
  

  

Abstract— System unmodeled dynamics and uncertainties 

are common issues in the design of model based controllers and 

observers.  One way to deal with this is to design an unknown 

input observer to estimate those unknown variables.  However 

it is not feasible, if measurement noises corrupt the estimator 

significantly. This paper proposes a new approach in the design 

of an unknown input estimator with proportional and integral 

terms.  Unlike existing high gain or sliding mode based 

unknown input observers where the high gain is applied at the 

proportional error term, the proposed one applies the high gain 

at the integral term, which will render of less sensitivity to 

measurement noises without sacrificing estimation accuracy.  

The reduction of measurement noises effect is due to the 

property of the integrator that can significantly diminish 

measurement noises. The presented techniques can also be 

applied to a class of uncertain systems to estimate both the 

unknown states and disturbances with less sensitivity to 

measurement noises and less restrictive conditions than those of 

the previous approaches. Two case studies will be presented for 

the application of the proposed estimator to automotive engines: 

The first one is a feedback linearization controller synthesized 

with the unknown input observer for airpath controls of 

turbocharged diesel engines and the second one is to reconstruct 

the signal  of the thermal sensor  which has a slow response.  

I. INTRODUCTION 

Design and implementation of unknown input or 

disturbance observers have received considerable attention 

in the past two decades [1]-[2]. The motivation of estimating 

unknown inputs is due to the fact that their information can 

be beneficial for control robustness, fault detection and 

diagnostics [3]. Its applications to automotive engines also 

showed significant improvement of the engine system 

performance and the reduction of emission [4]-[5].    

There are several classes of disturbance observer 

problems discussed in [3].  This paper focuses mainly on the 

problem of the system subject to unknown inputs or 

disturbances with full state measurement. The objective is to 

estimate the unknown disturbance inputs by using the 

measured states and known signals. Various techniques to 

solve this kind of problems have been proposed. References 

[2], [5] and [6] assumed the structure of disturbance is 

known and can be included in the augmented plant. The most 

common assumption is a piece-wise constant disturbance [5]. 

A sliding mode observer was proposed in [7] and [8] to 
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estimate the unknown inputs, which is used to obtain the 

differentiation of relevant states. In [4] a high gain observer 

was introduced, where the observer applies auxiliary 

variables to estimate unknown inputs. A method called dirty 

differentiation observer is also discussed in [4] to estimate 

the disturbances by the derivative of measured output. As 

described in [4], the techniques mentioned above can 

achieve satisfactory estimation accuracy by choosing large 

observer gains. However, these approaches will amplify the 

measurement noise significantly.   

In this paper, a novel design of the disturbance estimator 

is proposed by applying the state observer and the system 

outputs, as well as their integration to estimate unknown 

inputs. Since the integrator will significantly diminish the 

noise effect, the proposed approach used this property to 

choose the observer gains and is thus less sensitive to 

measurement noises. The developed observer can be further 

applied to a class of uncertain systems [9]-[11] to 

simultaneously estimate unknown states and inputs. The 

amplification of measurement noises due to the need of the 

derivate of output measurement [9] or the proportional high 

gain approach [10]-[11] are avoided in this paper. The 

proposed schemes show less restrictive conditions than those 

of the previous work that bounded unknown inputs is not 

required and it can work for certain nonminimum phase 

systems. On the basis of the developed observers, a new 

approach of airpath controls of turbocharged diesel engines 

is presented. This approach will demonstrate better 

robustness of airpath control design due to system 

uncertainties.  Another example of the application of the 

unknown input estimator is to rebuild the signal of thermal 

coupler which has a slow response.        

II. PROBLEM STATEMENT AND FORMULATION 

Two nonlinear systems will be defined in this section. To 

begin with, a system subject to unknown inputs with full 

state measurement is considered and the second one is a 

class of nonlinear uncertain systems similar to those in [9]-

[11]. The one with full measurement is used as the basis for 

the design of the disturbance input observer and the second 

one is used to estimate both the unknown states and inputs by 

applying the developed estimator. 

A. System with Full State Measurement 

Considering the following nonlinear equation 

0),( Gduygx +=&  (1a) 
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xy =  (1b)  

where nx R∈  is the system state, ng R∈  is a known 

nonlinear function, ru R∈  the known input, ny R∈  is the 

output measurement, md R∈0  is the unknown disturbance 

inputs, which  include  system uncertainties, unknown 

nonlinear functions and unmodeled dynamics, x& nR∈  is 

unknown and mnG ×∈ R  is a known constant matrix which is 

used to describe the distribution of unknown inputs.  The 

objective here is to construct an estimator to estimate the 

input 0d  using only the available signals y  and u . To 

achieve this goal, the following assumptions are introduced.   

 

Assumption 1.  Matrix G  has full column rank. If G  has 

rank deficiency, there will be a nontrivial subspace that any 

disturbance in this subspace will not be able to distinguish 

from zero.  

Assumption 2. 00 ε≤d&& , where )(⋅  denotes the norm 

operator, and 0ε  > 0 is a scalar.  

  Since G  has full column rank, (1) can be rewritten as 

duygx += ),(&  (2a) 

xy =  (2b) 

dGd +=0  (2c) 

where nd R∈  and +G  is the left inverse of G .  From 

Assumption 2, we will have ε≤d&& , ε  > 0.  

Equation (2) will later be used to design the unknown 

input observer in this paper. 

B. A class of uncertain systems 

Considering the following system 

0Gu)f(Y ,AXX d++=&  (3a) 

CXY =  (3b) 

where pR∈X  is the system state, pR∈f  is a known 

nonlinear function, qR∈Y  is the output measurement, and 
pp×∈ RA , 

pq×∈ RC  and mp×∈ RG  are known constant 

real matrices. 

According to [12], if the rank of observability 

matrix )( CA, p≤ , there exists a similarity transformation 

matrix T such that (3) becomes 

0nonoo12nonono GuY,fXAXAX d+++= )(&  (4a) 

0ooooo GuY,fXAX d++= )(&  (4b) 

oo XCCXY ==  (4c) 

where pp−∈ RnoX  is the unobservable state, pR∈oX  is 

the state which is observable, 







=

o

12no

A

AA
A

0

TTT , 

[ ]TT ono XXX = , [ ]TT ono fff = , [ ]TT ono GGG = , 

[ ]oCC 0=TT , )( oo C,A  is an observable pair, pp×∈ RoA , 

pq×∈ RoC  and mp×∈ RoG . 

 Equations (4a)-(4c) will be used to construct the unknown 

state and input estimator. To transform (4) into a desirable 

structure, the following assumptions [9]-[11] are given. 

Assumption 3.  rank ( oG ) = m, which means that both oG  

and G  have full column rank. 

Assumption 4.  rank ( ooGC ) = rank ( oG ). This implies that 

mq ≥ , which means the number of scalar measurement is 

greater or equal to the number of scalar inputs. 

Assumption 5. For every complex number λ  with 

nonnegative part, 








0C

GI-A

o

oo λ
rank = n + m. This means 

the system ],[ ooo C ,GA  is minimum phase.  

III.   DESIGN OF UNKNOWN INPUT ESTIMATOR 

A. A Disturbance Estimator for Systems Described in (2) 

On the basis of system described in (2), the following 

estimator is proposed to estimate the unknown disturbance 

input d , 

duygx ˆ),(ˆ +=&  (5) 

∫ −−−−=
t

dxxKxxKd
0

10 )ˆ()ˆ(ˆ τ  (6) 

where 0K  and 1K  are observer gain matrices, x̂  and d̂  are 

estimates of x  and d , respectively. 

 Without loss of generality, we assume 0K  and 1K  are 

diagonal matrices in the following forms, 
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Subtracting (2a) from (5), gives the error dynamics as 

dx ee =&  (9) 

where xxex −= ˆ  and dded −= ˆ . 

 

Lemma 1. Supposing that Assumption 1 and 2 hold and the 

observer gains ik0  and ik1  are chosen to satisfy the equation  

22
10

2 2 iiiii ssksks ωωξ ++=++  (10) 

where 1 >> iξ 0, iω  is a positive scalar, i = 1, 2, …, n. 

(i) The estimation error de  will asymptotically approach to 

zero if ik1 ∞→ . 

 (ii) If cd =& , where c  is a constant vector, de  will 

exponentially decay to zero. 
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Proof.  (i) Substituting (6) into (9), we have  

ddeKeKe
t

xxx −−−= ∫010 τ&  (11) 

 Taking the derivate of (11) 

 deKeKe xxx
&&&& −−−= 10  (12) 

Taking Laplace transform of (12), and from (7), (8) and (10) 

one can obtain 

)2(

)0()0()(
)(

22
iss

esdsD
sE

ii

iii
xi

ωωξ ++

−+
−=

&&&&
&  (13) 

where )(sEx
&  and )(sD&&  denote the Laplace transform of 

)(tex
&  and )(td&& , respectively and the subscript i  indicates 

the ith element of the relevant vector. 

The initial condition in (13) can be ignored, if the poles of 

(13) are stable. Taking inverse Laplace transform of (13), 

2

2

0

1

)()1sin(

)(

ii

iii

t

xi

dtde

te

ii

ξω

τττξωτωξ

−

−⋅−⋅−
=
∫

− &&

&  (14) 

From (9), (10) and ε≤d&& , we have (14) as 

)4/(1

)1(2
)()(

1
2
010

2/0

iiii

tk

xidi

kkkk

e
tete

i

−

−
≤=

−ε
&  (15) 

From (15) we have die 0→  if 00 >ik  and ik1 ∞→ . 

(ii) If cd =& , then 0=d&& . From (13) one can easily show that 

)(ted ∝ 2/0 tk ie
−

.                 □ 

 

B. Disturbance and State Estimator for (4) 

Lemma 2. Supposing that Assumption 3, 4 and 5 hold, there 

exist transformations 





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=

2

1

ς

ς
TX o  and 
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(4b) and (4c) can be transformed into 
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11 ςη 11C=  (16) 

22 ςη 22C=  

where T , S , 11C  and 1G  are nonsingular matrices, 


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1211
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
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
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(

(
( , 

YSC 1
-1
11

~
1 =ς , YS 2

~
2 =η , the pair  ( 22A , 22C ) is detectable, 

[ ]T21
-1 SSS

~~
= , 1ς  and 2η  are available signals that can be 

obtained from the measured output Y . 

 

 Proof.  Please refer to [9] and [10].         □ 

 

Lemma 3. Supposing (4) can be transformed into (16) and 

Assumption 2 holds. If the state and unknown input 

observers are chosen as 

01211
ˆ(ˆˆ dGu)Y ,fAA 11211 +++= ςςς&  (17a) 

)ˆ((ˆˆ
22122 ςηςςς 2222122 Cku)Y ,fAA −+++=&  (17b) 

∫−−=
t

deed
0

01 11

ˆ τςς 10 KKG  (17c) 

where observer gains k ,  0K  and 1K  are selected such  that 

2222 kCA −  is a Hurwitz matrix, select 0K >0, 1K ∞→ , and 

11
ˆ

1
ςςς −=e , then we will have  

(i)
222

ˆ ςςς e=− 0→  

(ii) 
000

ˆ
dedd =− 0→  

(iii) Furthermore, if noA  in (4) is Hurwitz, then by applying 

the observer  

0nonoo12nonono Gu)(Y ,fXAXAX d̂ˆˆˆ +++=
&

 (17d) 

makes nonoX XX
no

−= ˆe 0→ . 

Proof. (i) From (17b) and (16), one can obtain the error 

dynamics as 
22

)( ςς ee 2222 kCA −=& .  Since from Lemma 2 

( 22A , 22C ) is a detectable pair, one can have 2222 kCA −  be 

Hurwitz such that 
2ςe 0→  exponentially.    

(ii) From (17a) and (16), we have the error dynamics of 
1ςe  

as 
021 1 deee GA 12 += ςς& . Take the derivate of 

1ςe& and from 

(17c), the error dynamics of 
1ςe  will be described by 

2111 01 ςςςς edeee &&&&& 1210 AGKK +−−−= which is similar to 

(12). Since 
2ςe  exponentially decays to zero,  

2ςe&  and 
2ςe&&  

will approach to zero exponentially. Because Assumption 2 

holds and according to Lemma 2 1G  is nonsingular, then 

from Lemma 1, we can choose 0K  >0 and 1K  ∞→  such 

that  
02 1 dee GA 12 +ς  0→ , which implies 

0de 0→ . 

(iii) From (4a) and (17d), we have the error dynamics 

described as 
0deeee noX12XnoX GAA

onono
++=& , where 

ooX XX
o

−= ˆe , [ ]T21
ˆˆ ςςTX o = . Since noA  is Hurwitz, 

0de 0→  and [ ]Tee
2

0 ςT
oX = 0→ , we can conclude that  

nonoX XX
no

−= ˆe 0→ .              □ 

IV. COMPARISON WITH THE APPROACH IN [4]   

In this section, the proposed approach is compared to the 

high gain approach used by Stotsky and Kolmanovsky [4] 

with the following system  

d
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
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 (18a) 

[ ][ ]T21 xxY 01=  (18b) 

211 xxx ))sin(3()2sin(4 ++= td π  (18c) 
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where Y  denotes the measured output, d  is the unknown 

input, and [ ] [ ]TT
12.0)0()0( =21 xx . The objective is to 

estimate d  and unknown state 2x . One can verify that (18) 

satisfies Assumption 2-5 and is in the form of (16). 

For comparison, the method adopted in [4] is used and is 

described in the following. For system (18), a high gain 

observer is defined in terms of auxiliary h  such that  

egg yhh
2

5.0 γγ +−=&  

hyd egh −= γ5.0ˆ  (19) 

where gγ  is a positive observer gain, 11 xx −=
hey ˆ , 

hh 211 xxx ˆ42ˆ +−=& , 
hh 212 xxx ˆ23ˆ −−=& and hd̂  is the 

estimate of d with high gain approach.  

From (17), the proposed PI observer will be  

d̂2ˆ42ˆ ++−= 211 xxx&  

212 xxx ˆ23ˆ −−=&  

∫ −−−−=
t

dtKKd
0

10 )ˆ()ˆ(ˆ
1111 xxxx  (20) 

The observer gains are chosen for (19) such that the 

comparison between (19) and (20) will have the same level 

of estimation accuracy.  Given the observer gains as 

gγ =300, and 0K =15, 1K =2500, the two observers will 

have similar amount of steady-state estimation error, which 

is shown at Fig. 1 where dded −= ˆ  are plotted without 

measurement noise effects.    

 
  

 

Assuming that the measurement is corrupted with ±0.02 

uniformly distributed random signals and sampling time is 

10 ms. The simulation results by applying (19) and (20) are 

plotted at the top and the bottom of Fig. 2, respectively, 

where (20) shows less sensitive to measurement noise than 

that of (19) under the same level of estimation accuracy. 

 

 
 

V. APPLICATION TO AUTOMOTIVE ENGINES 

A: Application to Turbocharged Diesel Engines 

 A turbocharged diesel engine is shown in Fig. 3, which is 

equipped with variable geometry turbine (VGT) and exhaust 

gas recirculation (EGR) to control the airpath flow rate to 

reduce engine emissions and to improve engine performance, 

where imT , imp , emT  and emp  denote temperature and 

pressure of intake manifold and those of exhaust manifold, 

respectively.  

 

 

 

 

 

 

 

 

 

 

 

The highly nonlinear airpath dynamics and the cross 

coupling of the VGT and EGR effects pose a challenge in 

the design of airpath controls. To cope with these problems, 

a disturbance rejection approach based on the observer 

schemes (6) is proposed. According to [13] and [14] a 

simplified third-order nonlinear airpath model is described 

by the following dynamic equations 

11 ),,( duuepWW tegrimemcc ++−= βαφ&    

22 ),,( dukukepWp temegremimemcem +−−= φ&    

33 ),,( dukepWp egrimimemcim ++= φ&          (21)  

where  

( ) ccimec WpkW ταφ /1 −−−= ;  

)(2 fimeem Wpkk +=φ ;  

( )imecim pkWk −=3φ ;  

( ) ( )1~/~ 1 −= − c

im

c

im
pWpk ccim

γγγα ;   

1~

~1

−

−
=

−

c

im

c

p

p

T

T em

a

em

c

mtc

γ

γ

τ

ηηη
β ;  

id , i=1, 2, 3, are added in (21) to account for the system 

uncertainty, un-modeled dynamics and external disturbances; 

imimim VRTk /= ; ememem VRTk /= ; cW , egru , tu , and fW  

denote compressor flow, EGR flow, turbine flow, and fuel 

rate, respectively; imV  and emV are the volumes of the intake 

manifold and exhaust manifold;  ( )RTNVk imedve 120/η= , 

R  is the air gas constant; vη  is the volumetric efficiency; 

dV  is the engine displacement volume; Ne (rpm) is the 

engine speed; mη  is the turbocharger mechanical efficiency; 

cτ  is the compressor time constant; γγγ /)1( −=c ; γ is the 

specific heat ratio; cη  denotes the compressor isentropic 

efficiency; aimim ppp /~ = ; aemem ppp /~ = ; aT  and ap  are 

Fig. 1. Estimation Error de  without Measurement Noises 

Fig. 2. Estimation of  d  by (19) and (20)  

 

Fig. 3. Schematics of Turbocharged Diesel Engine 
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emT  
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Compressor 
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the temperature and pressure of ambient air, respectively and 

tη  is the turbine isentropic efficiency.   

To simplify the controller design, the EGR flow egru and 

turbine flow tu  are used as the control inputs. The 

corresponding actuator positions can then be determined by 

EGR and Turbine flow maps.  Due to the unstable zero 

dynamics of (21) and in order to apply the input-output 

linearization techniques [13], the following outputs are 

chosen, cc WWe −=1  and emem ppe −=2 , where emp  is 

the exhaust manifold pressure set point,  cW  is the 

compressor flow set point. It can be shown that there is a 

unique set point of  imp  with respect to set points emp  and 

cW . From the chosen outputs and the defined variable 

imimz ppe −=  for zero dynamics subsystem.  

Since it has been shown in [13]-[14] the determinant of 

the matrix dG = 








−−

−

emem kk

βα
 will not vanish, and the 

relevant zero dynamics ze  can be shown to be 

asymptotically stable [13], the techniques of output feedback 

linearization can be applied.  From (21) the output dynamics 

of 1e   and 2e  can then be rewritten as  
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  Assuming that signals of imp , emp , cW  and the variables 

in φ  and dG  are either measured or available.  However, the 

values of the variables in φ  and dG  need not to be accurate 

since these uncertainties can be attributed to d . 

From (22) and (6), an observer to estimate d  can be 

described by 
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 (23b) 

An input-output linearization scheme can be established 

from (22) and (23) as 
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Substituting (24) into (23) gives 
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where 1v  and 2v  are new inputs. If dd ˆ−  is made 

sufficiently small by choosing appropriate observer gains, 

(25) will be passive. Asymptotical stabilization of (25) can 

then be accomplished by choosing 111 ev γ−=  and 

222 ev γ−= , where 1γ  and 2γ are positive constants.  Since 

the zero dynamics ze  is asymptotically stable, the linear 

exponentially stable e -subsystem will render a cascade of a 

stable nonlinear ze -subsystem.  

  To evaluate the performance of the controller (24), a full 

order of mean value turbo-charged diesel engine model 

equipped with EGR and VGT was used [15].  

During simulation, the variables imk , emk , α  and β  of 

the controller are held as constants. Some of the parameters 

for example vη , cτ  are set to be half of their true values in 

the controller design. It is expected that the model mismatch 

will be accounted for by d̂ .  Simulation results of intake 

manifold pressure imp  and compressor air flow cW  shown 

in Fig. 4 have perfect regulation which is in contrast to the 

robust controller in [13] whose regulation performance is 

affected by the system mismatch.  This demonstrates that the 

proposed controller’s performance will not be compromised 

under system uncertainties, which implies that accurate 

model information is not required. 

 

 
 

 

B:  Correction of Thermal Sensor Signals 

The production thermocouple sensor used in automotive 

engines normally has slow time responses with the order of a 

few seconds, e.g., with time constant of 4 - 9 seconds.  The 

slow response of temperature sensor may have impact on the 

performance of model based estimation and control schemes.  

In such cases fast thermocouple sensors are desirable but 

they have much shorter life expectation than the slow ones 

do.  The problem of slow response of the thermocouple 

sensor can be compensated by the proposed unknown input 

observer. The dynamics of a thermocouple sensor can be 

represented by a first order lag model [16] as 

( )1/)()( += ssTsT Ttm τ  (26) 

where mT  is the measured temperature, tT  is the actual 

temperature, Tτ  is the time constant of temperature sensor 

and s  is the Laplace operator.  

In (26) we can treat tT  as an unknown input.  On the basis 

of the observer scheme in (5) and (6), the estimator of the 

actual temperature can be described as 

( ) Ttmm tTtTtT τ/)(ˆ)()(ˆ +−=
&

 (27) 

Fig. 4. Tracking of 
imp  and 

cW  by (24) 
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
+−= ∫

t

TTTt dttektektT
0

10 )()()(ˆ τ  (28) 

where )()(ˆ)( tTtTte mmT −= .  

  tT̂  can then be used to replace mT  to compensate the 

measured temperature of the sensor with slow response time.  

The following example is used to demonstrate the observer 

shown in (27) and (28). 

  Assuming that the time constant of the thermal sensor is 

Tτ  = 4.5 sec but the time constant used in the observer 

design is 4 sec to assume a deviation from actual time 

constant.  The temperature sensor is contaminated with ± 10 
o
K random noises.   The temperature sensor is to measure the 

exhaust manifold gas temperature of a diesel engine which is 

obtained from a high fidelity diesel engine model built on the 

basis of the model library from THEMOS [15]. The observer 

gains used in (28) are 0k = -8 and 1k = -100.  A third order 

Butterworth low pass filter is used to filter out the high 

frequency measurement noise.  The sampling time is 10 ms. 

A Federal Test Procedure cycle is used as the simulation 

operating conditions of the diesel engine model.  The result 

of the observer to correct the low response time temperature 

sensor is shown in the following figure where the dotted line 

is the sensor measured temperature, the solid line is the 

corrected temperature derived by the observer and the dash-

dot line is the actual exhaust manifold gas temperature. 

 
 

     

From Fig. 5, we can see that the unknown input observer 

can track the actual temperature well.  This proves that the 

observer based temperature correct scheme is a good 

substitute of the slow temperature sensor. 

VI. CONCLUSION 

In this paper an unknown input observer scheme was 

proposed. The presented approach can be applied to a class 

of nonlinear systems to simultaneously estimate unknown 

states and inputs. Due to the integrator’s ability to 

significantly diminish the measurement noises and the 

choices of observer gains, less sensitive to measurement 

noises than that of existing approaches was achieved and was 

demonstrated by numerical simulation. The proposed 

estimation scheme also has less restrictive conditions than 

those of previous works.  

Based on the proposed observer, a disturbance rejection 

airpath control of turbocharged diesel engine was developed, 

which showed the properties of robustness to system 

uncertainties and less dependency on modeling accuracy. 

Another example is to apply the proposed observer to correct 

the measured temperature with a slow response sensor. The 

case studies demonstrated the proposed estimator’s potential 

usage in automotive engine controls.  
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