
 
 

 

  

Abstract—Control of vehicle suspension systems has been the 
focus of extensive work in the past two decades. Many control 
strategies have been developed to improve the overall vehicle 
performance, including both ride quality and stability 
conditions. However, the concerns regarding the wheel motions 
affecting significantly on the handling and steering are ignored 
by researchers in the control formulation. A H∞ control 
methodology is employed to design an active suspension system 
so that ride quality and wheel motions are improved 
simultaneously. In addition, a three-dimensional kinematic 
model of a specific suspension system, namely Macpherson 
suspension, is developed to study the alteration of those of 
kinematic suspension parameters which represent the wheel 
motions. The results show that the proposed robust design 
provides superior kinematic and dynamic performances 
compared to those of the passive system. 

I. INTRODUCTION 
he major roles of a suspension system are to adequately 
support the vehicle weight, to provide effective ride 

quality, to maintain the wheels in the appropriate position 
and to keep tire contact with the ground. In order to examine 
the extent to which these demands are met, three main 
categories of suspension systems, namely passive, active and 
semi-active systems are extensively studied in the literature. 
However, it is known that the active suspensions offer good 
road roughness isolation, stability, and handling 
performance in a wide range of frequencies compared to 
other type of systems.  

For active control of a vehicle suspension system various 
approaches have been proposed in the literature, including, 
linear optimal control [1], fuzzy logic control [2], adaptive 
control [3], gain scheduling control [4], H∞ robust control 
[5], and nonlinear control [6]. Nevertheless, robust control 
has received the most attention among researchers in the 
context of disturbance attenuation and robustness of the 
vehicle [1]. The main attempt in the robust control is on 
minimization of the energy exerted from the road to the 
vehicle. The main approaches have been defined based on 
either L2 (H2) or L∞ (H∞) norms of the transfer function 
between road disturbances and suspension responses. While 
in the former method, the transfer function is minimized in 
the whole range of frequencies, in the latter it is optimized in 
the worst case of disturbance.  

Typically, the acceleration of the sprung mass, suspension 
deflection, i.e. the relative displacement between the car 
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body and wheel assembly, and tire deflection are considered 
as measures of the ride quality, rattle space constraint and 
road-holding ability [1]. As is common in the formulation of 
H∞ robust control for a vehicle suspension, all the 
requirements are weighted and formulated in a single 
objective function which is minimized to find an optimal 
control gain [7], [8]. However, in another formulation, the 
attempt is on minimization of the transfer characteristics 
from road irregularities to the chassis acceleration while 
holding the other requirements within their reasonable 
bounds [9].  

Although the abovementioned control strategies can 
improve the overall performance of active suspensions in 
terms of ride quality and stability, one of the disadvantages 
in them is that the trend of the wheel motions has not been 
considered. The appropriate motions of the wheel are 
significantly important in the stability, handling, steering, 
tire life, and even fuel consumption. In the context of the 
suspension design, based on the kinematics of the 
suspension, some parameters such as toe angle, camber 
angle and track width have been defined to describe the 
different motions of a wheel. The variations of these 
parameters are really important in the overall performance of 
a vehicle especially in tire life and stability. For instance, 
while camber angle variation reduces tire life and increases 
tire temperature, it also may deteriorate stability of the 
vehicle by generating lateral forces acting on the tire. Lower 
toe angle alterations are important for reduced tire wear, less 
rolling resistance, and better directional stability. Track 
width alterations produce lateral forces affecting tire life, 
steering and even stability of the vehicle [10].  

In the current study, the vertical displacement of the 
vehicle body is considered in the control formulation in 
order to improve the ride quality and wheel motions 
simultaneously. In addition, a three-dimensional kinematic 
model of a specific suspension system, namely Macpherson 
suspension system, is developed to investigate the alterations 
of the aforementioned parameters subject to active force 
variation. Further, it is shown how the integration of the 
vertical vehicle body displacement influences the overall 
suspension performance, the point which was ignored in the 
previous studies.  
The rest of the paper is organized as follows. After 
introducing the dynamics of a quarter-car model in Section 
II, the H∞ controller is formulated based on the dynamic 
model. A three-dimensional kinematic model of the 
Macpherson strut wheel suspension system is proposed for 
wheel motion investigation in Section III. While Section IV 
includes the simulation results and related discussion, 
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Section V summarizes the results given in this paper. 

II. QUARTER-CAR MODEL AND H∞ CONTROL FORMULATION  

A. Dynamic model 
A quarter-car model shown in Figure 1 is composed of two 
lumped masses, connected via a spring and a damper, and 
the tire stiffness. This model considers the vertical motion of 
the sprung mass (vehicle body), zs, and the vertical motion of 
the unsprung mass (wheel), zu. Road disturbances are shown 
by zr. It should be noted that all the coefficients are assumed 
to be linear. The equations of motion are given as:  
 

( ) ( )
sm s s u p s u a s sf k z z c z z f m z= − − − − + =∑

( ) ( ) ( )
um s s u p s u t u r a u uf k z z c z z k z z f m z= − + − − − − =∑  

 (1)  
where fa represents actuator force. ks and kt are suspension 
and tire stiffness coefficients, respectively. In addition, cp 
stands for damping coefficient.  

 
Figure 1. Two DOF active quarter-car suspension model 
 
The state vector is defined in the state space 
as ],,,[ uuss zzzzx = . The state equations are expressed in 
matrix form as: 
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where 

1 2

0 1 0 0
0 0

1 0
, ,

0 00 0 0 1
1

p ps s

s s s s s

u t up ps t s

u u u u

c ck k
m m m m m

A B B

m k mc ck k k
m m m m

⎡ ⎤
⎢ ⎥

⎡ ⎤ ⎡ ⎤⎢ ⎥− − ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ −+ ⎣ ⎦ ⎣ ⎦⎢ ⎥− −

⎢ ⎥⎣ ⎦

 

B. H∞ control formulation  
The major performance criteria of a suspension system are 

ride comfort, road-holding ability and suspension deflection. 
The RMS value of the body acceleration response is widely 
considered in order to quantify ride quality.  Therefore, it is 
essential to keep the transfer characteristics from road 
irregularities to the body acceleration small. The measure of 
the road-holding ability of a vehicle is the dynamic contact 
force variation between the tire and ground which depends 
on the tire deflection (zu-zr). Accordingly, a vehicle has good 
stability if a strong contact force between the road and tire is 
maintained. The excessive suspension deflection may result 
in structure damage and deterioration of ride comfort. 
Hence, this limit should be considered in the control design 
as well. However, in previous suspension control designs 
while the focus was on the improvement of ride quality and 
road-holding ability, the concern pertaining to the wheel 
performance was not considered in the control design 
process. As mentioned before, the appropriate wheel 
performance results in a superior handling performance, 
better stability, and less steering. In the current study, it is 
recommended that in order to improve the wheel motion, the 
vertical displacement of the vehicle body should be 
integrated in the control formulation as well.  
 Based on the abovementioned situations, a H∞ control 
problem is formulated in the following to manage different 
requirements of the suspension system.  The following form 
of equations expresses dynamics of the system  
 

1 2

1 1 1

2 2 2

( ) ( )
( ) ( )
( ) ( )

a r

a

a

x t Ax t B f B z
z t C x t D f
z t C x t D f

= + +
= +
= +

 (3) 

 
subject to input constraint  
 

,max( )a af t f≤  
 
where x(t), zr, A, B1 and B2 are defined as (2) and fa, max 
stands for actuator saturation. Moreover, z1 and z2 are the 
vectors of H∞ performance controlled outputs and the 
constrained outputs, respectively. Despite previous 
controlled output formulations [7], [8] and [9], the vertical 
body displacement is integrated in the controlled vector as 
the following in the current control design  
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 (4) 
Here, λ>0 is a scalar weighting considered to normalize the 
controlled vector and to handle the trade-off between the 
control objectives. In addition, the suspension stroke 
limitation is considered in the following form 
 

,      t 0s uz z SS− ≤ ∀ ≥  (5) 
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and is considered in the vector of constrained output as 
 

[ ]2 2 2( ) 1 0 1 0 ,    0,    0 z t C D= − = =  (6) 
      

Since road-holding is important during sharp turns and 
this study deals only with straight (forward) motion, this 
constraint is relaxed in the formulation.  

Considering fa=Kx, the gain matrix shall be designed so 
that the resulting closed loop system is asymptotically stable 
and the H∞-norm from the road disturbance to the 
performance output, z(t), is minimized. For the existence of 
such a control gain and for a given γ>0 (the upper bound of 
the transfer matrix H∞ norm), the necessary and sufficient 
conditions are equivalent to the existence of matrices QT=Q 
and Y satisfying the following LMI: 
 

1 1 2 1 1

2
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0

T T T T T T T
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 (7) 

 
Accordingly, the feedback gain is equal to K=YQ-1. In order 
to handle the force saturation and constrained output, the 
matrices Q and Y in Eq. (7) should satisfy the following 
LMIs as well, 
 

2
,max

1
0, a

T

X Y
         X f

Y Q
α
⎡ ⎤
⎢ ⎥ ≥ ≤⎢ ⎥
⎢ ⎥⎣ ⎦

 (8) 

 

2 2 2
max

2 2

1
,        Z z

( )T

Z C Q D Y

C Q D Y Q
α

⎡ ⎤+⎢ ⎥ ≤⎢ ⎥
⎢ ⎥+⎣ ⎦

 (9) 

 
for some scalars X and Z. In this formulation, α/γ represent 
the upper bound of the energy exerted to the system. More 
details regarding the control scheme can be found in 
reference [9] and references therein. Therefore, the matrices 
Q and Y can be obtained from the solution of the following 
minimization problem 
 
 

, ,
min

TQ Q Yγ
γ

=
  

 subject to LMIs 7, 8 and 9          (10) 
 
Subsequently, a state feedback control law with K=YQ-1 

can be obtained by solving the abovementioned convex 
optimization problem.  

III. KINEMATIC MODEL OF THE MACPHERSON SUSPENSION 
SYSTEM 

The Macpherson suspension is usually implemented in the 

vehicle body as a front suspension and categorized as an 
independent suspension. The main advantages of a 
Macpherson suspension are its simple structure, compact 
size, and low weight. However, it has some disadvantages 
such as less favorable kinematic performance, higher need of 
steering, higher tire wear and less isolation of the vehicle 
body from road roughness compared to other types of 
independent suspensions [10].  

In order to investigate the wheel performance of this type 
of suspension system subject to the control force variation, a 
three-dimensional kinematic model, including two-degree-
of-freedom (DOF) system, is developed in the following.  

 
Figure 2. A three dimensional kinematic model of the 
Macpherson suspension system 
 

A typical model of the Macpherson suspension system is 
shown in Figure 2. Generally, a Macpherson suspension 
connects the chassis to the wheel through three links, namely 
the control arm, the tie rod and the strut. While the tie rod 
and control arm are rigid links, the length of the strut varies 
due to the relative motions between two ends of the damper 
and spring. The tie rod connects steering gear to the front 
wheel whilst the control arm and strut connect the wheel to 
the chassis. The assumptions in developing the kinematic 
model are; 1) all bodies are rigid; 2) control arm is modeled 
by a rod 3) the chassis has only the vertical displacement and 
the motion of the body in other directions is zero. The inputs 
of the system are the road disturbance, zr, and the vertical 
displacement of the sprung mass, zs. It should be pointed out 
that what connects the dynamic model represented in the 
previous section to the kinematic model is the vertical 
vehicle body displacement, obtained by solving Eq. (3).   
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The kinematic equations and constraints, governing on the 
system, are summarized in the following system of equations  
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where aij’s are the components of a rotation matrix around 
fixed coordinates RYP (Roll-Yaw-Pitch) and can be found 
in the robotic or dynamic text books such as in reference 
[11]. The items 10-14 show the kinematic constraint arising 
from prismatic motion of the strut where items (ux, uy, uz) are 
the cosine directions of the strut (Line CD). In addition, 
items 15 and 16 show the constant length of the tie rod and 
control arm, respectively. The item 17 represents rotational 
motion of the control arm around the fixed axis GH.  

Three parameters, including toe angle, camber angle, and 
track width, defined in the context of suspension design, 
describes different motions of a wheel. Toe and camber 
angles show the roll and yaw rotational motions of the wheel 
around fixed coordinate axes while the track width alteration 
indicates lateral motion of the wheel. The variations of these 
parameters significantly affect handling, steering and 
stability of a vehicle [10]. Using the three-dimensional 
kinematic model of the Macpherson suspension system 
developed in the current study, alterations of these 
parameters are investigated subject to controlled force 
variations.  More details regarding the mathematical 
definitions of the abovementioned parameters and validation 
of the model can be found in reference [12].   

IV. SIMULATION RESULTS 
For the simulation purposes, the following data are 
considered 
 

 
, max

320 ( ) 40 ( )
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s t
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= =
= =
= =

=

 

 
The positions of the key points on the Macpherson 

suspension are considered as below and taken from ADAMS 
software default (the origin of the coordinate system at the 
equilibrium position assumed to be at point B and all 
dimensions are in mm): 

 
1 1

1 1

1 1

1 1

(206.5, 249.05, - 60.77) (222, 152.6, 236.25)
(229.2, 134.5, 374.75) (211.1, 292.15, 27.5)
(240, 107.35, 582.5) (-217.3, 76.05, 27.5)
(217.3, - 76.05, - 27.5) ( 332.

A      C   
J          P   
D          G    
H     M   

= =
= =
= =
= =

1

9, 212.35, -31.6)
(317.3, -94.05, - 0.5)

 
N   =
  

Based on the data given above and by setting λ equal to 
2500, the control gain matrix obtained from Eq. (10) is 
equivalent to 
 
 K=104×[ -1.5052   -0.0798    0.1478   -0.0013] 
 
In addition, the road profile is considered as zr(t) = 
25.4sin(2πt)+d(t) (mm) where d(t)=5sin(10.5πt)+sin(21.5πt) 
(mm) representing the high frequency disturbances. In the 
simulations, two cases of the robust control are considered. 
While in the first one, so-called R1 in this paper, both the 
vertical sprung mass displacement and acceleration are 
considered in the formulation of the controlled output vector, 
in the second one the objective vector just includes the 
vertical acceleration (R2). The results are illustrated in 
Figures 3-8. The RMS values of both the dynamic and 
kinematic responses are calculated and summarized in 
Tables 1 and 2. Referring to those results, one can see that 
both controllers improve the dynamic responses of the 
suspension system compared to passive one and keep the 
suspension deflection within the assumed bounds. However, 
R1 has a slightly better performance in comparison with R2 
in terms of ride quality. Regarding the kinematic 
performance, R1 improves the toe angle and track width 
variations significantly compared to R2 and passive cases at 
the expense of violation of camber angle alteration.  
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Figure 3. Vertical chassis Acceleration 
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Figure 4. Vertical Chassis Displacement 
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Figure 5. Suspension Deflection 
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Figure 6. Toe Angle Alteration 
 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Time (s)

C
am

be
r 

A
ng

le
 (

de
gr

ee
)

 

 
R1
R2
Passive

 
Figure 7. Camber Angle Alteration 
 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-6

-4

-2

0

2

4

6

8

10

12

Time (s)

T
ra

ck
 W

id
th

 (
m

m
)

 

 
R1
R2
Passive

 
Figure 8. Track Width Alteration 
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Table 1. RMS values of the dynamic responses 
 Acceleratio

n (m/s2) 
Displacement 

(mm) 
Suspension 
Deflection 

(mm) 
R1 0.8255 3.7216 15.6019 
R2 0.9249 14.5137 7.4695 

Passive 1.9393 44.9255 30.5309 
 
 

Table 2. RMS values of the kinematic responses 
 Track width 

(mm) 
Camber angle 

(degree) 
Toe angle 
(degree) 

R1 2.1596 0.3477 0.0880 
R2 2.4877 0.2547 0.2711 

Passive 3.9167 0.3350 0.7775 
 
Since both track width and toe angle changes play a major 

role in directional stability, it is obvious that R1 has a better 
effect on the directional stability of the vehicle compared to 
R2. These results indicate how different control strategies 
can enhance stability of the vehicle differently while their 
contribution in improving the ride quality and road-holding 
ability are close to each other.    

The trend of force efforts generated by R1 and R2 are 
plotted in Figure 9. In both cases, the force has been limited 
between the assumed bounds well.  
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Figure 9. Active force variation 

 

V. CONCLUSION 
A three-dimensional kinematic model of a specific 
suspension system, namely Macpherson suspension, is 
developed in order to investigate the influence of the control 
force variation on the wheel motions. In order to improve the 
suspension system performance, H∞ robust control strategy 
is employed. It is shown that the formulation of the control 
strategy can significantly affect the performance of a wheel, 
the point that was ignored in the previous studies. In order to 
study wheel performance, toe angle, camber angle and track 

width are explained and investigated. Using these 
parameters, more details regarding suspension performance 
as well as stability and handling of a vehicle are studied.   
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