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Abstract— This paper presents symbolic pattern analysis of
sidescan sonar images for detection of mines and mine-like
objects in the underwater environment. For robust feature
extraction, sonar images are symbolized by partitioning the
data sets based on the information generated from the ground
truth. A binary classifier is constructed for identification of
detected objects into mine-like and non-mine-like categories.
The pattern analysis algorithm has been tested on sonar data
sets in the form of images, which were provided by the
Naval Surface Warfare Center. The algorithm is designed for
real-time execution on limited-memory commercial-of-the-shelf
platforms, and is capable of detecting seabed-bottom objects
and vehicle-induced image artifacts.

Index Terms— Symbolic Dynamics, Pattern Recognition,
Mine Countermeasures

I. INTRODUCTION

Rapid advancement of modern engineering technology has

led to development of increasingly portable manned and

unmanned platforms for mine countermeasure (MCM ) op-

erations. In particular, unmanned undersea vehicles (UUV )

provide enhanced speed and improved search efficiency in

MCM operations. These vehicles are equipped with ad-

vanced sensing devices, including sidescan sonar imaging

systems, to search a target area for detection of mines and

mine-like objects in the underwater environment. However,

this paper makes no distinction between mines and mine-

like objects because they are both represented by the same

features in the sonar image; hence, both mines and mine-

like objects are simply referred to as mines in the sequel.

Once a mine is detected, more precise measurement (possibly

using other sensors) and analysis is required to distinguish

between mines and mine-like objects that might have been

falsely identified as mines. The latter task is a topic of future

research and is not addressed in this paper.

The current state-of-the-art MCM techniques involve

deployment of assets that perform sequential operations of

detection, classification, and neutralization [6]. For MCM

operations, side-scan sonar systems are typically used for
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efficient imaging of large areas of the sea floor. These devices

generate a monochromatic mapping of seabed-bottom objects

and vehicle-induced image artifacts.

The traditional approach to mine detection problem is to

simply assign a threshold to the mapped features, based

on the premise that the object should be brighter (i.e.,

have a stronger reflected signal) than the background of

a sonar image. This approach works well for a relatively

featureless background; however, a textured background may

encounter many false positive mine locations. Recent mine

detection methods have made use of advanced signal pro-

cessing techniques. For example, Reed et al. [16] have used

Dempster-Shafer information to classify mines for reduction

of false alarms; and Dura et al. [4] have proposed a data-

adaptive algorithm to eliminate the need for a priori training

of MCM missions. Improvements to traditional Bayesian

detection methods, including usage of geometric and sta-

tistical properties of objects have been proposed by Calder

et al. [1]. Maussang et al. [9] [10] have applied adaptive

data thresholding for object detection as well as statistical

methods that do not require the presence of a shadow for

mine detection, which is useful for detecting buried mines.

Recently, Ray and coworkers [5], [13], [15] have de-

veloped a pattern identification technique called Symbolic

Dynamic Pattern Analysis, which compresses large data

sets into pattern vectors of much lower dimension. The

underlying concept is built upon the principles of multiple

disciplines including Statistical Mechanics [11], Symbolic

Dynamics [7], Statistical Pattern Recognition [3], and Infor-

mation Theory [2]. The symbolic pattern analysis algorithm

has been experimentally validated for real-time execution

in diverse applications, including electronic circuits [14]

and fatigue damage monitoring in polycrystalline alloys [5],

and robot signature analysis [8]. This technique has been

shown to be superior for pattern classification to Bayesian

filtering, Neural networks and other statistical methods in

terms of speed of execution, memory requirements, and

robust detection in the presence of noise [14].

This paper proposes symbolic pattern analysis of sidescan

sonar images for detection of underwater mines. The pro-

posed method has been trained and validated on a set of

sonar data in the form of images collected by Naval Surface

Warfare Center. Section II presents data formatting and a

geometric model for pattern analysis. Section III provides a
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Fig. 1. Sonar wave reflections from a mine

brief review of symbolic dynamics, space partitioning meth-

ods, and construction of a Markov machine for development

of the mine detection algorithm. Section IV constructs the

classifier and the sliding window model to scan images.

Section V shows the results of executing the pattern analysis

algorithm on a test data set. Section VI concludes the paper

with recommended directions for future work.

II. DATA FORMATTING FOR MINE DETECTION

With the objective of formulating a mine detection algo-

rithm, this section presents formatting of the sidescan sonar

data sets that are structured in the form of images. Ground-

truth information is available for a set of images acquired

by a UUV about the location of mines. The ensemble of

data sets is partitioned into a training set of 100 images

and a test set of 100 images for further analysis. Parameters

required for the application of symbolic dynamics, such as

alphabet size are chosen based on the ground-truth statistics.

A geometric model, similar to [1] has been used for feature

extraction to detect and classify mines in a sonar trace. This

model is used in the training set to obtain the distributions

of the various regions of a mine. A sequence of tests is

determined to characterize a mine according to the identified

distributions.

A. Geometric modeling of mines

Based on the principles of sidescan sonar operation and

properties of sound wave propagation in the oceans, a mine

is characterized by three distinct regions that correspond to a

bright spot, a shadow and the clutter around both bright spot

and shadow.The principle of mine detection using sidescan

sonars is illustrated in Fig. 1.

A mine is usually made of a denser material than other

seabed objects; hence, the reflection off a mine is usually

much stronger than those from its surroundings. There is also

a sonar shadow due to the structure of the mine protruding

off the sea bed; this shadow is a very useful indicator for

distinguishing mines from the background features. There-

fore, a mine usually appears as a bright object; and since the

mines under consideration are placed on the seabed, there

is a shadow region that exists adjacent to a mine in the

direction away from the sidescan sonar receiver. There are
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Fig. 2. Geometric model for mine detection

also clutter regions around the mine and the shadow. This

clutter region around mine and its shadow is an important

feature to distinguish mines from larger objects on the sea

bed which also cast shadows behind them (e.g., large rocky

structures on the seabed).

Therefore, the geometric model for mine detection is

formulated by taking into consideration the following four

distinct regions: (a)Main body of the mine, characterized

by a bright spot (b)Shadow of the mine, characterized by

a dark region (c)Clutter around the mine(d)Clutter around

the shadow.

In general, mines are spatially isolated from each other

and are accompanied by clutters. Figure 1 shows the sonar

ray reflection model along with a typical mine present on

the sea bed. The model for mine detection is parameterized

based on the following aspects: (i) geometric properties of

the expected objects, (ii) size parameters estimated from

the objects present in the ground truth, and (iii) physical

understanding of the relative importance of the various

components of the geometric model.

Model parameterization reduces the mine detection pro-

cess to comparison of various statistics generated from

ground-truth analysis. The model along with its parameters

is exhibited in Fig. 2 that displays the number of pixels

allocated to each region in the image, where each pixel

corresponds to an area of ∼ 3×6 cm2.

III. SYMBOLIC PATTERN ANALYSIS

This section presents the underlying concepts and salient

features of symbolic pattern analysis method. While the

details of this method have been reported in previous pub-

lications for one dimensional time series data analysis [13],

[15], this paper extends the concepts of symbolic pattern

analysis for two-dimensional data (i.e., an image) analysis

and presents an application for detection of undersea mines

in sonar images.
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Fig. 3. Histogram of sonar wave reflections for mines, shadows and
clutter. The distribution of pixel intensities in the regions of mine-clutter and
shadow-clutter showed similar trends, therefore, they have been combined
together in a single histogram of clutter region.

A. Construction of the Partitioning Scheme

Two important parameters need to be determined for

successful partitioning of data. The first parameter is the

alphabet size |Σ| and the second is the vector of the partition

segment boundaries. In this application of mine detection,

the essential robust features that need to be preserved are

the bright reflections from the front of an object protruding

above the sea bed, and the long shadow that follows the

object. Apart from this information, clutter is an important

feature that has been used in the pattern analysis presented in

this paper. It is observed that only three symbols are sufficient

to characterize the features of interest. Figure 3 shows

histograms of density functions for mine, shadow, and clutter

regions. The histograms depict the number of pixels vs pixel

intensity for each region. These histograms are generated

from the a priori known ground-truth information about the

exact location of mines from the training data set of 100

sonar images. The histograms for the three regions are clearly

separated. Therefore, a distinct single symbol in the alphabet

Σ is assigned to each of the three features corresponding to

mine, shadow and the clutter. The information gained by

increasing the alphabet size is found to be too little to offset

the additional computation. A point to note from the clutter

histogram in Fig. 3 is that a small neighborhood around the

mine region causes more bright spots from the mine to be

relegated to the clutter region.

The next important consideration is selection of segment

boundaries of the partition. Traditional partitioning tech-

niques (e.g., uniform partitioning and maximum entropy

partitioning [13]) may not adequately capture the details

of mine patterns; and conventional data-driven partitioning

methods lead to a large alphabet size. This paper makes use

of the statistical model information from the three histograms

in Fig. 3. Partitioning is constructed by assigning symbol

a to high intensity pixels ranging from 180 to 255 on

the gray scale; similarly, symbol b is assigned to medium

intensity pixels ranging from 56 to 179; and symbol c is

assigned to low intensity pixels ranging from 0 to 55. As seen

from Fig. 3, approximately 97% of the pixels in the mine

histogram correspond to the symbol a (i.e., bright pixels);

similarly, approximately 89% of the pixels in the shadow

histogram correspond to the symbol c (i.e., dark pixels).

A majority of the remaining (i.e., moderately dark) pixels

corresponding to the symbol b belong to the clutter region.

Thus, the entire image is then symbolized and represented by

a two dimensional array of symbols belonging to the set Σ =

{a, b, c}. This partitioning scheme enables robust detection

of mines with a high probability of detection and a very low

probability of false alarms as discussed in the results section.

Further, this symbolization greatly reduces the amount of

memory required for any processing. The next subsection

explains the method of feature extraction using the geometric

model for mine detection.

B. Feature Extraction

A finite state Markov machine is now constructed, where

the set of machine states is isomorphic to the symbol alpha-

bet Σ [15]. As there are three symbols in Σ, the dimension

of the state space is also 3. Symbol a corresponds to a bright

pixel state in the sonar image, while symbol c corresponds

to a dark pixel state that may be a part of a shadow. Symbol

b denotes a ‘mid-level’ pixel state.

A region B in the image space represents one of the

three regions in the geometric model, i.e, the mine region,

the shadow region, and the clutter region. The Markov

assumption allows construction of the state probability vector

p that is chosen to be the feature vector for a given bounded

region B. The elements of p , [pa pb pc]
T

are calculated

by frequency counting as:

pi = Prob (σi ∈ Σ|B) ≈
N(σi)

∑

j∈{a,b,c} N(σj)
, i = a, b, c (1)

where N(•) is the count of • in B.

The construction of the feature vector p follows the

sliding block code [7], where sliding of the geometric model

(described in Section II) along the sonar image is depicted in

Fig. 4. For every pixel location (i, j), the geometric model is

constructed around that pixel, such that (i, j) lies at the center

point of the mine region. In this way, the feature vector is

generated for each region of the geometric model. Therefore,

for any pixel location (i, j) on the sonar image, the following

four feature vectors (see Fig. 2) are generated.

1) PM (i, j) =
[

pM
a (i, j) pM

b
(i, j) pM

c (i, j)
]T

is con-

structed from the mine region.

2) PS(i, j) =
[

pS
a (i, j) pS

b
(i, j) pS

c (i, j)
]T

is constructed

from the shadow region.

3) PMC(i, j) =
[

pMC
a (i, j) pMC

b
(i, j) pMC

c (i, j)
]T

is

constructed from the clutter region around the mine.

4) PSC(i, j) =
[

pSC
a (i, j) pSC

b
(i, j) pSC

c (i, j)
]T

is con-

structed from the clutter region around the shadow.

IV. CLASSIFIER CONSTRUCTION

This section presents construction of a classifier for iden-

tification of mines and non-mine-like objects. Four scalar

parameters, ηM , ηS , ηMC , ηSC , (that are dependent on the

pixel location (i, j)) are derived from the four feature vectors

at each pixel location as follows.
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Fig. 4. Symbolic dynamics-based mine detection

ηM (i, j) , [1 0 0]PM (i, j) (2)

ηS(i, j) , [0 0 1]PS(i, j) (3)

ηMC(i, j) , [0 1 1]PMC(i, j) (4)

ηSC(i, j) , [1 1 0]PSC(i, j) (5)

Here, ηM corresponds to the fraction of bright pixels (state

a) found in the mine cluster region. Typically, for a mine,

ηM is expected to exceed a certain threshold. Similarly, ηS

corresponds to the fraction of dark pixels (state c) in the

shadow region and is expected to exceed a threshold for a

mine. In the clutter region around the mine, ηMC represents

the combined fraction of dark and ’mid-level’ pixels (states c

and b); therefore, ηMC is expected to be large around a mine

implying that a mine clutter must be darker as compared to

the mine. Similarly, in the clutter region around the shadow,

ηSC represents the combined fraction of bright and ’mid-

level’ pixels (states a and b); therefore, ηSC is expected to

be large around a shadow implying that a shadow clutter

must be relatively less dark as compared to the shadow.

A threshold-based classification rule is formulated to iden-

tify a mine from the sonar data sets in the form of images.

Given appropriately chosen scalar thresholds λ1, λ2, λ3, and

λ4, the following conditions must be satisfied for a pixel

(i, j) to be classified as part of a mine.

• ηM (i, j) ≥ λ1

• ηS(i, j) ≥ λ2

• ηMC(i, j) ≥ λ3 and ηSC(i, j) ≥ λ4

The above four scalar thresholds, (λ1, λ2, λ3, and λ4),

are chosen based on the receiver operating characteristics

(ROC) [12] to yield different choices of probability of de-

tection (PD) and false alarm rate (FAR), which are defined

in terms of percentage of correctly detected mines and the

number of mines falsely detected per image, respectively.

(Note: The size of an image is 1000 × 512 pixels.)

A. Receiver Operating Characteristics

A sliding window method is used to implement the geo-

metric model in Section II and the classifier described above.
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Fig. 5. Receiver Operating Characteristics for Symbolic Dynamics based
detection

For each pixel in the image, a model is constructed, as shown

in Fig. 4. Assuming that the pixel under consideration is

at the center of the mine region, the four feature vectors

PM , PS ,PMC and PSC are generated. Then, the classifi-

cation scheme is applied and a binary decision is made to

determine whether the pixel location belongs to a potential

mine. A binary number of 1 or 0 is assigned to each pixel

of the image based on the classification as a mine or non-

mine-like object, respectively.

To construct the receiver operating characteristics (ROC),

a test data set consisting of 100 images is considered.

These images consist of various textured backgrounds, with

different types of sea-bed objects and vehicle-induced image

artifacts. The images are in the range of 0 to 255 on the gray

scale. Each of the four thresholds (i.e., λ1, λ2, λ3 and λ4) are

varied from 0 to 1 in steps of 0.1 and the pattern analysis

algorithm is executed over the entire set of test data. The

number of false alarms, and the number of correct detections

are counted in each threshold parameter combination. The

ROC plot is constructed by joining the outermost points on
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the plot of probability of detection (PD) versus false alarm

rate (FAR) per image as shown in Fig. 5. For subsequent

analysis, the chosen thresholds (λ1 = 0.8, λ2 = 0,7, λ3 = 0.4

and λ4 = 0.4) gives a probability of detection of 92% and

1.5 false alarms per image (or 900m2)

V. RESULTS AND DISCUSSION

This section presents the results generated upon execution

of the pattern analysis algorithm on one hundred images from

the test data set that is different from the training data set

used to generate the partition. As an example, four of these

images are shown in Fig. 6, where the results of detection

are shown in the right hand side of each plate from (a) to

(d).

Four representative images are shown in Fig. 6, each show-

ing different levels of background noise, and sea-bed clutter.

A representative set of threshold values is chosen to yield a

high detection probability with an acceptable false alarm rate.

An appropriate operating point is chosen on the ROC curve

based on the premise that a missed detection costs much

higher than a false alarm. Tests show that the algorithm is

capable of detecting mines in a high concentration of sea-bed

clutter, including mines buried under vehicular artifacts. The

algorithm has been executed on the entire set of test data

with the same values of representative thresholds; Table I

lists false alarms and successful detections. With alternative

choices of operating points on the ROC curves, the mine

detection probability can be increased at the expense of

increased false alarm rate as a trade-off between Type I and

Type II errors.

VI. SUMMARY, CONCLUSIONS AND FUTURE WORK

This paper presents a data-driven symbolic dynamic based

method of mine detection for the purpose of mine counter

measures. The use of a template based method allows for

the introduction of prior knowledge. The use of Symbolic

Dynamics improves noise robustness, and enables the real

time implementation of the whole algorithm.

On a sonar data set in the form of images, a template

was constructed and symbolic dynamic parameters were

determined. A ground truth was provided, which enabled

the construction of alphabet and partition segment locations.

The algorithm was then tested on a different test set of

images on which the probability of detection was ∼91.5%
with an average of ∼1.25 false alarms in a 1024 × 512
pixel area (approximately 2 square kilometers). Several test

images were shown, with varying degrees of noise and sea-

bed clutter, and the algorithm was shown to function well in

all conditions.

A key aspect to the performance of the proposed mine

detection method is the construction of the geometric model.

Different regions in the model are carefully chosen to match

the sizes of the objects to be detected. A conservative

estimate is made on all counts so that the smallest possible

objects can be detected. However, even with these conser-

vative estimates that enable a high detection probability,

a relatively low rate of false alarms is still unavoidable.

TABLE I

RESULTS OF RUNNING SYMBOLIC DYNAMIC BASED AND A

LOG-LIKELIHOOD BASED PATTERN ANALYSIS ON A TEST DATA SET

Description Value

Number of Images Analyzed 100
Number of Mines (Ground Truth) 100
Probability of Detection (PD) ∼91.5%
False alarm rate (FAR) per image ∼1.5

Tests based on real-life data show that a high percentage

of mines is detected with a low false alarm rate. However,

a shortcoming of the proposed method is its inability to

detect objects that are smaller than the smallest object in

the training set. This is evident from the ROC curve that

the probability of detection can never reach 1 because some

mines do not fit the nature of the model template.

The major advantages of the proposed pattern analysis al-

gorithm for underwater mine detection are delineated below.

1) Performance of the pattern analysis algorithm is robust

with respect to locations of the segment boundaries of

the partition. The important aspect is that the partitions

must correspond to the three characteristic features,

namely, mine, shadow and clutter.

2) The algorithm is computationally efficient in terms

of execution time and memory requirements as a

consequence of a small alphabet and a small number of

states in the Markov machine of the algorithm. As such

the entire algorithm can be programmed and powered

on a small microprocessor on-board a UUV .

3) In contrast to traditional Bayesian methods such as

the likelihood-ratio-test, the symbolic pattern analysis

does not require a priori knowledge of probability

distribution for characterizing mines and non-mine-like

objects. Specifically, the proposed algorithm is robust

even if the unknown distributions are multi-modal.

Further theoretical and experimental research is necessary

before the proposed algorithm can be considered for imple-

mentation in the ocean environment. While there are many

such issues, the following topics are under active research.

• Development of advanced measurement techniques and

algorithms to distinguish between mines and mine-like

objects that might have been falsely identified as mines;

• Testing under real-life scenarios that include varying

bathymetric properties, various ocean depths and dif-

ferent sea states;

• Investigation of measurement test techniques in areas of

higher water turbulence, which are susceptible to false

alarms;

• Testing of the algorithm performance for simultaneous

enhancement of successful detection and reduction of

false alarms through additional measurements such as

multiple scanning from from different angles;

• Enhancement of algorithm performance through usage

of flexible templates (e.g., varying shadow lengths).
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Original Image Symbolic Analysis

Mine Like Objects

(a) Symbolic Analysis for a clean image

Original Image Symbolic Analysis

Mine Like Object

(b) Symbolic Analysis for a slightly noisy image

Original Image Symbolic Analysis

Mine Like Object

Few False Alarms

(c) Symbolic Analysis for a noisy image

Original Image Symbolic Analysis

Mine Like Object

(d) Symbolic Analysis for a very noisy image

Fig. 6. Representative images from test data set
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