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Abstract— In this paper we study the linear quadratic opti-
mal control problem for linear hybrid systems in which transi-
tions between different discrete locations occur autonomously
when the continuous state intersects given switching surfaces.
In particular, we make an explicit connection between the newly
developed, Pontryagin-type Hybrid Maximum Principle and the
Bellman Dynamic Programming approach. As a consequence,
we extend the classic Riccati-formalism, derive the associated
Riccati-type equations, and prove the discontinuity of the full
”hybrid” Riccati matrix. Finally, we discuss some computa-
tional aspects of the obtained theoretical results and propose a
numerical algorithm in the framework of an optimal feedback
control law.

I. INTRODUCTION

During the last decade, a vast body of research on hybrid

control systems has been produced, drawing its motivation

from the fact that many modern application domains involve

complex systems, in which sub-system interconnections,

mode-transitions, and heterogeneous computational devices

are present. And, hybrid models, in which continuous and

discrete dynamical components interact, have proved useful

for capturing these types of phenomena. As a consequence,

discrete-continuous dynamical interactions have emerged as

a major challenge in the controls community.

In this paper, we study optimal control of hybrid systems,

and despite significant progress in this area over the last few

years, the ability to operate hybrid systems in an optimal

manner remains a challenging task as the computational

complexity associated with such problems often prove to be

a bottleneck. Indeed, in the general setting of hybrid systems,

one has to deal not only with the infinite dimensional

optimization problems related to the continuous dynamics,

but also with a potential combinatorial explosion related to

the discrete part. In this context, and with focus on particular

classes, many schemes have been proposed to address the

problem. Some are based on a newly elaborated condition

of optimality see e.g., [1], [2], [4], [5], [7], [8], [12], [13],

[20], [22], [23], [24], [25], others are more related to semi-

classical approaches see e.g., [9], [15], [16], [21], [27].

During the last few years, there has been a revival of

the first-order optimization techniques and related numerical

schemes based on the Pontryagin-type hybrid maximum

principle (HMP) (see e.g., [1], [2], [4], [5], [18].) This fact is
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due to their intuitive interpretation in combination with the

existence of well established consistence and convergence

results. On the other hand, dynamic programming (DP) based

approaches have not been sufficiently advanced to the linear

hybrid systems setting, as well as to the corresponding LQ-

type hybrid optimal control problems (OCP), beyond the

initial work done in [14]. And, this development is exactly

the topic under investigation in this paper.

For a classical feedback OCP, one of the main tools toward

the construction of optimal trajectories is the celebrated Bell-

man DP method. It is also well-known that for a conventional

OCP the DP approach is equivalent to the techniques based

on the usual Pontryagin Maximum Principle (see e.g., [11],

[19]). The aim of our contribution is to study a possible

relationship between the DP and HMP in the case of a

hybrid linear quadratic (HLQ) problem, and to deduce the

corresponding Riccati-formalism similar to the classic LQ-

theory. And, it should be noted already at this point that the

conventional theory of linear systems can not be formally

applied in the hybrid systems setting (see [27] for details).

Therefore, it is necessary to extend this theory in the context

of some concrete classes of hybrid systems.

This paper is organized as follows: Section 2 contains

the problem formulation together with the necessary basic

concepts and preliminary facts. Section 3 is devoted to

the application of the HMP to the HLQ-control processes

governed by linear hybrid systems with autonomous location

transitions. Moreover, in this section we present the main re-

sult, namely, the discontinuity property of the Riccati matrix

in the hybrid setting. In Section 4, we briefly discuss some

computational aspects of the obtained ”hybrid” extension of

the classic Riccati-based approach to OCPs, while Section 5

concludes the paper.

II. OPTIMIZATION OF LINEAR HYBRID SYSTEMS

Let us start by introducing a variant of the general concept

of a linear hybrid system with autonomous location transi-

tions [2], [4], [5], [12], [13], [24].

Definition 1: A linear hybrid system is a 7-tuple

{Q,X , U,A,B,U ,S},

where

• Q is a finite set of discrete states (called locations);

• X = {Xq}, q ∈ Q, is a family of state spaces such that

Xq ⊆ R
n;

• U ⊆ R
m is a set of admissible control input values

(called control set);
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• A = {Aq(·)}, B = {Bq(·)}, q ∈ Q are families of

continuously differentiable matrix-functions

Aq : R → R
n×n, Bq : R → R

n×m;

• U is the set of all admissible control functions;

• S is a subset of Ξ, where

Ξ := {(q, x, q′, x′) : q, q′ ∈ Q, x ∈ Xq, x
′ ∈ Xq′}.

A linear hybrid system from Definition 1 is defined on the

finite time-interval [0, tf ]. We refer to [22], [23], [24], [25]

for some abstract concepts of hybrid systems. Let U be a

convex and closed set. We assume that

U := {u(·) ∈ L
∞
m (0, tf ) | u(t) ∈ U a.e. on [0, tf ]},

where L
∞
m (0, tf ) is the standard Lebesgue space of mea-

surable and essentially bounded functions. In this paper, we

suppose that affine functions mq,q′ : R
n → R, q, q′ ∈ Q,

mq,q′(x) = bq,q′x+cq,q′ are given such that the hyperplanes

Mq,q′ := {x ∈ R
n : mq,q′ (x) = 0} are pairwise disjoint.

Here bq,q′ ∈ R
n and cq,q′ ∈ R for every q, q′ ∈ Q. The

given hyperplanes Mq,q′ represents the (affine) switching

sets at which a switch from location q to location q′ can

take place. We say that a location switching from q to

q′ occurs at a switching time tswitch ∈ [0, tf ]. We now

consider a linear hybrid system with r ∈ N switching times

0 = t0 < t1 < ... < tr−1 < tr = tf . Note that the above

sequence of switching times {ti} is not defined a priory. A

hybrid control system remains in location qi ∈ Q for all

t ∈ [ti−1, ti), i = 1, ..., r. In the following, we recall the

notion of hybrid trajectory of the systems under consideration

(see e.g., [4]).

Definition 2: An admissible hybrid trajectory associated

with a given linear hybrid system from Definition 1 is a

triple X = (x(·), {qi}, τ), where x(·) is a continuous part of

trajectory, {qi}i=1,...,r is a finite sequence of locations and τ
is the corresponding sequence of switching times such that

x(0) = x0 /∈
⋃

q,q′∈Q

Mq,q′ and for each i = 1, ..., r and every

admissible control u(·) ∈ U we have

• xi(·) = x(·)|(ti−1,ti)
is an absolutely continuous

function on (ti−1, ti) continuously prolongable to

[ti−1, ti], i = 1, ..., r;

• ẋi(t) = Aqi
(t)xi(t) + Bqi

(t)ui(t) for almost all times

t ∈ [ti−1, ti], where ui(·) is a restriction of the chosen

control function u(·) on the time interval [ti−1, ti].

A linear hybrid system in the sense of Definition 1 and

Definition 2 that satisfies all above assumptions is denoted

by LHS (see Figure 1 for an illustration).

Fig. 1. Dynamical behavior of a hybrid system.

Note that the pair (q, x(t)) represents the hybrid state at

time t, where q is a location q ∈ Q and x(t) ∈ R
n. Definition

2 describes the dynamic of a hybrid control system LHS.

Since x(·) is a continuous function, Definition 2 describes a

class of hybrid systems without impulse components of the

(continuous) trajectories. Therefore, sets Mq,q′ are defined

for x(ti) = x(ti+1), i = 1, ..., r − 1.

Under the above assumptions, for each admissible control

u(·) ∈ U and for every interval [ti−1, ti] (for every location

qi ∈ Q) there exists a unique absolutely continuous solution

of the linear differential equations from Definition 2. This

means that for each u(·) ∈ U we have a unique absolute

continuous trajectory of LHS. Moreover, the switching

times {ti} and the discrete trajectory {qi} for a hybrid

control system LHS are also uniquely defined. Note that the

evolution equation for the trajectory x(·) of a given linear

hybrid system LHS can also be represented as follows

ẋ(t) =

r
∑

i=1

β[ti−1,ti)(t)×

(

Aqi
(t)xi(t) +Bqi

(t)ui(t)
)

a.e. on [0, tf ],

(1)

where x(0) = x0 and β[ti−1,ti)(·) is the characteristic

function of the interval [ti−1, ti). Let Sf : R → R
n×n,

Sq : R → R
n×n and Rq : R → R

m×m, where q ∈ Q.

Assume that Sf is symmetric and positive semidefinite, and

that for every time instant t ∈ [0, tf ] and every q ∈ Q the

matrix Sq(t) is also a symmetric and positive semidefinite

matrix. Moreover, let Rq(t) be a symmetric and positive

definite for every t ∈ [0, tf ] and every q ∈ Q. We

also assume that the given matrix-functions Sq(·), Rq(·)
are continuously differentiable. Given a system LHS we

consider the following HLQ problem:

minimize J(u(·), x(·)) :=
1

2
(xT

r (tf )Sfxr(tf ))+

1

2

r
∑

i=1

∫ ti

ti−1

(

xT
i (t)Sqi

(t)xi(t) + uT
i (t)Rqi

(t)ui(t)
)

dt

over all admissible trajectories X of LHS.

(2)

Evidently, (1) is the problem of minimizing the quadratic

Bolza cost functional J over all trajectories of the given

linear hybrid system. Note that we study the hybrid OCP

(1) in the absence of possible target and state constraints.

Throughout the paper we assume that the HLQ problem (2)

has an optimal solution (uopt(·),Xopt(·)), where uopt(·) ∈ U
and X

opt(·) belongs to the set of admissible trajectories from

Definition 2. It is necessary to stress that the existence of

an optimal pair (uopt(·),Xopt(·)) for a HLQ problem of

the above type follows from the general existence theory

for linear quadratic OCPs with a convex closed control set

U (see e.g., [19]). We now apply the HMP (see [4]) to

the HLQ problem under consideration and formulate the

corresponding necessary optimality conditions. For general

optimality conditions in the form of a HMP see also [4],

[13], [23], [24], [25].

Theorem 1: [4] Let (uopt(·),Xopt(·)) be an optimal so-

lution of the regular OCP (2). Then there exist absolutely
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continuous functions ψi(·) on the time intervals (topt
i−1, t

opt
i ),

where i = 1, ..., r, and a nonzero vector of Lagrange

multipliers a = (a1, ..., ar−1)
T ∈ R

r−1 such that

ψ̇i(t) = −AT
qi

(t)ψi(t)+

Sqi
(t)xopt

i (t) a. e. on [topt
i−1, t

opt
i ],

ψr(tf ) = −Sfx
opt
r (tf ),

(3)

and

ψi(t
opt
i ) = ψi+1(t

opt
i )+

ai

dmqi,qi+1
(xopt

i (topt
i ))

dxi

= ψi+1(t
opt
i ) + aibqi,qi+1

,
(4)

where i = 1, ..., r−1. Moreover, for every admissible control

u(·) ∈ U the partial Hamiltonian

Hqi
(t, x, u, ψ) :=

〈

ψi, Aqi
(t)xi +Bqi

(t)ui

〉

−

1

2

(

xT
i Sqi

(t)xi + uT
i Rqi

(t)ui

)

.

satisfies the following maximization conditions

max
u∈U

Hqi
(t, xopt(t), u, ψ(t)) =

Hqi
(t, xopt(t), uopt(t), ψ(t)), t ∈ [topt

i−1, t
opt
i ),

(5)

where i = 1, ..., r and ψ(t) :=
∑r

i=1 β[topt

i−1
,t

opt

i
)(t)ψi(t) for

all t ∈ [0, tf ].

Note that the adjoint variable ψ(·) is an absolutely con-

tinuous function on every open time intervals (topt
i−1, t

opt
i )

for i = 1, ..., r but discontinuous at the switching points

topt
i ∈ τopt. On the other hand, we are able to establish the

continuity properties of the ”full” optimal Hamiltonian

H̃opt(t) :=

r
∑

i=1

β[topt

i−1
,t

opt

i
)(t)Hqi

(t, xopt(t), uopt(t), ψ(t))

computed for optimal pair (uopt(·),Xopt(·)) and for the

corresponding adjoint variable ψ(·).

Theorem 2: Under assumptions of Theorem 1, the ”full”

optimal Hamiltonian H̃opt(·) introduced above is a continu-

ous function on [0, tf ].

Proof. Consider the time interval [topt
i−1, t

opt
i ] and the as-

sociated partial Hamiltonian Hqi
(t, x, u, ψ). Evidently, the

function H̃opt(t) is continuous on the open time in-

tervals (topt
i−1, t

opt
i ), i = 1, ..., r. For an optimal pair

(uopt(·),Xopt(·)) we have

Hqi
(topt

i , xopt(topt
i ), uopt(topt

i ), ψ(topt
i )) =

−
∂J(uopt(·), xopt(·))

∂topt
i

.

Using (3)-(4) and the well-known formula for variation of

the costs functional J (see e.g., [11], [24]), we can compute

Hqi
(topt

i , xopt(topt
i ), uopt(topt

i ), ψ(topt
i )) =

Hqi+1
(topt

i , xopt(topt
i ), uopt(topt

i ), ψ(topt
i ))+

ai

∂mqi,qi+1
(xopt(topt

i ))

∂topt
i

=

Hqi+1
(topt

i , xopt(topt
i ), uopt(topt

i ), ψ(topt
i ))+

ai

∂[bqi,qi+1
xopt(topt

i ) + cqi,qi+1
]

∂topt
i

=

Hqi+1
(topt

i , xopt(topt
i ), uopt(topt

i ), ψ(topt
i )),

(6)

where i = 1, ..., r−1. Clearly, from the obtained relation (6)

follows the continuity of the introduced function H̃opt(t) not

only on the open time intervals (topt
i−1, t

opt
i ), i = 1, ..., r, but

also for all switching times topt
i ∈ τopt, where τopt is the

optimal sequence of switching times from X
opt. 2

Note that a similar result is obtained in [24] for general

hybrid systems with controlled location transitions (Theorem

2.2, p. 1590) and for some classes of nonlinear hybrid

systems with autonomous location transitions. From Theo-

rem 2 it follows the continuity of the Hamiltonian for (2)

computed for optimal state and control variables and for

the corresponding discontinuous adjoint variables. Note that

the similar result can also be proved for general nonlin-

ear optimal control processes governed by hybrid systems

with autonomous location transitions (see [4], [24]). The

corresponding proof is based on a generalization of the

classic needle variations and on the associated formula for

variation of the costs functional in the hybrid OCP under

consideration.

III. THE EXTENSION OF THE RICCATI-FORMALISM TO

HYBRID LINEAR QUADRATIC OCPS

In this section we extend the well know Bellman DP

techniques for conventional LQ problems to the HLQ opti-

mization problems of the type (2). Let us consider the linear

boundary value problem (1), (3) for U ≡ R
m. The maximiza-

tion condition (5) from the above HMP (Theorem 1) implies

that uopt
i (t) = R−1

qi
(t)BT

qi
(t)ψi(t) for t ∈ [topt

i−1, t
opt
i ). Using

this representation of an optimal control and the basic facts

from the theory of linear differential equations, we now

compute (similarly to [11], [19]) an optimal control uopt(·)
for (2) in the form of an optimal partially linear feedback

control law

uopt(t) = −C(t)xopt(t) =

−
r

∑

i=1

β[ti−1,ti)(t)Ci(t)x
opt
i (t),

(7)

where Ci(t) := R−1
qi

(t)BT
qi

(t)Pi(t) is a partial gain matrix

and Pi(·) is the partial Riccati matrix associated with every

location qopt
i ∈ Q. Analogously to the classic case, for every

location qopt
i ∈ Q and for almost all t ∈ (topt

i−1, t
opt
i ) we
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obtain the differential equation

Ṗi(t) + Pi(t)Aqi
(t) + AT

qi
(t)Pi(t)−

Pi(t)Bqi
(t)R−1

qi
(t)BT

qi
(t)Pi(t) + Sqi

(t) = 0,
(8)

known as the Riccati matrix differential equation. We call

this equation the partial Riccati equation. Evidently, every

matrix Ci(·) and every matrix Pi(·) and the corresponding

partial Riccati equation (8) are associated with a current

location qi ∈ Q of the given LHS. We also can deduce

the usual relations

ψi(t) = −Pi(t)x
opt
i (t) (9)

for t ∈ [topt
i−1, t

opt
i ) and i = 1, ..., r. A symmetric (for all

variables t ∈ [0, tf ]) hybrid Riccati matrix

P (t) :=

r
∑

i=1

β[topt

i−1
,t

opt

i
)(t)Pi(t)

which satisfies all equations (8) and the boundary (terminal)

condition P (tf ) = Sf gives rise to the optimal feedback

dynamics of (1) determined by the above partially linear

feedback control function (7).

It is necessary to stress that the partial Riccati equation (8)

can also be derived with help of the general Bellman equation

(see [14]). Analogously to the classic optimal control theory

it is possible to determine a partial value function associated

with every location of a hybrid system. Replacing the control

variable by uopt
i (t) in the above-mentioned hybrid Bellman

equation for (2), one can obtain a hybrid version of the well

known differential equation for the partial value function

in a LQ problem (see [11] for details). Following [17],

one can also prove that this partial value function for the

HLQ under consideration can be chosen (similarly to the

classic LQ-problem) as a quadratic function with a shifting

vector defined for every location qi ∈ Q. Using this shifted-

quadratic partial value function and the above differential

equation, one obtains (8).

The investigation of the family of equations (8) on the full

time interval [0, tf ] involves the continuity question associ-

ated with the above-introduced hybrid Riccati matrix P (·).
Evidently, the continuity/smoothness of a value function is

a question of general interest also in the context of other

classes of OCPs governed by linear or nonlinear hybrid

systems. Related to the above presented optimization theory

for a LHS we are now able to formulate our main theoretical

result, namely, the discontinuity of the hybrid Riccati matrix

P (·).
Theorem 3: Under assumptions of Theorem 1, the hybrid

Riccati matrix P (·) is a discontinuous function on [0, tf ].

Proof. Assume that P (·) is continuous on the time interval

[0, tf ]. In particular, this means that Pi(t
opt
i ) = Pi+1(t

opt
i )

for all numbers i = 1, ..., r − 1. Using the above continuity

assumption for P (·), the continuity of x(·) and the formula

for the adjoint variable, we deduce that

ψi(t
opt
i ) = − lim

t↑t
opt

i

Pi(t)x
opt
i (t),

ψi+1(t
opt
i ) = − lim

t↓t
opt

i

Pi+1(t)x
opt
i+1(t).

Then from (9) and from the jump conditions (4) for the

adjoint variables ψ(·) we obtain the following relation

−Pi(t
opt
i )xopt(topt

i ) = −Pi+1(t
opt
i )xopt(topt

i ) + aibqi,qi+1
,

where i = 1, ..., r − 1.. Hence
[

Pi+1(t
opt
i ) − Pi(t

opt
i )

]

xi(t
opt
i ) = aibqi,qi+1

. (10)

Since xopt(·) is continuous and the (optimal) Lagrange

multipliers a = (a1, ..., ar−1)
T are nontrivial, the function

P (·) is a discontinuous function on [0, tf ]. The obtained

contradiction completes the proof. 2

From (10) it follows that the jump of the hybrid Riccati

matrix P (·) to an optimal switching time topt
i ∈ τopt is

proportional to the associated Lagrange multiplier ai and

to the vector bqi,qi+1
which characterizes the corresponding

switching hyperplane Mqi,qi+1
.

Note that Theorem 3 is a consequence of the continuity

of the optimal Hamiltonian H̃opt(·) (Theorem 2). Similarly

to the above proof let us assume that the function P (·) is

continuous. Consider now the continuity condition for two

partial Hamiltonians Hopt
qi

and Hopt
qi+1

, namely, the result of

Theorem 2 for some locations qi, qi+1 ∈ Q

Hqi
(topt

i , xopt(topt
i ), uopt(topt

i ), ψ(topt
i )) =

Hqi+1
(topt

i , xopt(topt
i ), uopt(topt

i ), ψ(topt
i ))

(11)

Using (11) and the above relations for ψi(t
opt
i ) and

ψi+1(t
opt
i ), we deduce that

−
〈

Pi(t
opt
i )xopt(topt

i ), Aqi
(topt

i )xopt(topt
i )+

Bqi
(topt

i )uopt(topt
i )

〉

−

1

2

(

(xopt)T (topt
i )Sqi

(topt
i )xopt(topt

i )+

(uopt)T (topt
i )Rqi

(topt
i )uopt(topt

i )
)

=

−
〈

Pi+1(t
opt
i )xopt(topt

i ), Aqi+1
(topt

i )xopt(topt
i )+

Bqi+1
(topt

i )uopt(topt
i )

〉

−

1

2

(

(xopt)T (topt
i )Sqi+1

(topt
i )xopt(topt

i )+

(uopt)T (topt
i )Rqi+1

(topt
i )uopt(topt

i )
)

.

(12)

Since P (·) is assumed to be continuous in general, this

function is also continuous for a special case of a LHS
indicated by the following relations

Sqi+1
(topt

i ) = Sqi
(topt

i ), Rqi+1
(topt

i ) = Rqi
(topt

i ),

Bqi
(topt

i ) = Bqi+1
(topt

i ), Aqi
(topt

i ) 6= Aqi+1
(topt

i )
(13)

for all i = 1, ..., r− 1. Note that under assumptions (13) we

have a continuous (on the full time interval [0, tf ]) optimal

control function uopt(·) from (7). In particular, uopt(·) has

no jumps at t = topt
i . Then from (12) we deduce the follow-

ing relations Pi(t
opt
i )Aqi

(topt
i ) = Pi+1(t

opt
i )Aqi+1

(topt
i ) and

Aqi
(topt

i ) = Aqi+1
(topt

i ). This is a contradiction with respect

to assumed conditions (13). This means that even in the

special case of a hybrid OCP (2) given by assumptions (13)

we have discontinuity conditions Pi(t
opt
i ) 6= Pi+1(t

opt
i ) for

some i = 1, ..., r−1 and the contradiction with the continuity
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assumption for P (·) on the full time interval [0, tf ]. It is

necessary to stress that the hybrid Riccati matrix P (·) is a

discontinuous function considered on the full time interval

[0, tf ]. On the other hand, for some (but not for all) locations

qopt
i , qopt

i+1 ∈ Q we can have Pi(t
opt
i ) = Pi+1(t

opt
i ). In this

case from (10) it follows that the corresponding Lagrange

multipliers ai ∈ a 6= 0 ∈ R
r−1 is equal to zero. Let us note

that the hybrid Riccati matrix P (·) is a completely (for all

qi ∈ Q, i = 1, ..., r) continuous function only in the case of

a special HLQ problem characterized by

Sqi+1
(topt

i ) = Sqi
(topt

i ), Rqi+1
(topt

i ) = Rqi
(topt

i ),

Bqi
(topt

i ) = Bqi+1
(topt

i ), Aqi
(topt

i ) = Aqi+1
(topt

i )
(14)

for all i = 1, ..., r − 1. It is evident, that under conditions

(14) the given LHS can be rewritten as a conventional

linear control system (by introduction of the new continuous

system matrices and new continuous matrices in the costs

functional). Therefore, the corresponding HLQ problem (2)

with (14) is equivalent (in this special case) to the classic LQ-

type OCP. Finally, note that similarly to the conventional LQ

problems the closed-loop LHS associated with the partially

linear feedback (7) also possesses stability properties (in

the sense of the classic Lyapunov concept) on the infinite

time horizon. This fact can be established using the above-

mentioned quadratic partial value functions as candidate

Lyapunov functions for the corresponding stability analysis

(see [10] for details).

IV. OPTIMAL PARTIALLY LINEAR FEEDBACK CONTROL

LAW: COMPUTATIONAL ASPECTS

Our main theoretical result, namely Theorem 3, can also

provide a basis for the constructive design of the optimal

feedback control strategy in the framework of the above-

formulated LQ-type hybrid OCP (2). Evidently, in the

context of the presented advanced Riccati-formalism from

Section III the main difficulties in computing the optimal

partially linear feedback control (7) are caused by jumps of

the hybrid Riccati matrix P (·) at some topt
i ∈ τopt. Note that

the discontinuity property of the hybrid Riccati matrix is a

new effect in relation to the conventional LQ-theory. Let us

now study this discontinuity effect from the numerical point

of view. By uopt
i (·) we denote the restriction of the control

function uopt(·) on the time interval [ti−1, ti). Evidently,

uopt
i (t) = β[ti−1,ti)(t)Ci(t)x

opt
i (t). Assume that for two

given locations qopt
i , qopt

i+1 ∈ Q we can compute the value of

the partial Riccati matrix Pi+1(t) for every time instants t
from the closed interval [topt

i , topt
i+1], i = 0, ..., r−1. Using the

continuity property of the function H̃opt(·) (Theorem 2), we

obtain the following nonspecific algebraic Riccati equation

with respect to the unknown matrix Pi(t
opt
i ).

3

2
Pi(t

opt
i )Bqi

(topt
i )R−1

qi
(topt

i )BT
qi

(topt
i )Pi(t

opt
i )+

Pi(t
opt
i )Aqi

(topt
i ) −

1

2

(

Sqi+1
(topt

i ) − Sqi
(topt

i )
)

−

3

2
Pi+1(t

opt
i )Bqi+1

(topt
i )R−1

qi+1
(topt

i )×

BT
qi+1

(topt
i )Pi+1(t

opt
i ) − Pi+1(t

opt
i )Aqi+1

(topt
i ) = 0.

(15)

If we now transpose (15) and combine with itself we get

the system of the linear (Lyapunov-type) equation and the

symmetric Riccati equation

Pi(t
opt
i )Aqi

(topt
i ) −AT

qi
(topt

i )Pi(t
opt
i )−

Pi+1(t
opt
i )Aqi+1

(topt
i ) +AT

qi+1
(topt

i )Pi+1(t
opt
i ) = 0,

3Pi(t
opt
i )Bqi

(topt
i )R−1

qi
(topt

i )BT
qi

(topt
i )Pi(t

opt
i )+

Pi(t
opt
i )Aqi

(topt
i ) +AT

qi
(topt

i )Pi(t
opt
i ) + Sqi

(topt
i )−

3Pi+1(t
opt
i )Bqi+1

(topt
i )R−1

qi+1
(topt

i )BT
qi+1

(topt
i )Pi+1(t

opt
i )−

Pi+1(t
opt
i )Aqi+1

(topt
i )−AT

qi+1
(topt

i )Pi+1(t
opt
i )−Si+1(t

opt
i )=0.

(16)

This system (16) defines the value of the partial Riccati

matrix, namely Pi(t
opt
i ), which can be used as the necessary

start condition for solving the Riccati matrix differential

equation (8) on the next time interval [topt
i−1, t

opt
i ). Note that

for i = r − 1 we have the final condition for the last partial

Riccati matrix Pr(tr) = P (tf ) = Sf . From this terminal

condition, we can obtain the inverted-time solution of the

differential Riccati equation (8) for the interval [topt
r−1, tf ] and

determine the value Pr(t
opt
r−1). This value is used in system

(16) for i = r − 1 and one calculates Pr−1(t
opt
r−1). It is

necessary to stress that the jumps in the Riccati matrices at

the time instants t = topt
i are given by the solutions of system

(??) and the resulting optimal feedback control uopt(·) from

(7) is a discontinuous piecewise linear control function.

We now are able to summarize a general conceptual

computational algorithm for the numerical treatment of the

optimal partially linear feedback control in the given HLQ

problem (2). Note that in the algorithm presented below an

approximating trajectory xappr(·) to xopt(·) and the corre-

sponding sequence τappr to τopt are assumed to be given.

The elements of τappr approximate the optimal switching

times topt
i ∈ τopt for every i = 1, ..., r − 1. A trajectory

xappr(·), a sequence τappr and the associated sequence of

the corresponding locations can be obtained in various ways,

for instance, with help of the gradient-based algorithms

proposed in [2], [3], or using the optimality zone algorithms

from [12], [24].

Conceptual Algorithm 1:

1) Consider an approximating trajectory xappr(·), the cor-

responding sequence τappr , the sequence of locations

and the terminal condition P (tf ) = Sf for a given

LHS . Set k = 1 and l = 1.

2) With help of the inverted-time integrating procedure,

compute the value Pr(t
opt
r−1) of the partial Riccati matrix

Pr. Using (16) calculate the Riccati matrix Pr−1(t
opt
r−1).

3) By the inverted-time integrating solution define

Pr−k(topt
r−k−1), increase k by one. If k = r−1, then go

to Step 4. Otherwise go to Step 2.

4) Complete all partial Riccati matrices Pi(·) and define

the corresponding partial gain matrices

Ci(t) = R−1
qi

(t)BT
qi

(t)Pi(t).

Compute the quasi-optimal (in the sense of the above

approximations) piecewise feedback control function

from (7).
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5) Using the obtained quasi-optimal feedback control low,

compute the corresponding trajectory xl(·) of the LHS
under consideration. Determine the new approximating

sequence τ l from the conditions

tli := min{t ∈ [0, tf ] : xl(t)
⋂

Mqi,qi+1
6= ∅}.

where i = 1, ..., r−1. Finally, increase l by one and go

to Step 2.

We are also able to prove the following convergence result

for the presented Conceptual Algorithm 1.

Theorem 4: Under assumptions of Theorem 1, there exists

an initial approximating trajectory xappr(·) such that the

sequence of hybrid trajectories generated by Algorithm 1 is

a minimizing sequence for (2).

The proof of Theorem 4 is based on the convexity argu-

ments (see [6]) for the HLQ problem under consideration

and on the convergence properties of the general first-order

optimization methods in real Hilbert spaces.

We now consider some examples of the HLQ problems

and illustrate the numerical approach proposed above.

Example 1: First, let us examine the example from [26]

ẋ = u, for q1

ẋ = −x+ u for q2

where x0 = 0.9 and the switching manifold has the affine-

linear structure b1,2x+c1,2 = 0 with b1,2 = 1 and c1,2 = −1.

The quadratic cost functional has the following easy form

J (u (·) , x (·)) =
1

2

∫ 1

0

(x2(t) + u2(t))dt

Using Algorithm 1, we evaluate the optimal trajectory and

the corresponding optimal control for the HLQ problem

under consideration. The optimal behavior of the given LHS
(the pair (x1(t), u1(t))) is presented in comparison with the

classic optimal dynamics of the first subsystem (indicated by

(x0(t), u0(t))) (see Fig. 2).

Fig. 2. Optimal behavior of the LHS .

As one can see, an optimal HLQ dynamics is given here by

a discontinuous (in time) partially linear feedback strategy.

Unlike to the classic Riccati matrix function P0(·) (for the

first subsystem), the corresponding hybrid Riccati matrix

P1(·) is a discontinuous function (see Fig. 3).

Fig. 3. Optimal behavior of the LHS .

For the computed switching time instant topt
1 = 0.1066

we apply (16) and obtain the following values of the hybrid

Riccati ”matrix”: P−
1 (topt

1 ) = −0.9897, P+
1 (topt

1 ) = 0.2315.

The computed optimal cost in the given HLQ problem is

Jopt = 0.4215. Finally note that the optimal cost in the

above classic LQ problem formulated for the first location

is equal to 0.6169.

Let us now study our next example of a LHS with 3

locations.

Example 2: The dynamics of the hybrid system is given

by the following linear equations associated with the corre-

sponding locations.

ẋ1 = −x1 (t) + 4u1 (t) ∀t ∈ [0, t1]
ẋ2 = −2x2 (t) + 2u2 (t) ∀t ∈ [t1, t2]
ẋ3 = −4x3 (t) − 5u3 (t) ∀t ∈ [t2, tf ]

where x0 = 5 and t1, t2 are (unknown) switching times. The

switching manifolds are affine-linear manifolds

M1,2 (x) = x+ 3, M2,3 (x) = x− 8

Our aim is to minimize the quadratical cost function J from

(2), where

Sf = 0, Sq1
= Sq2

= Sq3
= 1, Rq1

= Rq2
= Rq3

= 1.

Applying Algorithm 1 we obtain a trajectory showed in Fig.

4 and the computed optimal cost is Jopt = 168.6059.
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Fig. 4. Optimal behavior of the LHS .
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The above computational results are obtained using the

standard Mathematica and MATLAB packages.

Unlike to the conventional LQ theory the first closed-

loop subsystem from Example 1 is an unstable system (the

Riccati ”matrix” P1(t) is negative for all t ∈ [0, topt
1 )).

Otherwise the ”full” closed-loop systems from Example 1

and Example 2 are asymptotically stable (in the Lyapunov

sense). This computational fact is in accordance with the

theoretical consequences of the hybrid LQ-theory developed

in Section III.

Finally, let us note that the theoretic and computational

results from [28] are obtained under the incorrect and non-

proved basic continuity assumption for the Riccati matrices

under consideration. Therefore, the numerical results for

the optimal feedback and the optimal value from [28] can

be improved by using the above analytical techniques and

the implementable Conceptual Algorithm 1 proposed in our

paper.

V. CONCLUDING REMARKS

In this paper, we have developed a new theoretical and

computational approach to a class of hybrid linear quadratic

optimal control problems. This approach is based on the

extension of the Maximum Principle and Dynamic Program-

ming techniques to control processes governed by linear

hybrid systems with autonomous location transitions. Using

the continuous structure of the given class of hybrid control

systems, we established continuity property of the optimal

Hamiltonian function from the HMP. On the other hand, we

prove the discontinuous property of the Riccati matrix and

find the explicit expression for the jumps of this matrix-

function at the optimal switching points. This makes it pos-

sible to construct an implementable computational algorithm

for the numerical treatment of the optimal partially linear

feedback control strategy. Using this algorithm, one can

generate an optimal feedback control low analogously to

the conventional LQ-problem. It is necessary to stress that

in contrast to the classic linear quadratic OCP, the optimal

feedback for the HLQ (2) is a discontinuous piecewise linear

function.

The approach proposed in this paper can be extended to

some other classes of hybrid OCPs, for instance, to linear

impulsive hybrid OCPs introduced in [5]. Finally, note that

it seems to be possible to prove the discontinuous property of

the general value function in the nonlinear setting and study

the DP-based theoretical and computational techniques for

nonlinear hybrid OCPs.
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