
  

  

Abstract—The objective of this study is to propose a 
practical framework for simultaneous estimation of the local 
stiffness and piezoelectric properties of materials via 
piezoresponse force microscopy (PFM). For this, the governing 
equation of motion of a vertical PFM is derived at a given point 
on the sample. Using the expansion theorem, the governing 
ordinary differential equations (ODEs) of the system and their 
state-space representation are derived under applied external 
voltage. For the proof of the concept, the results obtained from 
both frequency and step responses of a PFM experiment are 
utilized to simultaneously identify the microcantilever 
parameters along with local spring constant and piezoelectric 
coefficient of a Periodically Poled Lithium Niobate (PPLN) 
sample. In this regard, a new parameter estimation strategy is 
developed for modal identification of system parameters under 
general frequency response. Results indicate good agreements 
between the identified model and the experimental data using 
the proposed modeling and identification framework.   

I. INTRODUCTION 
 iezoelectric materials are one of the most promising 
materials which have attracted a lot of attention since 
their discovery in the 19th century [1-3]. Ever since 

many works have been carried out in developing 
applications for piezoelectric materials in micro-
electromechanical systems (MEMS) [4 and 5] due to their 
high sensitivity and low electrical noise in sensing 
applications and high output force in actuators compared to 
other conventional designs.  

However, to implement piezoelectric materials in micro- 
and nano-scale structures, the study of size effect in low 
dimensional structures is a crucial step. It has been shown 
that as the dimension of piezoelectric materials reduces to 
microscopic levels, they cannot preserve their macroscopic 
properties, and a significant deviation is observed when 
compared to bulk materials [6]. In this respect, 
characterization of material in low-dimensional scales 
requires different technique than those utilized for bulk 
materials.  

Piezoresponse force microscopy (PFM) has attracted 
widespread attention as a primary technique for 
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nondestructive characterization of piezoelectric materials in 
the grain scale [7-11]. PFM functions based on a periodic 
bias electrical field applied between an electrode on the rear 
side of piezoelectric sample and a conducting AFM tip. The 
piezoresponse of the surface can be detected from the 
harmonic component of the tip deflection in which the 
amplitude of vibration can provide information on the 
piezoelectric coefficients of surface [11 and 12].  

Recently, comprehensive models for dynamic behavior of 
vector PFM system with coupled motions have been 
introduced [13 and 14]. The PFM system has been modeled 
as a suspended microcantilever in contact with a material 
through a small tip. For the purpose of modeling, the 
material was considered to exhibit piezo-elastic [13] or 
piezo-viscoelastic [14] behavior in all directions. The results 
have addressed the contribution of coupled mode on the 
vibration spectra of the other modes for very stiff materials 
[14]. However, the contribution of coupling terms for 
regular and soft materials has been shown to be negligible. 
Despite of all these studies, there is a lack of experimental 
vibration analysis and validation of PFM for a given 
frequency domain data.  Particularly, the local spring 
constant of sample can only be obtained from the modal 
analysis of system. Otherwise, the theory of contact 
mechanics based on the exact geometry of tip/sample 
interaction must be utilized which is difficult in practice.  

The objective of this study is to use modal analysis of 
vertical PFM for low dimensional material characterization 
purpose. In this regard, the governing equation of motion is 
obtained for vertical PFM at a given point on the sample. 
The modal analysis is carried out and the governing ordinary 
differential equations (ODEs) of system and its state-space 
representation are derived under applied external voltage. 
The proposed model is then experimentally implemented to 
identify local stiffness and piezoelectric coefficient of a 
Periodically Poled Lithium Niobate (PPLN) sample. Due to 
the non-homogeneities and uncertainties in the 
microcantilever parameters, a new system identification 
strategy is implemented to simultaneously detect the 
experimental resonances associated with the vertical modes 
and identify the uncertain microcantilever and sample 
parameters. Results indicate successful convergence of 
modeling error for the acquired experimental data. The 
proposed strategy can be useful for accurate characterization 
of biological species with piezoelectric properties.   
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II. DISTRIBUTED-PARAMETERS MODELING OF PFM 
A PFM system can be modeled as a microcantilever beam 

with linear density ρ and rigidity EI, clamped to a movable 
base from one side, and in contact with a piezoelectric 
material on the other side through a small tip with mass me 
(see Fig. 1). When the external electric field is applied 
between the conducting tip and sample, the response of 
material can be divided into viscoelastic and piezoelectric 
parts. The viscoelastic part can be modeled based on Kelvin-
Voigt model (parallel spring and damper), while the 
piezoresponse of material can be considered as a force 
acting on the tip given by ( ) ( )tipF t V tγ= , where γ and V(t) 
represent the piezoelectric coefficient of material and the 
applied voltage, respectively.  

 
Fig. 1. A schematic model of vertical PFM and sample. 

Using the extended Hamilton’s Principle and following 
the same procedure as outlined in [14], the partial 
differential equation (PDE) for the transversal vibration of 
microcantilever in the absence of base motion, which is our 
case of interest (the point scanning problem), can be 
expressed as:  

( , ) ( , ) ( , ) ( , ) 0tt xxxx t xtw x t EIw x t Bw x t Cw x tρ + + + =       (1)                       
with the following boundary conditions: 

(0, ) (0, ) ( , ) 0
( , ) ( , ) ( , ) ( , ) ( )

x xx

e tt xxx z z t tip

w t w t w L t
m w L t EIw L t k w L t C w L t F t

= = =

− + + =
  (2) 

In the above equations, subscripts ( )t⋅  and ( )x⋅  indicate 
the partial derivatives with respect to the time variable t and 
spatial variable x, respectively. B and C are the respective 
viscous and structural damping coefficients of cantilever, kz 
is the spring constant, and Cz is the damping coefficient of 
material.  

To derive the truncated ordinary differential equations 
(ODEs) of system, the modal and forced motion analyses are 
carried out in the next sections. 

III. SYSTEM MODAL ANALYSIS  
In order to obtain natural frequencies and mode shapes of 

the system, the eigenvalue problem associated with the 
transversal vibration of microcantilever is obtained by 
applying free and un-damped conditions to Eqs. (1) and (2) 
which results in: 

( , ) ( , ) 0tt xxxxw x t EIw x tρ + =                           (3) 
with the following boundary conditions: 

(0, ) (0, ) 0
( , ) ( , ) ( , ) ( , ) 0

x

xx e tt xxx z

w t w t
w L t m w L t EIw L t k w L t

= =
= − + =

        (4) 

The solution to ( , )w x t  can be assumed in the following 
separable form: 

       ( , ) ( ) i tw x t x e ωΦ=                              (5) 
where ( )xΦ  is the modal displacement function and ω  is 
the natural frequency of system. Inserting Eq. (5) into Eq. 
(3), the general solution of the modal displacement function 
can be expressed as:  

1 2( ) [sin( ) sinh( )] [cos( ) cosh( )]x K x x K x xΦ λ λ λ λ= − + −  (6) 
where K1 and K2  are  constant coefficients and  

( )1 42 EIλ ρω= . 

Substituting Eq. (6) into the free and undamped boundary 
conditions at x L=  (the second line of Eq. (4)) results in 
following characteristics matrix equation: 

11 12 1

21 22 2
0

A A K
A A K

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
                      (7) 

where     
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Note that boundary conditions at 0x =  have been already 

included in the derivation of Eq. (6).   
The frequency equation can now be obtained by equating 

the determinant of Eq. (7) to zero. This leads to 
determination of system natural frequencies. In order to 
determine the unique solution for the coefficients of mode 
shapes, (K1)i and (K2)i, corresponding to the ith natural 
frequency, the orthogonality condition of mode shapes (the 
normalization condition with respect to mass) is utilized 
which is given by: 

0

( ) ( ) ( ) ( ) , , 1,2, ,
L

i j e i j ijx x dx m L L i j   ρφ φ φ φ δ+ = = … ∞∫   (9) 

where ( )i xφ  and ( )j xφ  are the ith and jth mode shapes of 

system, and ijδ  is the Kronecker delta. The obtained mode 

shapes are utilized in the forced vibration analysis of the 
system which is the focus of the study in the following 
section. 
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IV. FORCED MOTION ANALYSIS OF MICROCANTILEVER   
Using expansion theorem for the beam vibration analysis, 

the expression for transversal displacement can be written 
as:  

1

( , ) ( ) ( )i i
i

w x t x q tφ
∞

=

= ∑                           (10) 

where ( )iq t  are the generalized time-dependent coordinates.  
Inserting Eq. (10) into Eq. (1), multiplying both sides by 

( )j xφ , integrating over the length of the cantilever and 
using the orthogonality conditions given by:  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ,

L

i j e i j ij
0

L
2

i j z i j i ij
0

x x dx m L L

EI x x dx k L L

ρφ φ φ φ δ

φ φ φ φ ω δ

+ =

′′ ′′ + =

∫

∫
           (11)

 

the ODEs representing the forced vibration of system can be 
written as: 

2

1
   ( ) ( ) ( ) ( )i ij j i i i

j
q t C q t q t f V tω

∞

=

+ + =∑              (12) 

where       

   
0

( ) ( ) ( ) ( ) ( ), ( )
L

ij i i j z i j i iC x B x C x dx C L L f Lφ φ φ φ φ γ φ′⎡ ⎤= + + =⎣ ⎦∫       

(13) 
The truncated n-mode description of the beam Eq. (12) 

can now be presented in the following matrix form: 
u+ + =Mq Cq Kq F                            (14) 

where
2

1 2 1 1 2 1

, [ ] , [ ] ,

[ ( ), ( ), , ( )] , [ , , , ] , ( )
n n ij n n i ij n n

T T
n n n n

I C

q t q t q t f f f u V t

ω δ× × ×

× ×

= = =

= = =

          M  C  K

q F… …
                   

(15) 
The state-space representation of Eq. (14) is given by: 

uX = AX + B                                   (16) 
where          

2 2 2 1 2 1

, ,
n n n n× × ×

⎡ ⎤ ⎡ ⎤ ⎧ ⎫
= = = ⎨ ⎬⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎩ ⎭
-1 -1 -1

0 I 0 q
A B X

-M K -M C M F q
                           

(17) 
Once the system is represented in state-space, its 

frequency response can be plotted to demonstrate the 
behavior of system within a desired frequency range. 
Without loss of generality, the displacement of any arbitrary 
point (i.e., 0x L= ) can be taken the system output as 
follows:  

0 0
1

1 0 2 0 0 1 2 0

( ) ( , ) ( ) ( )

[ ( ), ( ),..., ( ),0,...,0] ( ) ( )

n

i i
i

n n L

t w L t L q t

L L L t t

φ

φ φ φ
=

×

= = =

=

∑Y

X C X
      (18) 

The frequency response of the system can now be plotted 
using the transfer function obtained through the Laplace 
transformation of the state-space model as follows: 

1
0

( )( ) ( )
( ) L

Y sG s sI
U s

−= = −C A B                    (19) 

In the next section, an experimental procedure is presented 
for validation of the proposed framework utilized for 
identification of piezomechanical properties of a real 
sample. 

V. EXPERIMENTAL PROCEDURE AND SETUP  
In this study, a commercial AFM (Asylum Research MFP-
3D) with an Au/Cr-coated SiN pyramidal tip on a triangular 
microcantilever (TR400PB, Olympus) are used for 
indentation of sample. The sample is periodically poled 
lithium niobate (PPLN), made by Crystal Technologies, Inc. 
using the electric-field poling technique [15, 16]. The tip is 
positioned on a c– domain using the force panel in contact 
mode. At this location, the frequency of the voltage applied 
to the tip is swept from 0 Hz to 1 MHz. The resulting 
frequency response is depicted in Fig. 2.  

 
Fig. 2. Experimental frequency response plot of PPLN. 

 
   Due to uncertainties and non-homogeneities in the system, 
the resonant frequencies obtained from experimental 
frequency response could also include non-bending modes 
such as torsion. In order to investigate the possible presence 
of other modes, an experimental setup is built using a state-
of-the-art microsystem analyzer, the MSA-400 
manufactured by Polytec Incorporated. The MSA-400 
employs the laser Doppler vibrometry and stroboscopic 
video microscopy to measure the 3D dynamic response of 
microcantilever (see Fig. 3). For this purpose, an input 
voltage of 10V is applied to a piezoelectric actuator at the 
base of microcantilever, and the 3D motion of 
microcantilever is studied at different resonant frequencies. 
It is observed that for the range of frequency swept from 0 
to 1 MHz, the microcantilever operates at different modes 
other than bending. Fig. 4 depicts two examples of bending 
and mixed bending/torsion motions of microcantilever 
captured by MSA-400.  

Since the mathematical vibration model presented in the 
previous section reflects only the vertical motion of system, 
the corresponding experimental resonant frequencies of 
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bending must be separated from non-bending modes. In this 
respect, the following section focuses on an optimization 
algorithm developed for this purpose. 

 

 
Fig. 3. Experimental setup for microcantilever under Micro System 

Analyzer (MSA-400). 
 

 

 
Fig. 4. Examples for 3D motion of triangular microcantilever at (a) pure 

bending, and (b) mixed bending/torsion motions. 
 

VI. MODAL SYSTEM IDENTIFICATION AND MATERIAL 
CHARACTERIZATION 

In order to detect piezomechanical properties of PPLN 
based on the results obtain from theory and experiment, a 
system identification procedure is required to characterize 
the entire system parameters. For this purpose, the 
experimental frequency response of system is utilized for the 
identification of system parameters. From the sharp peaks of 
experimental frequency response (Fig. 2), one can choose 
the system natural frequencies approximately equal to the 
system resonant frequencies. This is due to the fact that 

resonant and natural frequencies are very close for systems 
with low damping ratios. Hence, frequency response peaks 
can be used for the identification of parameters associated 
with free and undamped system. From the equation of 
motion and boundary conditions, the independent 
parameters to be identified include both cantilever 
parameters and the local spring constant of material, which 
are 4 unknowns forming independent parameters’ vector 

[ ], , ,e zP EI m EI k EI Lρ= . 
Since the mathematical model developed in Sections 3 

and 4 reflects only the vertical vibration mode of 
microcantilever and the experimental frequency response 
contains all the resonant modes including vertical and non-
vertical modes within the swept frequency range, an 
efficient method is required to extract the experimental 
vertical modes and use them for accurate estimation of 
system parameters. Here, a double optimization technique 
has been developed and utilized to identify system under an 
uncertain frequency response. For the 4 unknown 
parameters of system, at least 4 vertical resonant frequencies 
are needed for the system identification. To add more safety, 
the first 5 resonant frequencies are selected here. Since the 
first 5 peaks of experiment may include non-vertical modes, 
we have chosen first 10 resonances of experiment so that 
they certainly include all the first 5 vertical modes. Hence, 
the system identification objective selected here is to 
minimize the error between the model and experimental 
frequency responses under initially uncertain system 
parameters and experimental data.  

In general, assume that there are N chosen experimental 
resonances from which M (M < N) vertical peaks must be 
detected. Therefore, the total number of possible 
combinations of M frequencies from a set of N options is: 

( )
!

! !
N N
M M N M

⎛ ⎞
=⎜ ⎟ × −⎝ ⎠

                         (20) 

In every optimization step, the error between the model 
(with M modes) and all the possible experimental frequency 
sets are calculated individually. Then, the one with the 
minimum error value is selected as the best set with the 
highest probability with its frequencies all being the vertical 
resonances. This probability may be low at the beginning, 
however, as the optimization process evolves, the overall 
identification error is minimized and the probabilities of 
choosing the correct resonances and estimating the accurate 
parameter values increase.  

A random optimization algorithm is implemented for the 
parameters estimation using MATLAB programming 
software [17]. Fig. 5a shows the descending trajectory of the 
average error percentage during the optimization process. 
Fig. 5b demonstrates the evolution of selected experimental 
frequencies with respect to optimization iterations. As seen, 
at initial optimization steps, resonant frequencies of model 
search for their optimum positions; as the optimization 
proceeds, they converge to their optimal set, where the 
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identification error is the least. In the meantime, system 
parameters converge to their optimal solution. Table 1 
shows the parameters’ initial values, upper and lower 
bounds, and the final optimal values. For cantilever stiffness 

( )14 25.33 10 .EI N m−= ×  provided by the manufacturer, the 
optimal value of local spring constant of PPLN is 
determined to be 44.2 N/m. The average error percentage 
decreases from 18% to 2% in 500 optimization iterations. 
Fig. 6 depicts the frequency response of identified model 
compared to the experimental resonances. It is clearly seen 
that how the experimental resonances associated with the 
non-bending modes can be detected and skipped by the 
algorithm based on the least error criterion.  
  

  

 
Fig. 5. (a) Average error percentage trajectory in random optimization, (b) 
evolution of selected frequencies associated with the transversal motion. 
 
In order to obtain the piezoelectric coefficient of PPLN, a 

unit step input voltage with duration of 3 milliseconds is 
applied to the sample. The response of PPLN is 
demonstrated in Fig. 7. Since the equivalent spring constant 
in the tip-sample junction can be considered as a parallel 
combination of cantilever and material springs, the 
piezoelectric coefficient ( γ ) at tip-sample junction can be 
expressed as: 

  
Fig. 6. Frequency response of the identified model compared to the 

experimental resonances. 
 

Table 1. System parameters for system identification. 
System 

parameters 
Lower 
bound 

Upper 
bound 

Initial 
values 

Optimal 
solution 

( )3

    

.

EI

kg N m

ρ
 62 10×  68 10×  64 10×  65.1 10×  

( )2

    

.
em EI

kg N m
 10  200  50  110.3  

( )3

 

1
zk EI

m
 150.5 10×  155 10×  152 10×  150.83 10×  

( )L m  6150 10−×  6250 10−×  6200 10−×  6176 10−×  

 

( )b z
hk k
V

γ = +                               (21) 

where the microcantilever spring is 33bk EI L= , zk  is the 
local spring constant of material obtained from frequency 
response, h is the steady-state (static) response of material to 
input voltage V. Using the optimal parameters of 
microcantilever and local spring constant of PPLN from 
Table 1, the piezoelectric coefficient of the PPLN ( γ ) is 
obtained as 2.54 (nN/V) which yields the standard 
piezoelectric coefficient d33=57.4 (pm/V) determined by 

33 zd kγ= . Comparing the obtained values of d33 and the 
steady-state amplitude of unit step response demonstrate that 
the standard piezoelectric coefficient of materials can be 
directly estimated from the steady-state step response. This 
is due to the fact that the spring constant of microcantilever 
is negligible compared to that of the material in static mode. 

VII. CONCLUSIONS 

Utilizing a vertical PFM, a new procedure was introduced to 
estimate the local stiffness and piezoelectric properties of 
materials. It was shown that the dynamics of vertical PFM 
system can be governed by a partial differential equation 
(PDE) with clamped-viscoelastic boundary conditions. A 

a

b
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general formulation was then derived for the mode shape 
and frequency response of the system. Using the expansion 
theorem, the governing ordinary differential equations 
(ODEs) of the system and its state-space representation were 
derived under applied external voltage. Utilizing the 
frequency response of experiment and theory, the local 
spring constant of a piezoelectric material (i.e., PPLN) was 
obtained through minimizing the percentage of modeling 
errors. In this regard, a new parameter estimation technique 
was developed for modal identification of system parameters 
under an uncertain frequency response. Moreover, the 
experimental step response of system was used to estimate 
the standard piezoelectric coefficient of PPLN. 
 

   
Fig. 7. Response of PPLN to the unit step input voltage at test point. 
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