
  

  

Abstract— In this effort, a supervisory switching control 
strategy is proposed for effective control of piezoelectric 
actuators in tracking harmonic trajectories with sudden 
discontinuities. A piezoelectrically-driven nanopositioning stage 
with high resolution capacitive position sensor is utilized in a 
set of experiments to study the performance of controllers 
tuned for tracking of continuous trajectories in tracking of 
stepped trajectories, and vice versa. Using a mixed Lyapunov-
based robust adaptive and PID controller, it is observed that 
the controllers tuned for continuous trajectory tracking 
demonstrate large oscillations with light damping rate in 
tracking of stepped inputs. Conversely, when they are tuned for 
smoother step tracking, poor performance is achieved in 
tracking of continuous trajectories within a desired frequency 
range. Hence, a switching strategy is proposed to track desired 
trajectories using two controllers separately tuned for 
continuous and stepped trajectories. Switching conditions and 
transformation laws are then derived and experimentally 
implemented. Results indicate that the proposed framework 
presents higher performance compared to the individual 
controllers in tracking of discontinuous trajectories. 

I. INTRODUCTION 
variety of current technological applications utilize 
piezoelectric positioning devices to generate controlled 
motions with fast positioning accuracies. Particularly, 

piezoelectric devices have been extensively utilized in optics 
[1], medical surgery [2], microfabrication [3], metrology [4], 
and many other applications with enabling ultra-accurate 
operations. Scanning Probe Microscopy (SPM) is a widely 
used application for atomic and molecular level imaging of 
materials’ surfaces and manipulation of nano-size objects [5-
7]. In a typical SPM, the task of the probe attached to a 
positioning stage is to scan and track the surface of samples 
with random topography variations. Thus, precision and 
robustness are key factors for achieving high-performance 
control through piezoelectric systems.  

Tracking control of piezoelectric devices is limited by a 
number of structural and dynamical effects. Hysteresis 
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phenomenon with its multiple-loop behavior is the most 
limiting factor in accurate positioning of piezoelectric 
systems. All feedforward control strategies need an inverse 
model to compensate the hysteresis effect [8-10]. However, 
there are different scenarios in the closed-loop control. 
Although many feedback strategies have utilized hysteresis 
model as an essential part of their controller [11-13], a few 
have precisely controlled their plant without including a 
hysteresis model [14, 15]. The latter methods utilize robust 
control schemes instead, relying on the fact that hysteresis 
represents a bounded disturbance [15]. Hence, the controller 
can suppress hysteresis effect if it is made robust enough.  

System dynamics are also important in tracking problem, 
especially when precision in a broad frequency range is 
desired. The dynamics of piezoelectric systems are described 
by distributed-parameters representation expressed by partial 
differential equations [16]. However, depending on the 
frequency of operation, the system can be safely reduced to 
lumped-parameters representation. Although a few 
references have adopted distributed-parameters models [16, 
17], many others have considered lumped-parameters 
representation [12-14]. Their justification relies on the fact 
that piezoelectric stages usually have higher resonant 
frequencies than the operational frequency. Hence, the need 
for modeling of higher modes is eliminated when operating 
below the first resonance.  

System constant parameters contain uncertainties due to 
the identification inaccuracy, and are subjected to change 
because of aging and the environmental variations. Hence, 
the collective parametric errors can induce disturbance-like 
forces and degrade the control performance. This 
necessitates the need to augment the controller to adaptive 
laws for such system unknown parameters [14, 15]. The 
incorporation of the robust and adaptive features into the 
control design would lead to high-performance tracking of 
desired trajectories in a broad frequency range despite the 
unmodeled hysteresis effect and parametric uncertainties. 

In general, controllers designed for tracking of time-
varying trajectories are tuned for continuously differentiable 
trajectories. Hence, discontinuities in the desired trajectory 
may lead to significant oscillations of the closed-loop 
system. In many applications, the desired trajectory is not 
stipulated, and may change suddenly in real-time. Hence, the 
controller must be prepared for such events.  

In this article, a switching controller is proposed for 
effective tracking control of high-frequency trajectories with 
discontinuities. The controller structure is based on 
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switching between two separate control modes: a Lyapunov-
based robust adaptive tracking controller and a PID step 
controller. The proposed strategy is shown to offer excellent 
performance in tracking of high-frequency trajectories with 
discontinuities. This strategy is expected to be effectively 
implemented in SPMs for nano-manipulation and imaging 
applications. 

II. MODELING AND CONTROL OF PIEZOELECTRIC SYSTEMS 
To effectively track a time-varying continuous trajectory 

in practice, the controller must be made robust with respect 
to the ever-present disturbances and uncertainties in system 
parameters. In this section, a Lyapunov-based robust 
adaptive control law derived in [14] is utilized for precision 
tracking control of the system. This controller has been 
shown to possess a good performance despite the parametric 
uncertainties and unmodeled hysteresis effect. 

  
A. System Modeling  
A widely-used model for piezoelectric positioning 

systems is a linear second order dynamics with hysteretic 
excitation given by [12-14]: 

{ }2 2( ) 2 ( ) ( ) ( )ξω ω ω+ + =n n nx t x t x t H v t           (1) 
where x(t) and v(t) stand for the system displacement and 
applied input voltage, respectively, ξ and ωn are the system 
damping ration and natural frequency, respectively, and 
H{v(t)} represents a scaled hysteretic relation between the 
applied voltage and the generated force through the 
piezoelectric stack. It is well known that hysteresis is a 
bounded phenomenon [15] which can be divided into a 
linear segment and a bounded variation as: 

{ }( )H v t = ( )( ) ( )ha v t v t+ , ( )hv t M≤         (2) 
where a is the average slope of hysteresis and M is the finite 
bound of its variation from the linear approximation.  
Hence, Eq. (1) can be recast as:  
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Considering the collective effects of ( )hv t  and the ever-
present external and internal disturbances as a single 
bounded input with a static and a dynamic portion leads to: 

   ( )( ) ( ) ( ) ( ) ( ) , ( )+ + = + + ≤cmx t cx t kx t v t d d t d t N      (4)     
with dc and d(t) being the respective constant (static) and 
dynamic disturbances, and N being a finite value 
representing the bound of the dynamic disturbance.  
 

B. Robust Adaptive Control 
In [14], a globally uniformly ultimately bounded 

Lypunov-based controller has been developed for robust 
adaptive tracking control of piezoelectric systems with their 
essential dynamics described by Eq. (4). Defining the 

tracking error as ( ) ( ) ( )= −de t x t x t  with ( )dx t  being the 
desired trajectory, the proposed control law is given by: 
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where σ , 1η , 2η  and ε  are positive control parameters 
satisfying 2η<N , ( ) ( ) ( )σ= +s t e t e t , 
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are the adaptation laws with k1 to k4 being adaptation gains, 
ˆ (0)m  to ˆ (0)cd being approximate parameter values with 

known lower and upper bounds, and [ ]Proj Xθ  is the 
projection operator given by: 

[ ]
max

min

ˆ0 if ( )  and   0
ˆProj 0 if ( )  and  0

otherwise

t X

X t X
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          (7) 

where ˆ( )θ t  represents the adaptation variable (e.g., ˆ ( )m t , 
ˆ( )c t , etc.) with minθ  and maxθ  being its lower and upper 

bounds, respectively. The utilization of projection operator 
guarantees that all the adaption variables stay bounded by 
their lower and upper values, while the stability of closed-
loop system is enhanced. Moreover, the saturation term in 
Eq. (5) is associated with the robustness feature of controller 
against the dynamic disturbances including the hysteresis 
variations. Based on a Lyapunov analysis, the bound of 
steady-state error amplitude can be explicitly expressed as a 
function of control gains as follows:  

    2

1 2

( )
( )

η ε
σ η ε η

≤
+sse t                            (8) 

The full proof of the proposed control law is given in 
[14], and is omitted here for the sake of brevity. However, 
several experiments are performed here to show the 
effectiveness of the proposed method compared to the PID 
controller in tracking control of piezoelectrically-driven 
systems.  
 

C. Experimental Control Results 
A Physik Instrumente P-753.11c PZT-driven 

nanopositioning stage as shown in Fig. 1 is used for the 
experiments here. Experimental data interfacing is carried 
out through a Physik Instrumente E-500 chassis for actuator 
amplifier and position servo-controller along with 
dSPACE® data acquisition (DS1103) controller board. The 
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sampling rate of the controller is set to 20 kHz, and the 
position of the stage is measured by a sub-nanometer 
resolution built-in capacitive sensor. 

 

 
Fig. 1. Experimental setup for the PZT-driven nano-positioning stage. 

 
To verify the effectiveness of the proposed robust 

adaptive control law in a broad frequency range, a 1 µm 
amplitude desired chirp trajectory is considered with linear 
frequency increase from 0 to 300 Hz within 30 seconds.  To 
comparatively assess the effectiveness of the proposed 
control law, a PID controller is implemented as well.  The 
gains of both controllers are tuned in such a way that they 
operate near their best performance for the applied input. 

 

 
Fig. 2. Tracking error comparison between well-tuned robust adaptive and 

PID controllers for a 1 µm amplitude chirp trajectory from 0 to 300 Hz.   
 
Fig. 2 depicts the chirp tracking results.  As seen, the 

proposed robust adaptive controller maintains a good level 
of performance for the entire frequency range, especially for 
higher frequencies. There is a 2.5% peak for maximum 

tracking error at about 25 Hz, while for most of the 
frequencies this value stays below 2%. The PID controller 
produces a linear increase in error amplitude with respect to 
frequency. Although it presents better performance 
compared to the robust adaptive controller initially, its 
performance starts to degrade after about 30 Hz. Tracking 
with PID controller can lead to 20% maximum error 
percentage at 300 Hz, indicating that it is less effective than 
robust adaptive controller in high frequencies. 

Since many applications require tracking of step-like 
trajectories, a 50 Hz rectangular reference signal is applied 
to assess the performance of these controllers. Fig. 3 depicts 
the system response using PID and robust adaptive 
controllers. Although both controllers offer stable 
convergence to the desired trajectory, their transient 
response includes undesirable large oscillations. Hence, the 
control gains are re-tuned to present better and faster 
transient response for stepped trajectory as shown in Fig. 4. 
However, when these gains are utilized for tracking of 
previous chirp trajectory, they yield lower tracking 
performance. This has been shown in Fig. 5, where the 
robust adaptive controller presents about 7% maximum error 
around 40 Hz while the PID controller yields about 75% 
error at 300 Hz. 
 

   

 
Fig. 3. Stepped trajectory tracking using (a) robust adaptive and (b) PID 

controllers tuned for chirp tracking. 

b

a
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Fig. 4. Stepped trajectory tracking using (a) robust adaptive and (b) PID 

controllers tuned for step tracking. 
 

 
Fig. 5. Tracking results of 1 µm amplitude chirp trajectory from 0 to 300 Hz 

for robust adaptive and PID controllers tuned for step tracking.  
 

In SPM applications, the piezoelectric stage is responsible 
for tracking surface topographies with multiple-frequency 
components and frequent stepped-like discontinuities. 
Choosing robust adaptive controller for tracking continuous 
trajectories and PID controller for tracking stepped 
trajectories, two experiments are carried out here for 
tracking of a representative harmonic trajectory with stepped 
discontinuities. Fig. 6 validates that both robust adaptive and 
PID controllers, when implemented individually, cannot 
present acceptable results for such trajectories. 

 
 

  
Fig. 6. Tracking multiple-frequency discontinuous trajectory: (a) Robust 

adaptive controller tuned for chirp tracking, and (b) PID controller tuned for 
step tracking. 

III. SWITCHING CONTROLLER DESIGN 

The objective of switching control is to systematically 
assign different controllers to the system to achieve desired 
objectives with conflicting requirements. More specifically, 
we intend to use the robust adaptive controller for tracking 
of continuous trajectories and switch to PID controller in the 
event of trajectory jumps. Hence, two switching conditions 
need to be specified: (i) the condition for switching to PID 
controller, and (ii) condition for switching back to the robust 
adaptive controller.    

When a jump occurs in the desired trajectory, the position 
error e(t) changes suddenly, depending on the jump 
amplitude; however, the time derivative of the position error 

( )e t  which is approximated by ( )( ) ( )− − ∆ ∆e t e t t t  grows 
significantly at the jump instant because of sudden error 
change in a small time step ∆t . Hence, it can be a good 
indicator of discontinuity in the desired trajectory for 
switching to PID controller. That is, when ( )e t  becomes 

greater than a preset threshold, i.e. ( ) > dtre t e , and the 
robust adaptive controller is in charge of tracking, the 
supervisory control law must switch to PID controller and 
wait until system response converges to the desired 
trajectory. Once the position error e(t) reaches near zero, i.e. 

a

b

a

b
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( ) < tre t e , while the PID controller is operating, the 
supervisory control law must switch to the robust adaptive 
controller again to achieve the ideal performance in tracking 
of the desired trajectory. The proposed switching control 
law can be formulated as:     

( ) : ( if ( ) PID& ( ) )or

 (if ( ) RA & ( ) )
( )

( ) : ( if ( ) PID& ( ) )or 

(if ( ) RA & ( ) )

⎧ − ∆ ∈ >
⎪

− ∆ ∈ >⎪
= ⎨

− ∆ ∈ ≤⎪
⎪ − ∆ ∈ ≤⎩

PID tr

dtr

RA tr

dtr

v t v t t e t e

v t t e t e
v t

v t v t t e t e

v t t e t e

      (9) 

where the term ( )− ∆ ∈v t t X  means the control input at the 
previous time step is generated by controller X. Eq. (9) states 
that the control strategy must stay the same or switch to 
another strategy if one of the switching conditions holds 
true.  

Switching stability and performance depends on a number 
of matching conditions at the switching moments. 
Particularly, when a switching occurs, the activated 
controller starts a new task. Hence, a transformation is 
needed for the time and position coordinates. Fig. 7 
demonstrates switching between the two controllers. At 
every switching moment, the time and position are set to 
zero for the new control task, meaning the coordinates are 
transformed to the switching position. 

Denoting the ith switching time as tsi, and constructing the 
ith coordinate system based on ti and xi (ti), the following 
transformations can be given: 

,
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  (11) 

 

 
Fig. 7. A typical step tracking within tracking of a continuous trajectory 

(controller switches from robust adaptive to PID at the step instant and then 
switches back to the robust adaptive strategy when the response converges).  

Moreover, the adaptation and PID integrals after the 
switching instance are reset due to the time transformation. 
For a general function ( )i if t , this can be written as:  

0
( ) ( )τ τ τ τ=∫ ∫

i

si

t t

i t
f d f d                     (12) 

Since the coordinates are transformed, the control input 
must be transformed as well. That is:   

( ) ( ) ( ),= − <i i si siv t v t v t t t                   (13) 
Considering the transformation proposed by Eq. (10) and 

the results of Eqs. (11) and (12), if the ith switching is from 
robust adaptive controller to PID controller, we can write: 
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And, if the ith switching is from PID controller to robust 
adaptive controller, we have: 
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Eqs. (14)-(16) represent the finial forms of control laws 
for the proposed switching strategy. It is remarked that only 
three changes are made in the control inputs and their 
corresponding signals: (i) resetting the integrals, (ii) 
recording the control input at the switching instance ( )siv t  
and adding it to the original control input after switching, 
and (iii) transforming the position feedback x(t) to 

( ) ( )− six t x t .  
Fig. 8 demonstrates a flowchart of the proposed switching 

control strategy. Setting the initial controller to robust 
adaptive, the condition for stepped trajectory is checked; if 
the answer is positive, the controller switches to PID, and if 
it is negative, it stays on the robust adaptive strategy until a 
step occurs. If the strategy is on PID, the controller checks 
whether the actuator response has reached the desired 
trajectory or not; if the answer is positive, it switches back to 
robust adaptive, otherwise it stays on PID. The controller 
keeps tracking until a termination command is applied. It is 
remarked that any control pairs, one tuned for step tracking 
and the other tuned for continuous trajectory tracking can be 
implemented using the proposed switching strategy.  
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Fig. 8. Flowchart of the proposed switching strategy between robust 

adaptive and PID controllers. 
 

The multiple-frequency sinusoidal trajectory depicted in 
Fig. 6 is given to the switching controller to assess its 
tracking performance. The switching thresholds are set to 

45 10 sec−= ×dtre m  (corresponding to 25 nm step in 
55 10 sec−×  time interval) and 5=tre nm . Fig. 9 depicts the 

tracking results. As seen, the designed switching controller 
is able to smoothly track a trajectory of combined jumps and 
high-frequency sinusoids with excellent performance 
compared to the results depicted in Fig. 6.  

 

 
Fig. 9. Tracking multiple-frequency harmonic trajectory with discontinuities 

using the proposed switching control strategy.  

IV. CONCLUSIONS 
A switching control strategy was proposed for effective 

control of piezoelectric actuators in tracking discontinuous 
trajectories. A Lyapunov-based robust adaptive controller 
and a PID controller were utilized to study their 
performance in tracking of chirp and stepped trajectories. It 
was shown that when the controllers were tuned for chirp 
tracking, they induced large oscillations for stepped 
trajectories. Conversely, when they were tuned for step 
tracking, they demonstrated low-performance chirp tracking. 
Moreover, the robust adaptive controller offered more 

effective performance than PID in chirp tracking, but less 
for tracking of stepped trajectories. Hence, a switching 
strategy was proposed to decide between the robust adaptive 
and PID controllers tuned for chirp and step tracking, 
respectively. The proposed strategy was implemented 
experimentally, and resulted in significant improvements 
using the proposed controller compared to the individual 
controllers.   
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