
 

 

 

  

Abstract—In this article we compare the performance of 
four nonlinear state observers for a combustion engine test 
bench simulator including combustion oscillations, noisy 
measurements and disturbed inputs. These observers are the 
high-gain observer (HGO), the sliding-mode observer (SMO), 
the nonlinear extended state observer (NESO) and the extended 
Kalman Filter (EKF). The different observers are compared in 
open-loop in terms of the mean quadratic estimation error, 
computing time and convergence rate. A first important result 
obtained is that the NESO performance is good, although it 
does not need to know the engine friction model. Then the best 
of these is compared in closed-loop with a partial Luenberger 
observer which requires the knowledge of the model of the 
combustion oscillations. It turns out that we can achieve similar 
tracking results without the knowledge of the combustion 
oscillations model.  

I. INTRODUCTION 
combustion engine test bench mainly consists of a 
combustion engine, a dynamometer and a connection 

shaft. An interesting experiment that is usually performed 
with an engine test bench is the reference tracking of the 
engine speed and torque. In general, for nonlinear systems, 
the tracking problem is solved using a state feedback 
controller. This approach requires that all states are known, 
but this is not always possible through measurements and 
therefore observers are needed.  
As in [1], the state variables of a combustion engine test 
bench are the engine torque and speed, the dynamometer 
speed and the torsion angle of the connecting shaft. Usually, 
the torque and the torsion angle are quite hard to measure. 
On the contrary, the engine and dynamometer speed are 
readily available, but they are perturbed by measurement 
noise and especially engine speed is corrupted by the 
combustion oscillations.  
 A possible approach to solve the unknown state problem 
is to use a state observer. Since the two speeds are known a 
reduced observer would be possible. This solution was 
adopted in [1]. However, in this case, since the combustion 
oscillations strongly affect the observed variables, an 
observer based on an internal model of the combustion 
oscillations is necessary.  
In this paper different nonlinear full state observers are 
proposed: the Extended Kalman Filter (EKF), the High Gain 
Observer (HGO), the Sliding Mode Observer (SMO) and the 
Nonlinear Extended State Observer (NESO). These do not 
require the knowledge of the combustion oscillations model, 
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which is difficult to compute and, only for the NESO, not 
even the knowledge of the engine friction part of the model 
is necessary.  
The EKF is the most widely used [2], although a well-
known difficulty arising through its application is that is 
often necessary either to have a good initial condition so that 
the initial estimation error is sufficiently small or to permit 
functions only weakly nonlinear. To increase the domain of 
attraction and to reduce the time for error decay in [3] a 
slight modification of the extended Kalman Filter is shown. 
A typical observer is the HGO. It was first introduced in [4] 
for the design of output feedback controllers due to its 
ability to robustly estimate the unmeasured states while 
asymptotically attenuating disturbances. Then, there is the 
SMO. Similar to the sliding mode controller, it is designed 
by using a sliding surface and offers robustness against both 
parametric uncertainties and external disturbances. The 
robustness characteristic is achieved by using a high-speed 
switching function, which forces the system to remain on the 
sliding surface [5–7]. Instead, a class of nonlinear extended 
state observers was proposed in [8]. It is rather independent 
of the mathematical model of the plant, thus achieving 
inherent robustness. Furthermore it was also tested and 
verified in key industrial control problems [9, 10]. 

The paper presents a comparison of performances of these 
observers in terms of the quadratic state estimation error, 
computing time and convergence rate for a combustion 
engine test bench model. Then, some of these observers are 
tested in closed-loop, thus constructing a so-called output 
feedback controller which is used for set point tracking of 
the test bench. Hence, these different control systems are 
compared, together with the one presented in [1], in terms of 
reference tracking error. We prove that the results are quite 
comparable, although, in our case, the observer design is 
simpler because it does not require the knowledge of the 
combustion oscillations model. 

The paper is organized as follows. In Section II we 
introduce the mathematical model of the combustion engine 
test bench and a brief reminder of the controller adopted. 
The Section III explains the structure of the observers used 
(EKF, HGO, SMO and NESO). In the Section IV simulation 
results of these observers in open-loop are presented. A 
comparison in terms of mean quadratic error is also 
performed. A comparison in closed-loop, between two of 
these observers and the partial observer of [1], is presented 
in Section V. Finally, conclusions are given in Section VI. 
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II. ENGINE TEST BENCH MODEL 
The typical structure of the combustion engine test bench 

is illustrated in Figure 1.   
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Figure 1 - Combustion Engine Test Bench System 

The main parts of such a system are the dynamometer, used 
to simulate the load, the connection shaft and the 
combustion engine itself. The engine and dynamometer 
speed are measured using incremental encoders and, 
therefore, are known quantities. The engine torque and the 
torsion angle are hard to measure and therefore unknown.  
A typical control design objective for such a system is the 
reference tracking of the engine torque and speed, by 
controlling the air gap torque of the dynamometer and the 
throttle pedal of the combustion engine.  
According to [11], the model of the system can be 
approximated by: 
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where TE is the engine torque, the first part of the torque 
equation is an approximation of the engine friction part, ωE 
and ωD are the engine and the dynamometer speed, ∆ψ is the 
torsion angle of the shaft, m(ωE, TE, α) is a nonlinear 
function with α being the throttle pedal angle and TDSet is the 
torque of the dynamometer; c0, c1 and c2 are positive 
constants, θE and θD are the inertia of the engine and the 
dynamometer, respectively, c and d are the stiffness and 
damping coefficients of the shaft.  
The measured signals, ωE and ωD, are affected by the batch 
behavior of the combustion, which depends on the 
crankshaft angle [12, 13]. Exactly, since each cylinder fires 
every 720° crankshaft angle (720° CA), which means in a 
four strokes engine there is combustion every 180° CA that 
causes the combustion oscillation which is considered as a 
periodic noise to the engine speed. 
In [1] a partial observer based on an internal model of 
combustion oscillations was designed. Exactly, a frequency 
varying internal model observer was designed to reconstruct 

the estimated signal including the periodical signals. In this 
way, from the state of the internal model it is possible to 
calculate the mean value of the reconstructed signals, which 
are necessary for the controller. 
Instead, in this paper four different full state observers have 
been designed without the need of the knowledge of the 
model of the combustion oscillations, because the state 
variables ωE and ωD are measured and observed which leads 
to a kind of filtering. Therefore less model information is 
needed for our proposed observers. 

A. Reminder of the controller 
Recall that the control design objective is to track a desired 

TE and ωE reference trajectory by controlling the inputs α 
and TDSet. To simplify the control project the idea has been 
to approximate the system with an input affine system.  
As in [1] and [14], the system (1) being already in 
Hammerstein form, the idea was to approximate the 
nonlinear map m with a smooth invertible nonlinear function 
m~ , whose inverse, with respect to the control input, exists. 
Thus, as can be seen in [14], a nonlinear input affine system 
is obtained where, now, the input is the map m. 
Once the system is obtained in affine form, it is easy to use 
dynamic inversion control laws [15]. 
Therefore the system takes the following form: 
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where x, u and y being the state, the input and the output, 
respectively, while w is input disturbance.         
In [16] a robust state feedback controller was designed that 
guarantees asymptotic stability of the system (1), for a set 
point tracking problem of the engine. Excatly, the feedback 
controller is an extension of a robust stabilizing controller, 
given from the following law: 
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where R  is a positive definite weights matrix, g(x) is the 
input nonlinear function of the system and where V(x) is a 
control Lyapunov function, which is the solution of the 
partial differential equation of Hamilton Jacobi Bellman. 
Then in [1] the original state has been substituted by the 
state estimate to construct an output feedback controller for 
the engine.  
To obtain a more realistic model, (1) has been augmented 
with a combustion oscillations model. For this reason, in [1] 
an observer including the combustion oscillations model 
(therefore based on internal model principle) has been 
implemented. In this way, it is possible to estimate these 
combustion oscillations in order to compensate the noise 
presents on estimated state. 
Since an observer with internal combustion oscillations 
model is hard to obtain in real applications, in [14] full state 
observers were designed, that do not require the knowledge 
of the combustion oscillations model.  
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III. NONLINEAR OBSERVERS DESIGN 
We briefly introduce the nonlinear observers used in this 

paper.  

A. Extended Kalman Filter 
The EKF is a commonly used method for estimating the state 

of a nonlinear system. The method consists of designing an 
observer for a linearization of the true system along an 
estimated trajectory [17-19].  
For a nonlinear system, input affine, with input disturbance 
neglected, written as: 
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the EKF presents in the following form: 
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where x̂  is the estimated state and K(t) is the observer gain. 
The gain has to be updated online via the solution of a 
Riccati differential equation and, for this reason, this filter is 
computationally onerous. 
The main drawback of this observer is that if the initial 
estimate state is wrong, or if the process is modeled 
incorrectly, the filter may quickly diverge. 

Therefore, to improve the stability of this observer a slight 
modification to the EKF was made. To calculate the 
observer gain K(t) a Riccati differential equation which is 
similar to that one for the EKF is introduced. This equation 
is the following: 

QtPtCRtCtPItAtPtPItAtP TT +−+++= − )()()()())()(()())(()( 1γγ   (6) 
where γ is a positive real number. 
In [20] it has been proven that, with this modification, an 
increased domain of convergence can be obtained. The 
disadvantage of this filter is that the choice of the initial 
condition P(0) of the Riccati differential equation has much 
more effect on the performance of the this observer than on 
the performance of the traditional EKF. 

B. High Gain Observer 
This observer works for a wide class of nonlinear systems 

and guarantees that the output feedback controller recovers 
the performance of the state feedback controller when the 
observer gain is sufficiently high.  
The observer implementation is simple and it requires small 
computational effort. More, an advantageous feature of this 
observer is that it shows robust performance in the presence 
of model uncertainties. 
For the system (4), the HGO has the following form: 
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where O is the Jacobian of the following transformation: 

1

( )
( )

( )

( )

f

r
f

h x
L h x

T x

L h x−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                                      (8) 

where  L is the Lie operator. Kθ is the observer gain to 
project. The coefficients of the gain, used for the 
simulations, are the same shown in [14]. Excatly, the  choice 
of the coefficients guarantees the asymptotic convergence of 
the estimated state. 

C. Sliding Mode Observer 
The sliding mode observer is known for its robustness and 

insensitivity with respect to unknown parameter variations. 
The fundamental difference between the sliding mode 
observer and other observers is that the sliding mode 
observer is usually discontinuous and the state error 
trajectories are more onto a special attractive so-called 
sliding surface. The main part of the design is the 
specification of a switching function, which is selected to 
guarantee desirable performance exhibited by the system of 
interest. 
For an observer problem, the switching function may mostly 
be defined as the error between system and observer output. 
By forcing this switching function to zero, the observer 
output is compelled to equal the system output and, so, a set 
of estimated states that yield the measured system output are 
obtained. 
Exactly, the SMO, for the system (4), has the following 
form: 

⎩
⎨
⎧

=
−⋅Ο++= −

)x̂(hŷ
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where O is always the Jacobian of  (8) and where KSMO is the 
gain, computed by stability analysis. As for the HGO, the 
terms of KSMO  are chosen equal to [14].   

D. Nonlinear Extended State Observer 
The previous methods depend on the full knowledge of the 

plant dynamics. An alternative method is the NESO.  
A first step to realize this observer is that to augment the 
state of the system. In particular the nonlinear part of the 
system, that in our case is the engine friction part, is treated 
as an extended state. In this way, it is now possible to 
estimate this part, by using a simple state estimator. Calling 
n the nonlinear part of the system and e the error between 
the system output y  and the observer output ŷ , the NESO 
structure is the following: 
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where [ ]Tnxz ˆˆˆ =  is the estimated state, with mRx   ∈ˆ , Rn   ∈ˆ , 
pRy   ∈ˆ  A, B and C are the dynamic, input and output 

matrices of the system, respectively; ( ) pmR ×+∈ 1β  is a 
constant gain, finally pRr ∈  is defined as a modified 
exponential gain function:   
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where ρ is chosen between 0 and 1 and δ is a positive small 
number used to limit the gain in the neighborhood of  origin 
of the error. 
It can be seen that for ρ=0 the gain function r in (11) is equal 
to SMO one, while for ρ=1 r is a simple proportional 
observer, like in a Luenberger filter.  
A possible way to compute β is that to use the pole 
placement method, considering the gain linear, i.e. r = e.  
Further, from experiments, it has been observed that good 
results can be achieved for ρ >1. 
Exactly, we have taken as nonlinear part n of NESO design 
this term: 

EEE T)ccc(n 2
210 ωω ++=                        (12) 

From here, the NESO structure for model (1) is the 
following: 
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where r1 and r2 are computed by  (11). 
With respect to the choice of parameters ρ and δ, they have 
been tuned by experimental via, in order to minimize the 
estimate error: 

δ = 1 
(16) 

ρ = 0.5 
Starting with a linear gain r = e, the pole placement method 
has been used to compute the gain β. 

IV. OPEN-LOOP COMPARISON 
In the case of open-loop tests, the observers above are 

evaluated according to their mean squared state estimation 
error, computing time and convergence rate. 
The parameters of the test bench and of the controller are the 
same of [1]. The simulation is obtained with a fixed step 

solver. The mean squared estimation error is computed in 
the interval time of 11-15 seconds.  
The observer design parameters for the EKF, HGO and 
SMO are the same of [14] and thus, for the HGO, the gain is 
the result of a optimization routine that minimizes the 
quadratic error between the measured and the estimated 
mean torque; for the EKF, the output weighting matrix is 
such that the measured engine speed is more penalized than 
the dynamometer speed, while the state weighting matrix is 
such that only the engine torque and disturbance equations 
are penalized. Finally, for the SMO, as well as the NESO, 
the gain has been obtained by hand, always taking into 
account to minimize the estimated state error. 
 Since a typical problem is to track an engine torque 
reference, Table 1 shows the mean squared estimation error 
for each observer, computed on the engine torque and where 
with EKF2 has been indicated the second version of EKF.  
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Figure 2 - Engine Torque (a) and Rotation Angle (b) Estimation 

OBSERVERS MEAN SQUARE 
ESTIMATION ERROR 

EKF 3.37 
EKF 2 3.52 
HGO 3.27 
SMO 5.03 
NESO 3.07 

Table 1 - Mean Squared Estimation Error of the Engine Torque  
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These results show a good performance of NESO. Besides, 
it is to remember that the NESO does not know part of the 
plant dynamics on the contrary of the others observers.  
This aspect is to take into account for a future test on the real 
system. In fact, we remember that the first equation of the 
model (1) is approximated, in order to put the model in 
Hammerstein form. Since all observers have similar 
performance, Figure 2 shows the engine torque and rotation 
angle estimation of NESO and HGO. 
Instead, the Figure 3 shows the comparison between the two 
speeds of the system and the observed ones. 
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Figure 3 – Comparison between Engine and Observed Engine 
Speed (a) and Comparison between Dynamometer and Observed 

Dynamometer Speed (b) 

By Figure 3 it is possible to see as the outputs are very 
noisy. In particular, the engine speed is corrupted by the 
combustion oscillations. Instead, the estimated outputs have 
less oscillations. This proves that the observers realize a 
filtering of the signals and, consequently, also the others two 
state variables, TE and ψ∆ , are filtered.  
Since we are mainly interesting to the engine torque 
estimate, in Figure 4 the initial engine torque estimate errors 
of all observers are compared. We can note as the 
convergence time is almost similar for all observers.  
NESO is initially the worst. This was expected because this 
observer does not assume the knowledge of a part of plant. 
Therefore, this transient could be the time necessary to the 
NESO for estimating the nonlinear part. 
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Figure 4 - Convergence Rate 

The computing time of the observer depends by type and 
number of instructions of the algorithm. EKF is 
computationally onerous. The main aspect of this observer is 
the gain K. In fact it is a dynamic gain. For every iteration it 
is necessary to linearize the model equations, to resolve the 
Riccati differential equation and, finally, to compute the 
gain. It is evident that these operations require many time.  
With respect to the HGO observer, it seems to be the best, 
considering the computing aspect. In fact, the gain is a static 
gain. It is computed off line and only once. 
Same considerations can be seen about the SMO. In fact the 
structure of this observer is similar to HGO one.  
Finally, the NESO observer presents a computing time 
slightly worst, compared to the HGO and SMO. In fact, the 
observer gain is variable and it depends of the output error 
value. In fact, if the output error is smaller of a certain 
threshold, the gain structure changes.  
We can conclude that the HGO is the best with respect to the 
computing time. 
By results obtained above, we can conclude that all 
observers show a good performance in term of estimation 
state and convergence rate. Instead, in term of computing 
time, the HGO shows the best performance.  
While the HGO, the SMO and the EKF are based on the 
knowledge of the model equations, the NESO estimates the 
nonlinear part, which is also the uncertain part of the model.  
For these reasons, it seems reasonable to choose, for a 
comparison in closed-loop with the reduced order observer, 
the HGO and NESO.  

V. CLOSED-LOOP COMPARISON 
In this section a comparison in closed loop among the 

HGO, NESO and reduced order observer is shown.  
In particular, the estimated state is substituted to the original 
state for constructing an output feedback controller. The 
control problem is the tracking of ωE and TE reference 
signals. Figure 5 shows the tracking of the engine torque and 
speed, with the different control systems. The results are 
very similar while the mean squared tracking errors show 
that the minimum tracking error is given from the reduced 
order observer. 
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Figure 5 – Tracking of the engine torque (a) and speed (b) using 
different control systems 

The tracking error for HGO control system is +0.3% 
compared to reduced order observer, while for NESO the 
tracking error is +0.5%.  
 However, the surprising result is that the performances are 
very similar although the NESO and HGO are much less 
complicated respect to the reduced observer.  

VI. CONCLUSIONS 
A comparison study of nonlinear observers, including the 

extended Kalman Filter, the high gain observer, the sliding 
mode observer and the nonlinear extended state observer, 
was performed on a combustion engine test bench model. 
The different observers are compared, in open-loop, in terms 
of convergence rate, mean squared state estimation error and 
computing time.  
The extended Kalman filter is computationally onerous, 
therefore it is very hard to use it on a real application. This 
last aspect has been mainly taken into account for choosing 
the observers to test in closed loop.  
A comparison in closed loop is shown among the high gain 
observer, the nonlinear extended state observer and the 
reduced state observer. They are compared in terms of 
tracking error. 
The first important result of this work is that for full order 
observers the combustion oscillations do not negatively 
affect their performance, therefore it is not necessary to 
construct a filter based on combustion oscillations model, 
which is difficult to obtain in a real application.  

The second important result is that the nonlinear extended 
state observer works well although it does not require the 
perfect knowledge of the model. Taking into account of a 
future application on real engine test bench, this aspect is 
very important. 
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