

[ −Q P + jωcQ
P + jωcQ −ω1ω2Q

]

Lemma 2 (Projection Lemma, Gahinet and Apkarian [30])
Given a real symmetric matrix Ψ and two real matrices P, Q,
the following LMI problem

Ψ + PXQT + QXT PT < 0

is solvable with respect to decision variable X if and only if

NP ΨN T
P < 0,NQΨN T

Q < 0,

III. MAIN RESULTS

Theorem 1.(model reduction over low-frequency ranges)
Consider the approximation error system (3) with given
original system (A,B, C, D) and a non-negative scalar ωl

be given. If there exist matrices G1, G2, G3, Ãr, B̃r, C̃r, D̃r,
and Hermitian matrices P, Q

P =
[

P1 PT
2

P2 P3

]
Q =

[
Q1 QT

2

Q2 Q3

]
> 0

satisfying the following LMI
2
666664

−Q1 ∗ ∗ ∗ ∗ ∗
−Q2 −Q3 ∗ ∗ ∗ ∗
Φ31 Φ32 Φ33 ∗ ∗ ∗
Φ41 Φ42 Φ43 Φ44 ∗ ∗
0 0 Φ53 Φ54 −γ2I ∗
0 0 Φ63 Φ64 −DT

r + DT −I

3
777775

< 0 (11)

where
Φ31 = P1 + GT

1

Φ41 = P2 +
ˆ

I 0
˜T

GT
1

Φ32 = P T
2 + GT

2

Φ42 = P3 + GT
3

Φ33 = ω2
l Q1 − Ãr − ÃT

r

Φ43 = ω2
l Q2 −AG2 −

ˆ
I 0

˜T
ÃT

r

Φ53 = C̃r − CG2

Φ63 = B̃T
r

Φ44 = ω2
l Q3 −AG3 −G3A

T

Φ54 = C̃r

ˆ
I 0

˜− CG3

Φ64 = BT

then there exists a reduced-order system (2) which can be
reconstructed as follows:

Gr(s) =:
[
Ar Br

Cr Dr

]
=

[
ÃrG

−1
1 B̃r

C̃rG
−1
1 D̃r

]

satisfying the specification

σmax(G(jω)−Gr(jω)) < γ ∀ |ω| ≤ ωl (12)

Proof.
According matrix manipulations and Schur complement,
inequality (11) can be rewritten as
2
4

−Q ∗ ∗
P + G ω2

l Q−He(ĀG)−GT ĀT ∗
0 −C̄G −γ2I

3
5

+

2
4

D̄
B̄
0

3
5
2
4

D̄
B̄
0

3
5

T

< 0

(13)
where

G =
[

G1

[
G1 0

]
G2 G3

]
(14)

which can be rewritten as follows:2
4
−Q P 0
P ω2

l Q + B̄B̄T B̄D̄T

0 D̄B̄T D̄D̄T − γ2I

3
5

| {z }
Ψ

−
2
4
−I
Ā
C̄

3
5

| {z }
H

G|{z}
M

2
4

0
I
0

3
5

T

| {z }
RT

−
2
4

0
I
0

3
5

| {z }
R

G|{z}
M

2
4
−I
Ā
C̄

3
5

T

| {z }
HT

< 0

(15)
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Combining Lemma 2 and null space bases calculations, we
have (15) holds means the following two inequalities hold

N (H)ΨN (H)T

=

»
Ā I
C̄ 0

– » −Q P
P ω2Q

– »
Ā I
C̄ 0

–T

+

»
B̄ 0
D̄ I

– »
I 0
0 −γ2I

– »
B̄ 0
D̄ I

–T

< 0

(16)

N (R)ΨN (R)T =

» −Q 0
0 D̄D̄T − γ2I

–
< 0 (17)

From Lemma 1 and (16) one can conclude that (11) gives
a sufficient conditions such that
»

Geu(jω)
I

–T »
I 0
0 −γ2I

– »
Geu(jω)

I

–
< 0, ∀ |ω| ≤ ωl

(18)
which means the performance specification (23) holds,

thus, the proof is completed. ¤

Remark 1
The matrix R of (15) is called multiplier and the matrix G
of (14) called key slack variable here, to derive the convex
condition (11), G is restricted to a particular structure. Hence,
some conservatism may be introduced here, a possible way
to reduce the conservatism is letting G as follows

G =
[

G1

[
λG1 0

]
G2 G3

]
(19)

and using line searches to obtain the final result, where λ is
a scalar. It deserves to emphasize that due to the structured
slack variable G, the Lyapunov matrices (P, Q) are avoided
to be structure restricted, therefore, the conservatism due
to the structure restriction of G can be expected under an
acceptable level.

The following two corollaries provide LMI conditions of
the middle-frequency and high-frequency counterparts of
Theorem 1.

Corollary 1.(model reduction over middle-frequency ranges)
Consider the approximation error system (3) with given orig-
inal system (A,B, C, D) and non-negative scalars (ω1, ω2)
be given. If there exist matrices G1, G2, G3, Ãr, B̃r, C̃r, D̃r,
and Hermitian matrices P, Q

P =
[

P1 PT
2

P2 P3

]
Q =

[
Q1 QT

2

Q2 Q3

]
> 0

satisfying the following LMI

2
666664

−Q1 ∗ ∗ ∗ ∗ ∗
−Q2 −Q3 ∗ ∗ ∗ ∗
Φ31 Φ32 Φ33 ∗ ∗ ∗
Φ41 Φ42 Φ43 Φ44 ∗ ∗
0 0 Φ53 Φ54 −γ2I ∗
0 0 Φ63 Φ64 −DT

r + DT −I

3
777775

< 0 (20)

where
Φ31 = P1 + GT

1 − jωcQ1

Φ41 = P2 +
ˆ

I 0
˜T

GT
1 − jωcQ

T
2

Φ32 = P T
2 + GT

2 − jωcQ2

Φ42 = P3 + GT
3 − jωcQ3

Φ33 = −ω1ω2Q1 − Ãr − ÃT
r

Φ43 = −ω1ω2Q2 −AG2 −
ˆ

I 0
˜T

ÃT
r

Φ53 = C̃r − CG2

Φ63 = B̃T
r

Φ44 = −ω1ω2Q3 −AG3 −G3A
T

Φ54 = C̃r

ˆ
I 0

˜− CG3

Φ64 = BT

then there exists a reduced-order system (2) which can be
reconstructed as follows:

Gr(s) =:
[
Ar Br

Cr Dr

]
=

[
ÃrG

−1
1 B̃r

C̃rG
−1
1 D̃r

]

satisfying the specification

σmax(G(jω)−Gr(jω)) < γ ∀ω1 ≤ ω ≤ ω2 (21)

Proof.
Choosing the multiplier R in (15) as

R =
[

0 I 0
]

and following the same lines for that of Theorem 1, it is
immediate.

Corollary 2.(model reduction over high-frequency ranges)
Consider the approximation error system (3) with given
original system (A,B, C, D) and a non-negative scalar ωh

be given. If there exist matrices G1, G2, G3, Ãr, B̃r, C̃r, D̃r,
and Hermitian matrices P, Q

P =
[

P1 PT
2

P2 P3

]
Q =

[
Q1 QT

2

Q2 Q3

]
> 0

satisfying the following LMI
2
666664

Φ11 ∗ ∗ ∗ ∗ ∗
Φ21 Φ22 ∗ ∗ ∗ ∗
Φ31 Φ32 Φ33 ∗ ∗ ∗
Φ41 Φ42 Φ43 Φ44 ∗ ∗
Φ51 Φ52 Φ53 Φ54 −γ2I ∗
0 0 Φ63 Φ64 −DT

r + DT −I

3
777775

< 0 (22)

where
Φ11 = Q1 + G1 + GT

1

Φ21 = Q2 + G2 +
ˆ

I 0
˜T

GT
1

Φ31 = P1 −GT
1 −Ar

Φ41 = P2 −
ˆ

I 0
˜T

GT
1 −AG2

Φ51 = C̃r − CG2

Φ22 = Q3 + G3 + GT
3

Φ32 = P T
2 −GT

2 −Ar

ˆ
I 0

˜
Φ42 = P3 −GT

3 −AG3

Φ52 = C̃r

ˆ
I 0

˜− CG3

Φ33 = −ω2
hQ1 + Ãr + ÃT

r

Φ43 = −ω2
hQ2 + AG2 +

ˆ
I 0

˜T
ÃT

r

Φ53 = −C̃r + CG2

Φ63 = B̃T
r

Φ44 = −ω2
hQ3 + AG3 + G3A

T

Φ54 = −C̃r

ˆ
I 0

˜
+ CG3

Φ64 = BT
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then there exists a reduced-order system (2) which can be
reconstructed as follows:

Gr(s) =:
[
Ar Br

Cr Dr

]
=

[
ÃrG

−1
1 B̃r

C̃rG
−1
1 D̃r

]

satisfying the specification

σmax(G(jω)−Gr(jω)) < γ ∀ |ω| ≥ ωh (23)

Proof.
Choosing the multiplier R in (15) as

R =
[

I −I 0
]

and following the same lines for that of Theorem 1, it is
immediate.

Noticing that the stability of the reduced-order systems
obtained from Theorem 1, Corollary 1 and Corollary 2
cannot be guaranteed. Thus, we need the following lemma
to derive a stable reduced-order system.

Lemma 3.(stability condition)
Consider the approximation error system (3), Ā (implicitly
Ar) is stable if there exist matrices G1, G2, G3, Ãr, and
matrix Ps:

Ps =
[

Ps1 PT
s2

Ps2 Ps3

]
> 0

satisfying the following LMI
2
64

Ψ11 ∗ ∗ ∗
Ψ21 Ψ22 ∗ ∗
Ψ31 Ψ32 Ψ33 ∗
Ψ41 Ψ42 Ψ43 Ψ44

3
75 < 0 (24)

where

Ψ11 = −qG1 − qGT
1

Ψ21 = −qG2 − q
ˆ

I 0
˜T

GT
1

Ψ31 = Ps1 + pGT
1 + qAr

Ψ41 = Ps2 + p
ˆ

I 0
˜T

GT
1 + qAG2

Ψ22 = −qG3 − qGT
3

Ψ32 = P T
s2 + pGT

2 + qAr

ˆ
I 0

˜
Ψ42 = Ps3 + pGT

3 + qAG3

Ψ33 = −pAr − pAT
r

Ψ43 = −pAG2 − p
ˆ

I 0
˜T

AT
r

Ψ44 = −pAG3 − pGT
3 AT

and p, q are arbitrary given scalars satisfying p2 − q2 < 0.
Proof. It is omitted here for the reasons of space.

Algorithm: Combining Theorem 1, Corollaries 1 and 2 and
Lemma 3, the desired reduced system Gr : (Ar, Br, Cr, Dr)
over different frequency ranges can be obtained by solving
the following optimization problem:

min γ

s.t. (24)(11) for low − frequency range
or (24)(20) for middle− frequency range
or (24)(22) for high− frequency range

(25)

IV. ILLUSTRATIVE EXAMPLES

In this section , we will continue the study of examples
presented in section II to give a comprehensive illustration.

Example 1: (See details in section II)

Using the proposed LMI method of this paper, the reduced-
order model and ‖E(jw)‖∞ , ω ∈ [0.1, 2] are provided in
Table IV

TABLE IV
EXAMPLE 1: RESULTS OBTAIN VIA LMI METHOD

Methods Gr3(s)
‖E(jw)‖∞
ω ∈ [0.1, 2]

LMI Method
of this paper
(p = 1, q = −1)

1.028s2+1.906s−3.207
s2+1.317s+13

0.3874

To see the effectiveness and improvement intuitively, the
singular value analysis of the error systems resulted by BT,
FWBT, and LMI method of this paper are included here for
comparison. See Fig 1.

Fig. 1. Singular value analysis of the error systems in Example 1.

From Fig 1. it is obviously to see that the LMI method
gives a better result.

Example 2.: (See details in section II)

The reduced-order model and ‖E(jw)‖∞ , |ω| ≤ 2 obtain
via LMI method of this paper are presented in Table V

TABLE V
EXAMPLE 2: RESULTS OBTAIN VIA LMI METHOD

Methods (Ar, Br, Cr)
‖E(jw)‖∞|ω| ≤ 2

LMI Method
of this paper
(p = 1, q = −1)

Ar2 =

» −1.2598 −2.6063
−1.0435 −3.2756

–

Br2 =
ˆ −0.9093 0.1476

˜T

Cr2 =
ˆ −0.8036 −1.4141

˜
0.0998
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Fig 2 gives a intuitive exhibition of singular values of the
error systems resulted via different methods.

Fig. 2. Singular value analysis of the error systems in Example 2.

V. CONCLUSION

In this paper, we have investigated the problem of finite fre-
quency H∞ model reduction for linear continuous-time sys-
tems. The generalized Kalman-Yakubovich-Popov (GKYP)
lemma is exploited and an appropriate block structure of
the key slack variable is proposed to formulate it into a
set of LMIs which can be computed by the LMI Toolbox.
Two examples are analyzed to show the advantage of the
LMI-based finite frequency H∞ model reduction approach
proposed in this paper.
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