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Abstract— The behavior of systems of stochastically interact-
ing particles, be they molecules comprising a chemical reaction
network or multi-robot systems in a stochastic environment,
can be described using the Chemical Master Equation (CME).
In this paper we extend the applicability of the CME to the case
when the underlying system of particles is not well-mixed, by
constructing an extended state space. The proposed approach
fits into the general framework of approximating stochastic
processes by Hidden Markov Models (HMMs). We consider
HMMs where the hidden states are equivalence classes of states
of some underlying process. The sets of equivalence classes we
consider are refinements of macrostates used in the CME. We
construct a series of HMMs that use the CME to describe
their hidden states. We demonstrate the approach by building
a series of increasingly accurate models for a system of robots
that interact in a non-well-mixed manner.

I. INTRODUCTION

Modeling stochastically interacting particles is key to

many problems in science and engineering. Chemical re-

actions [1], gene regulatory networks [2], and stochastic

multi-robot systems [3] are examples of systems described

in this fashion. Models of these systems typically consist

of a set of heterogeneous particles stochastically moving

in a reaction volume. The positions, velocities, and internal

states of all particles together make up the microstate of the

system. The stochastic behavior of the microstate captures

all system properties, but microstate models are generally

difficult to analyze due to the enormous size of their state

spaces. However, many system properties of interest do not

require detailed knowledge of the microstates. For example,

the steady state distribution of particle types or the fluctuation

characteristics in the number of particle types do not require

detailed knowledge of the microstate positions and velocities.

As a result, we attempt to build models with a coarser system

description. This is the case in the chemical master equation

(CME) [4] where the state describes the copy number of each

particle type, but not each particle’s position and velocity. In

this paper, we call these coarser states macrostates. Under

the assumption that the particles are well-mixed, that is, they

are uniformly distributed on the reaction volume and diffuse

quickly, the stochastic process describing the development

of the macrostates is a Markov process whose dynamics are

described by the CME [5].

The CME is amenable to many mathematical tools because

the probability mass function of the system states is governed

by linear ordinary differential equations. Further, there exist

efficient exact and approximate algorithms for generating

sample paths [6] and systems engineering tools for creating

and analyzing reduced order models have been applied in [7].

These modeling and analysis tools have been successfully

applied to many of the aforementioned systems of interacting

particles.
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Fig. 1. Histogram of distances between interaction partners. The histograms
show the distribution of distances to the next four interaction partners from
a distinguished part on the Programmable Parts Testbed [8]. The arrows
indicate the hight of the peak near zero when it is out of range. The data
is from simulation of the system described in Section V-D with 24 parts at

a density of ρ = 10 parts

m2
.

However, many interesting real systems are not well-

mixed, so the theoretical underpinning of the CME does

not apply. One approach for dealing with such systems is

to model the whole microstate process. When the stochastic

motion of the particles is described by Brownian motion,

this is the Smoluchowski model and tools for efficiently

simulating sample paths in this model exist [9]. However, this

approach introduces a continuum of states for representing

each particle’s position, which makes tools for the discrete

state CME inapplicable. Instead, we propose to augment the

macrostates of the system using the extended state space

approach, in which each particle keeps track of the types

of previous interaction partners. In this paper we formalize

ideas introduced in [10]. The extended extended state space

formulation is a compromise between explicitly accounting
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for the position, velocity, and identity of each particle,

and only using the copy number of particle types as the

system state. This formulation approximates the dynamics

of the macrostate as a Hidden Markov Model with a CME

description for the hidden states.

In this paper we propose a new approach for producing

tractable models of non-well-mixed processes. An example

system of stochastically interacting robots with this property

is described in [8]. The Programmable Parts Testbed consists

of randomly stirred robots floating on an air table. Specifi-

cally, this paper focuses on the case when the well-mixed as-

sumption underlying the CME does not hold because repeat

interactions between particles are likely. The robots interact

stochastically, but the parts are not well-mixed as Fig. I

indicates. Each histogram shows the distribution of distances

to future interaction partners at the time of an interaction. The

peak close to 0 corresponds to the probability of interacting

again with the same part. The last histogram represent a

uniform distribution of reaction partners over the reaction

domain. The peak is roughly 1
23 high, which is the probability

of picking the same partner from the 24-1=23 options. The

differing shape between the first two histograms in Fig. I

highlights the increased likelihood of reacting with close

neighbors. In Section V we construct a model that captures

this behavior.

The paper is organized as follows. Section II introduces

necessary notation and mathematical background. Section III

discusses properties of the Kullback-Leibler divergence rate,

which we used to quantify the difference between processes.

Section IV introduces a method for approximating arbitrary,

stationary, discrete state, discrete time stochastic processes

by Markov chains and details the construction of Hidden

Markov Models from equivalence classes of the microstate

space. In Section V we define a particular set of equivalence

classes that are designed to capture repeat reactions and

apply this approach to the non-well-mixed Programmable

Parts Testbed.

II. MATHEMATICAL FORMALISM

A. Markov Processes

A discrete time stochastic process X is a collection of

random variables, {Xn}n∈N, parameterized by the natural

numbers N. A stochastic process generates trajectories, i.e.

functions from the index set N to the state space X . A

particular trajectory ω ∈ N → X is an assignment of each

random variable Xn to a particular value x ∈ X . We view a

stochastic process as a probability space on trajectories, i.e.

(N → X, F , P ), where F is generated by cylinder sets [11,

Sec. 2].

A discrete state process with the property that

P{Xn+1 = xn+1|Xn = xn,Xn−1 = xn−1, ...,X0 = x0}

= P{Xn+1 = xn+1|Xn = xn}, (1)

where xi ∈ X is called a Markov chain. Probability measures

with property (1) are called Markov probability measures and
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Fig. 2. Representation of an HMM. The state space of the Markov chain
is X = {0, 1, 2, 3} and represented circles. The numbers on the edges
represent transition probabilities. By adding an output function f : X → Y
this Markov chain can be turned into an HMM, the boxes represent states
that map to the same output.

are memoryless. The one-step transition probabilities,

Aij(n) = P{Xn+1 = j|Xn = i} for i, j ∈ X,

specify the transition dynamics of a Markov chain. In a

stationary process matrix A is independent of n. The initial

distribution of a stochastic process is described by the vector

αi ≡ P{X0 = i}, for i ∈ X . The pair (α,A), completely

describes the probability measure over trajectories of a

Markov chain [11, Thm. 8.1].

A Hidden Markov Model (HMM) is a stochastic process

with state space Y whose probability measure on trajectories

can be described the by a Markov chain X and an output

function f : X → Y , where Y is called the output space.

Since the function f can be many-to-one, the resulting

process Y can be non-Markov although the process X is.

HMMs are a rich class of models and in general can have

random output functions, however, the simpler deterministic

output description suffices for this paper. Like the transition

probabilities, which can be represented as a matrix, f can

be written as a |Y | × |X| matrix B,

Bij =

{
1 if f(j) = i
0 otherwise .

Example 1. Fig. 2 is a schematic representation of an HMM,

with state space X = {0, 1, 2, 3} and output space Y =
{a, b}. The nodes represent states of the Markov chain, the

arrows represent transitions, and the two grey boxes represent

the two output states. The function f is given by

f =






0 7→ a
1 7→ a
2 7→ b
3 7→ b

.

When the Markov chain is stationary and A is irreducible, the

initial distribution α is determined by the relation AT α = α.

The parameters for the HMM in Fig. 2 are

A =





1
2

1
2 0 0

0 0 0 1
1
4 0 0 3

4
1
3 0 2

3 0



 ,
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B =

(
1 1 0 0
0 0 1 1

)
,

and

α = (
6

19

3

19

4

19

6

19
)T .

The Markov chain X is specified by A and α and together

with output function B define an HMM.

B. Equivalence Relations

The remainder of this section is about notation related

to equivalence classes, partitions, and quotient spaces. An

equivalence relation ∼ on a given space X , divides X into

a set of disjoint subsets called equivalence classes. The set of

equivalence classes is called the quotient space and denoted

by X/∼. The map π : X → X/∼ that maps each element of

X to its equivalence class is called the quotient map. Every

equivalence relation on X produces equivalence classes that

form a partition of X , a set of disjoint subsets of X whose

union is X . Similarly, every partition induces an equivalence

relation.

By defining an equivalence relation ∼ on the state space

of a stochastic process X , we can form a new stochastic

process X/∼ by composing Xn with π:

X/∼ = {(X/∼)n}n∈N where (X/∼)n = π ◦ Xn.

In particular, if X is Markov then X/∼ is an HMM with

output space X/∼. If the original process X is stationary,

then so is X/∼.

Example 2. We can create the same process as in Example 1

by defining an equivalence relation on X = {0, 1, 2, 3} such

that

0 ∼ 1 and 2 ∼ 3.

This induces the two equivalence classes {0, 1} and {2, 3}.

If one identifies a ∈ Y from Example 1 with {0, 1} and

b ∈ Y with {2, 3} then the HMM given in Example 1 can

be expressed as X/∼, the output function f is represented by

equivalence classes. States with the same output are in the

same equivalence class.

The notion of refinement gives a partial order on the space

of all partitions. Given two partitions H and H ′ of a space

X , H ′ is a refinement of H , written as H ′ ⊑ H , iff

∀h′ ∈ H ′ ∃h ∈ H s.t. h′ ⊂ h.

The top element ⊤ of this partial order is induced by the

equivalence relation in which all elements are equivalent.

The bottom element ⊥ is induced by the equivalence relation

where every element is equivalent only to itself.

Given a particular partition H of X we construct series

of refinements to build increasingly better HMM approxima-

tions of X . For the remainder of this paper assume that we

have a process X with state space X , a partition H of X ,

and a series of successive refinements Hn such that

⊥ ⊑ ... ⊑ H2 ⊑ H1 ⊑ H0 = H ⊑ ⊤. (2)

The partition H is given by the aspect of the system we want

to model. It should be chosen so that all elements in a h ∈ H

are equivalent with respect to the quantity of interested. For

example, in Section V the partition H is generated by putting

all states with the same copy number of each species in the

same set h ∈ H . Any coarser partition would not capture

this system feature we are trying to model. Associated with

each partition Hn is an equivalence relation ∼n. Given two

partitions in this hierarchy Hn and Hm with n > m, the

coarser Hm naturally defines an equivalence relation on the

finer Hn,

hn ∼m h′
n ⇔ ∃hm ∈ Hm s.t. hn ⊆ hm ∧ h′

n ⊆ hm.

Since this equivalence relation on Hn is induced by the same

equivalence relation that induces Hm on X , we will use

the same symbol to denote both. Further, we identify each

element in Hn/∼m
with the element in Hm that creates it.

With this identification we can view the quotient map π :
Hn → Hn/∼m

as a mapping to Hm instead of Hn/∼m
. For

precision, sub- and super-scripts will be added to the quotient

map π to indicate the involved spaces. For example, with

n > m πn
m : Hn → Hm is given by

πn
m(hn) = hm where hn ⊆ hm.

III. THE KULLBACK-LEIBLER DIVERGENCE RATE

To compare probability measures, P and Q, for a random

process X we use the Kullback-Leibler (KL) divergence rate

or relative entropy rate [12], defined as,

DX(P‖Q) = lim
N→∞

1

N

∑

ω∈XN

P (ω) log

(
P (ω)

Q(ω)

)
. (3)

When this limit exists it is called the divergence rate between

the processes defined under the probability measures P and

Q. For stationary, ergodic processes this limit always exists,

save the absolute continuity requirement, P ≪ Q [13, THM

4.2]. This requirement is satisfied by the approximations

introduced in the next section.

The KL-divergence rate measures how different the prob-

ability measure Q is from a true measure P . Since the

problem considered in this paper is the approximation of

a given process, we let the true measure on trajectories

be the one generated by the original process. The other

distribution, Q in (3), is the measure on trajectories generated

by the various approximations. Since the remaining sections

compare processes on different output spaces, derived from

probability measures on trajectories in the hidden states, the

output space will be added to D as a subscript to avoid

confusion. For example, the expression DX(P‖Q) denotes

the divergence rate where ω ∈ N → X , under two different

probability measures P and Q, while DX/∼(P‖Q) denotes

the divergence when ω ∈ N → X/∼.

Since the KL-divergence rate is an asymptotic property of

two stochastic processes it is suitable to measure differences

in their steady state behavior. The theorems in the next

section all require stationarity, which can be interpreted as a

system starting in its steady state. For transient characteristics

this approach does not capture the differences in probability

measures on trajectories. One possible alternative approach
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is to use the KL-divergence on finite length trajectories.

The immediate difficulty then is computing with probability

measures on the potentially very large discrete space of

possible trajectories. We use this approach to estimate the

KL-divergence rate for a small example in Section V, but do

not explore the theory of creating approximate models that

capture transient behavior. Instead, we leave this interesting

question as future work.

IV. APPROXIMATION

In this section we construct Markov processes that use

equivalence classes of X/∼ as their states. Each such process

is an approximation of the process X/∼ and does not take

into account the larger state space X . We think of the

equivalence classes as macrostates and the state space X
as the microstates. Both the approximation and the original

process define probability measures on N → X/∼ and thus

the KL-divergence rate can be used to compare X/∼ and its

approximation.

A. Markov Approximations

In this section we construct a Markov chain approxi-

mations of an arbitrary stationary process X . We give the

optimal choice for the transition probabilities, in the sense

that this choice minimizes the KL-divergence rate between

the original process and its Markov approximation.

Definition 1. Given an arbitrary stationary stochastic pro-

cess X , a Markov approximation X̂ is a Markov chain that

has the same state space as X .

Any choice of (α,A) will define a Markov process with

state space X . For X̂ we pick the initial distribution α as

α̂i = P̂{X̂0 = i} ≡ P{X0 = i}. (4)

In addition, we choose matching one step transition proba-

bilities. For i, j ∈ X ,

Âij = P̂{X̂1 = j | X̂0 = i} ≡ P{X1 = j | X0 = i}. (5)

Assignments (4)-(5) define a probability measure P̂ on

trajectories of X̂ as described in Section II-A. When the

original process X is Markov, then P and P̂ will be the

same for all trajectories. However, when the original process

is not Markov, then the Markov approximation X̂ will match

only the one step transitions of X , but will define a different

probability measure on trajectories.

Example 3. Let Y the the output process X/∼. The Markov

approximation Ŷ is given by the initial conditions

α̂ =

(
α0 + α1

α2 + α3

)
=

(
9
19
10
19

)

and one step transition probabilities

Â =

(
2
3

1
3

3
10

7
10

)
.

The entries of Â can be computed from the underlying

process X . For example, the (1,1) entry or A is given by

P{X1 ∈ {0, 1} | X0 ∈ {0, 1}} =∑

i,j∈{0,1}

P{X1 = j | X0 = i}P{X0 = i | X0 ∈ {0, 1}}

= 1
2

6
9 + 1

2
6
9 + 0 3

9 + 0 3
9 = 2

3

Theorem 1. [13, Remark 4.7] Choosing the parameters α̂
and Â for the Markov approximation as in (4)-(5) minimizes

the KL-divergence rate, DX(P‖P̂ ), between a stationary X
and the Markov process X̂ .

The remark in [13] sets up a minimization problem for

the KL-divergence rate. The resulting optimization problem

can be explicitly solved via Lagrange multipliers, see Ap-

pendix A.

Given a partition Hn of the state space X in the hi-

erarchy (2) we use the following notation. The Markov

approximation X̂/∼n
of X/∼n

is a Markov chain with state

space Hn. Once again, we specify X̂/∼n
by an initial

distribution and transition probabilities according ton (4)-

(5). Denote the resulting probability measure on trajectories

N → Hn by P̂n.

B. HMM Approximations

Recall that for process X with state space X , we have

a partition H that is determined by some quantity we are

interested in modeling, and a fixed series of successive

refinements Hn (2). Our goal is to build a hierarchy of

HMMs that can serve as approximations for a macrostate

process X/∼0
. For each partition, Hn, in the refinement (2),

we construct a Markov chain approximation X̂/∼n
If m < n,

we can construct an HMM (X̂/∼n
)/ ∼m by using πn

m as the

output map.

For example, (X̂∼3
)/ ∼1 is the HMM that has the Markov

approximation of X/∼3
as its hidden states and π3

1 : H3 →
H1 as its output function. The KL-divergence rate between

this process and X/∼1
is denoted by

DH1
(P‖P̂3). (6)

Theorem 2 and Conjecture 3 relate the divergence rates

of the different HMMs that can be formed within the hierar-

chy (2). First, we relate processes with the same probability

measure on its hidden state states, but with different output

spaces.

Theorem 2. Given a stationary stochastic process X with

state space X , a probability measure P and two partitions

Hm ⊑ Hn of X in the hierarchy (2) the following relation

holds,

DHm
(P‖P̂k) ≥ DHn

(P‖P̂k)

with n ≤ m ≤ k.

Proof: We prove the statement for two arbitrary

probability measures P and Q. The proof uses Jensen’s

inequality to show that this relation holds for each term

in the limit for (3). Fixing N , a term from DHm
has the form

740



∑

ω∈HN
m

P (ω) log

(
P (ω)

Q(ω)

)
=
∑

ρ∈HN
n

∑

π(ω)=ρ

P (ω) log

(
P (ω)

Q(ω)

)

(8)
For a fixed ρ ∈ HN

n , looking only at the inner sum gives

−
∑

π(ω)=ρ

P (ω) log

(
P (ω)

Q(ω)

)
=

∑

π(ω)=ρ

P (ω) log

(
Q(ω)

P (ω)

)
.

(9)
Because log is a concave function, applying Jensen’s in-

equality to (9) gives

1∑
ω P (ω)

∑

ω

P (ω) log

(
Q(ω)

P (ω)

)
≤ log

(∑
ω Q(ω)∑
ω P (ω)

)
,

(10)
where

∑
ω stands for

∑
π(ω)=ρ. Using expression (10)

in (9) yields

∑

ω

P (ω) log

(
P (ω)

Q(ω)

)
≥
∑

ω

P (ω) log

(∑
ω P (ω)∑
ω Q(ω)

)
,

(11)

where the right hand side is equal to P (ρ) log
(

P (ρ)
Q(ρ)

)
.

Finally, establish that

1

N

∑

ω∈HN
m

P (ω) log

(
P (ω)

Q(ω)

)

=
1

N

∑

ρ∈HN
n

∑

π(ω)=ρ

P (ω) log

(
P (ω)

Q(ω)

)

≥
1

N

∑

ρ∈HN
n

P (ρ) log

(
P (ρ)

Q(ρ)

)
.

It follows that DHm
(P‖Q) ≥ DHn

(P‖Q) since the rela-

tion is true for each term in the limit (3). By inspecting

relation (11), we note that equality holds when probabilities

have a constant ratio on each equivalence class in Hm,
P

ω
P (ω)

P

ω
Q(ω) = P (ω)

Q(ω) .

The following conjecture relates processes with the same

output space, but different hidden states.

Conjecture 3. Given a stationary stochastic process X ,

a hierarchy of partitions (2), and the associated Markov

approximations we have

DHn
(P‖P̂m) ≤ DHn

(P‖P̂k) (12)

with 0 ≤ n ≤ k ≤ m.

Both the left and right hand side of (12) correspond to the

divergence of the original macrostate process X/∼n
and an

HMM approximation. The difference between the left and

right hand expressions is that the HMM on the left has as

its hidden states a finer Markov approximation than the right

hand side.

The reason we believe this conjecture to be true is that

the trajectories of hidden states on the left hand side of (12)

contain more information about the original process than the

hidden states on the right hand side. By Theorem 1, the

Markov approximation of the hidden states is optimal for

the trajectories in the hidden states, so it should also lead to

a good HMM approximation as well.

Theorem 2 suggests that in order to make a more accurate

model of a process one could simply decrease the size of

the output space by going up the hierarchy of refinements

to a coarser partition. In fact, if the output space is ⊤, then

the divergence rate is zero no matter what the underlying

state space is. However, as indicated in (2), H0 corresponds

to some given partition H that is determined by the process

we want to model. H specifies the least amount of detail

the output space must have. For example, in the next section

the coarsest equivalence relation is the one resulting in the

macrostates used by the CME.

Fig. 3 illustrates the results of Theorem 2 and Conjec-

ture 3. In order to decrease the KL-divergence rate between

the original process and an approximation, one can either

increase the size of the hidden state space, or decrease

the size of the output space. The approach taken when

constructing the extended state space for stochastic reaction

networks in the next section, is to increase the size of the

state space for constructing more accurate models.

D
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Increasing size

of States Space

· · ·

· · · DH3
(P‖P̂3)

≤

· · · DH2
(P‖P̂3) ≤ DH2

(P‖P̂2)

≤ ≤

· · · DH1
(P‖P̂3) ≤ DH1

(P‖P̂2) ≤ DH1
(P‖P̂1)

≤ ≤ ≤

· · · DH0
(P‖P̂3) ≤ DH0

(P‖P̂2) ≤ DH0
(P‖P̂1) ≤ DH0

(P‖P̂0)

Fig. 3. Relation between the various Markov approximations. The arrows
indicate the direction of increasing accuracy. The dark shading indicates
Markov models, the light shading indicates HMMs.

V. APPLICATION TO REACTION NETWORKS

In this section we introduce a model for non-well-mixed

chemical reactions and propose a refinement hierarchy that

captures repeat reactions. We then use this hierarchy to define

an extended state space for chemical reaction networks.

Finally, we apply the extended state space approach to the

robotic system introduced in Fig. I.

A. Microstate Model

In the microstate model for chemical reactions particles of

different types1 S move randomly in a reaction domain. If

two particles encounter one another they may react according

to a set of possible reactions, Ψ. The positions, velocities,

orientations, and internal states of the particles define the

microstates of the system. Denote the set of all possible

1In the context of chemical reactions the types are chemical species. In
our model particles can change their type, so we avoid the name species,
since it implies some fundamental description of the particle that does not
change spontaneously.
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positions, orientations, and velocities for each particle by V .

The state space for a microstate process with N particles is

X = SN × V N .

The particles move in the reaction domain according to

the microstate process X . When two particles are in close

proximity, they can react according Ψ and change their type.

The details of the interaction depend on the physical system,

but reactions generally require proximity. For the detailed

reaction mechanism between the robots from Figure I see [3].

The set of reactions Ψ considered for the remainder of the

paper is

Ψ =






2A ⇀ 2B
2B ⇀ 2C
2C ⇀ 2A .

Reaction network Ψ is cyclic in the sense that reactions occur

even when the system is in equilibrium. This is important

since the theoretical development in Section IV is applicable

only to stationary systems.

B. Macrostate Model

In this section we describe the macrostates used in the

CME in terms of an equivalence relation on the microstates.

This will form the coarsest partition in a hierarchy of

partitions used to define the extended macrostate in the next

section.

In the CME the macrostates of the system are the copy

number of each particle type. When the system is well-mixed

the next reaction only depends on the current macrostate,

since the positions, velocities, and orientations of all particles

at the time of the last reaction are rapidly mixed to their

steady state values and do not influence the next macrostate

transition [4].

Let Π1,N : X → SN be the projection of X onto the

components 1 through N , and SN the group of permutations

of the N indices. The equivalence relation defining the CME

macrostates is,

x ∼0 x′ ⇔ ∃σ ∈ SN s.t. Π1,N (x) = σ (Π1,N (x′)) ,

for any x, x′ ∈ X . The expression on the right hand side

highlights two essential features of the macrostate. The

projection Π indicates that only the particle types matter and

the permutation of indices indicates that the macrostate does

not keep track of particle identities.

C. Extended Macrostates

In this section we construct a hierarchy of equivalence

relations that is tailored to capturing repeat reactions. The

motivation for this particular hierarchy of refinements is

that even when repeat interactions between individual par-

ticles are likely, they can only affect the macrostate if they

are between appropriate types. Instead of keeping track of

individual pairs that are likely to re-react, we only keep

track of the type of previous reaction partners. In a given

reaction network only repeat reactions between certain types

can change the macrostate. Keeping track of the number

of possible repeat reactions that can change the macrostate

should capture this behavior.

In order to facilitate the construction of the extended

state space, we first augment the microstates such that each

particle has a history of the types of previous interaction

partners. This does not change the stochastic behavior of

the system. To preserve the finite nature of the state space,

assume that each particle has a history length of L of the

types of particles it has encountered on the reaction domain.

Given a set of N particles the state space X for the new

microstate process X describing this system of interacting

particles is

X = SN × (SN )L × V N .

The first (1+N)×L components are extended types, and the

last N components are positions of particles in the reaction

domain.

Let ∼0 be the equivalence relation that x, x′ ∈ X are

equivalent iff they have the same copy number of each

species, which induces macrostates of the CME. Let the ∼n

be defined as follows. Two states are similar x ∼n x′ iff

∀k ∈ {0, n} Π1+kN,(k+1)N (x) = σ(Π1+kN,(k+1)N (x′)).

The same σ has to work for all the history states in order

for two states to be similar. An immediate consequence of

this definition is that

x ∼n+1 x′ ⇒ x ∼n x′. (13)

Property (13) implies that this set of equivalence relations

induces a hierarchy of partitions as described in section IV-

B. Now we can construct a new reaction network Ψn

that correspond to the admissible state changes in Hn. For

example, in H1

Ψ1 =






2AA ⇀ 2BB

2AB ⇀ 2BB

2AC ⇀ 2BB

AA + AB ⇀ 2BB

AA + AC ⇀ 2BB

AB + AC ⇀ 2BB

A∗ + B∗ ⇀ AB + BA

A∗ + C∗ ⇀ AC + CA

B∗ + C∗ ⇀ BC + CB

B∗ + B∗ ⇀ 2CC

C∗ + C∗ ⇀ 2AA ,

where ∗ ∈ {A,B,C} is a wild card that describes all

possible species types. The letters indicate the particle type

and the subscripts indicates the history of types. For example,

AB denotes a particle of type A whose last interaction was

with a particle of type B. Similarly, higher order extensions

of Ψ are written by having more history states, for example

AABC + ABBC ⇀ BBAB + BBBB

is a reaction from Ψ3 on H3. Each extended reaction network

Ψn can be thought of as an HMM approximation of the

macrostate process, by considering πn
0 as the output function.
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The reaction network Ψ1 has the important feature that

2AA ⇀ 2BB

is considered a different reaction than, for example,

AA + AB ⇀ 2BB .

This allows the two reactions to have different rates of oc-

curring when repeat reactions are likely. This is not possible

in the CME model of Ψ.

D. Numerical Example

The Programmable Parts Testbed [8] consists of trian-

gular robots. Every robot has a magnetic latch and an IR

transceiver on each side. We refer to these robots as the

programmable parts. They float on an air-hockey table and

are randomly mixed by air jets that are mounted along

the perimeter of the table. The following experiments were

conducted using a high-fidelity mechanics-based simulation

of the system [3]. In all experiments the average kinetic

energy per robot, is kept at 5×10−4J by adjusting the mixing

strength. This is analogous to performing experiments at a

constant temperature.

We implemented the reaction network Ψ with the pro-

grammable parts, where the type is represented by an in-

ternal state of the parts. The state can only change upon

temporarily latching with another part of appropriate type.

We then ran simulations until the system reached steady

state and collected trajectories and estimated rates as in [3].

Additionally, we took into account interactions that did not

change the macrostate to estimate the probability of self

loops. We used this data to extract the embedded Markov

chain of the system.

The trajectories started from a small number of parts

(initial macrostate = (2, 1, 1)′). As a result there are only

a few reachable macrostates. This restriction allowed us to

gather enough data to estimate the measure P for fixed length

trajectories and compute the KL-divergence. Fig. I suggest

that after four interactions the system is roughly well-mixed.

We considered trajectories of length 8, making the problem

computationally feasible yet sufficiently long to mix away

spatial aspects.

Specifically, there are only 3 macrostates resulting in 38 =
6561 different trajectories of length 8. However, not all of

these trajectories are feasible due the restrictions imposed

by Ψ. We used simulations to estimate P on this space and

compared it to the probability measures induced by different

approximations. The results of this comparison are shown in

Fig. 4.

This example shows the extended state space approach

producing models with less KL-divergence from the original

process than a Markov approximation. Also, the data suggest

that the mixing in the system is such that keeping the type

of more than two previous reaction partners in the state

provides little improvement. This observation is consistent

with the data displayed in Fig. I and justifies only using

short trajectories for estimating the KL-divergence.
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Fig. 4. This figure shows an estimate of DH0
(P‖ bP0)), DH0

(P‖ bP1)),

DH0
(P‖ bP2)), and DH0

(P‖ bP3)) of the system described in Section V-
D. Each estimate has a label indicating the type of approximation the KL-
divergence is computed with respect to. The estimate is formed by looking at
finite trajectories ω ∈ {1, ..., 8} → H . The error bars result from different
sets of Monte Carlo simulations for estimating the probability measures of
the approximations.

VI. DISCUSSION

The contributions of this paper are (1) to introduce general

approach of state space refinements to construct a series of

HMMs, (2) to use HMM tools to analyze reaction networks,

and (3) to construct the extended state space, which can

capture repeat reactions in reaction networks. The extended

state space is able to capture spatial aspects of the particle

interactions without explicitly modeling space itself.

The theory developed in Section IV only requires a series

of refinements. The hierarchy chosen in Section V is phys-

ically motivated, but by no means the only possible choice.

One avenue for future research is to compare different

refinements. In addition to trying different physically mo-

tivated refinements schemes, we would also like to address

the problem of automatically generating optimal refinement

schemes from data. This is different from the question of

finding optimal HMM approximations as in [13], since we

require the states of the HMM to be equivalence classes of

some microstate model. Such analysis could not only yield

reduced order models, but also give physical insight into the

dynamics of the system.

The utility in expressing the hidden states of an HMM as

a reaction network, is that one can apply linear ODE and

systems engineering tools to the hidden sates of the HMM,

while the output function allows the model to capture some

of the non-well-mixed aspects of a system.

The optimality of the Markov approximation depends on

the measure used to asses the distance between stochas-

tic processes. The KL-divergence rate used here captures

asymptotic differences corresponding to the steady state.

Using a similar approach with a different distance measure

could allow the development of approximate models that

are geared toward reproducing the transient behavior of a

arbitrary stochastic processes.

We intend to formally prove the claims of Conjecture 3.
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We would also like to extend the work to include the continu-

ous time case since this would allow reasoning about rates in

reaction networks. We would like to find out how the basic

rates used in chemical reaction networks are connected to

the analysis presented here, which focuses on the Markovian

aspect only.

APPENDIX

A. Proof of Theorem 1

Here we show that the transition probabilities and states

as defined in Section IV-A define the Markov process mini-

mizing the KL-divergence rate between the original process

and its approximation. The approach is to minimize the

expression for KL-divergence rate over all possible Markov

transition probabilities via Lagrange multipliers. It will be

useful to only look at short sections of a trajectories. Let

Xm
n denote the set of of trajectories that are only specified

from time {n, n + 1, ...,m − 1,m} ⊂ T . Equation (3) can

be rewritten as

DX(P‖P̂ ) = lim
n→∞

1

n
EP log

(
P (Xn−1

0 )

P̂ (Xn−1
0 )

)
,

where EP is the expectation with respect to the probability

measure P .

DX(P‖P̂ ) =

lim
n→∞

1

n
EP log

(
P (Xn−1

0 )
)
− lim

n→∞

1

n
EP log

(
P̂ (Xn−1

0 )
)

.

The first term on the RHS is finite since the original process

is stationary, and does not depend on the choices of transition

probabilities so it can be replaced by a constant C.

DX(P‖P̂ ) = C − lim
n→∞

1

n
EP log

(
P̂ (Xn−1

0 )
)

.

Next note that due to the stationary Markov transition struc-

ture of P̂ the expression simplifies according to arguments

in [13] resulting in

DX(P‖P̂ ) = C − EP log
(
P̂ (X1|X0)

)
.

We want to optimize this expression over all non-negative

P̂ (X1 = j|X0 = i) with the constraints that

gi(P̂ (X1|X0)) =

N∑

n=1

P̂ (X1 = n|X0 = i) = 1 ∀i ∈ X.

For notational convenience let

pji = P (X1 = j,X0 = i)

and note that

Âij ≡ P̂ (X1 = j|X0 = i)

The Lagrangian then is

L(Â, λ1, ..., λn) =

C −

N∑

i=1,j=1

pji log(Âij) + λi




N∑

i=1,j=1

Âij − 1



 .

To find the critical point, differentiates with respect to the

Âij and obtain

∂L

∂Âji

= −
pji

Âij

+ λi = 0 .

So that the optimal value is given by

pji

λi
= Âij .

Choosing λi = P (X0 = i) gives that,

P (X1 = j|X0 = i) = P̂ (X1 = j|X0 = i),

the one step transition probabilities must match to minimize

the divergence rate between the original process and its

Markov approximation.
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