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Abstract— Laplacian matrices play an important role in
linear consensus algorithms. This paper studies linear-quadratic
regulator (LQR) based optimal linear consensus algorithms
for multi-vehicle systems with single-integrator kinematics in a
continuous-time setting. We propose two global cost functions,
namely, interaction-free and interaction-related cost functions.
With the interaction-free cost function, we derive the optimal
(nonsymmetric) Laplacian matrix. It is shown that the optimal
(nonsymmetric) Laplacian matrix corresponds to a complete
directed graph. In addition, we show that any symmetric
Laplacian matrix is inverse optimal with respect to a properly
chosen cost function. With the interaction-related cost function,
we derive the optimal scaling factor for a pre-specified sym-
metric Laplacian matrix associated with the interaction graph.
Illustrative examples are given as a proof of concept.

I. INTRODUCTION

Recently, distributed cooperative control for multiple

autonomous vehicles, including unmanned aerial vehicles

(UAVs), unmanned ground vehicles (UGVs), and unmanned

underwater vehicles (UUVs), has become a very active

research topic. Great benefits, including high adaptability,

easy maintenance, and low complexity, can be achieved by

having a group of vehicles work cooperatively with local

interaction.

An important approach in distributed multi-vehicle coop-

erative control is consensus which means the agreement of all

vehicles on some common features by negotiating with their

local neighbors. Examples of the features include positions,

phases, velocities, and attitudes. Consensus has been studied

extensively in the recent literature. For vehicles with single-

integrator kinematics, [1]–[5], to name a few, studied linear

consensus algorithms in different settings. Consensus for

vehicles with double-integrator dynamics was studied in [6]–

[12], to name a few. For detailed discussions about linear

consensus algorithms, refer to [13] and [14].

Optimality issues in consensus algorithms have also been

studied in the literature. In [15], the authors proposed a

(locally) optimal nonlinear consensus strategy by imposing

individual objectives. In [16], the authors proposed the

optimal interaction graph, a de Bruijn’s graph, in the average

consensus problem. In [17], the authors designed a semi-

decentralized optimal control strategy by minimizing the

individual cost. In addition, cooperative game theory was

employed to ensure cooperation with a team cost function.

In [18], the authors proposed an iterative algorithm to maxi-

mize the second smallest eigenvalue of a Laplacian matrix to
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optimize the control system performance. In [3], the authors

studied the fastest converging linear iteration by using semi-

definite programming.

Among various studies of linear consensus algorithms, a

noticeable phenomenon is that the algorithms with different

parameters (i.e., different Laplacian matrices) can be applied

to the same system to ensure consensus. It is natural to ask

these questions: Is there an optimal linear consensus algo-

rithm with the associated optimal Laplacian matrix (under

a given cost function)? How to find the optimal linear con-

sensus algorithm? In contrast to [3], [15]–[18], the purpose

of the current paper is to study the optimal linear consensus

algorithms for vehicles with single-integrator kinematics in

a continuous-time setting from an LQR perspective. Instead

of studying locally optimal algorithms, this paper focuses on

globally optimal algorithms. We first propose two global cost

functions, namely, interaction-free and interaction-related

cost functions. With the interaction-free cost function, we

derive the optimal (nonsymmetric) Laplacian matrix. It is

shown that the optimal (nonsymmetric) Laplacian matrix

corresponds to a complete directed graph. In addition, we

show that any symmetric Laplacian matrix is inverse opti-

mal with respect to a properly chosen cost function. With

the interaction-related cost function, we derive the optimal

scaling factor for a pre-specified symmetric Laplacian matrix

associated with the interaction graph.

The remainder of this paper is organized as follows. In

Section II, the graph theory notions and definitions used

in this paper are introduced. Then the interaction-free and

interaction-related cost functions are presented in Section III.

Section IV is the main part of this paper focusing on

the LQR-based optimal linear consensus algorithms in a

continuous-time setting. A short conclusion is given in

Section V.

II. BACKGROUND AND DEFINITIONS

A. Graph Theory Notions

The interaction graph among a team of n vehicles can

be modeled by a weighted directed or undirected graph G
consisting of a node set V = {1, . . . , n}, an edge set E ⊆ V×
V , and a weighted adjacency matrix A = [aij ] ∈ R

n×n. In

this paper, we assume that G is fixed. Each edge (i, j) ∈ E in

a directed graph denotes that vehicle j can obtain information

from vehicle i, but not necessarily vice versa. In contrast,

in an undirected graph, (i, j) ∈ E implies (j, i) ∈ E . The

weighted adjacency matrix A is defined as aij > 0 if (j, i) ∈
E , and aij = 0 otherwise. In particular, we assume aii = 0,

i = 1, · · · , n. For undirected graphs, it is assumed that aij =
aji.
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A directed path is a sequence of edges in a directed graph

of the form (i1, i2), (i2, i3), . . ., where ij ∈ V . An undirected

path is defined analogously. A directed graph has a directed

spanning tree if there exists at least one node having a

directed path to all other nodes. A directed graph is strongly

connected if there is a directed path from every node to

every other node. An undirected graph is connected if there

is an undirected path between every pair of distinct nodes.

A complete directed graph is a directed graph in which each

pair of distinct nodes is connected by an edge and the edge

is bidirectional.

Let the (nonsymmetric) Laplacian matrix L = [ℓij ] ∈
R

n×n associated with A be defined such that ℓii =
∑n

j=1,j 6=i aij and ℓij = −aij , i 6= j. For an undirected

graph, L is symmetric positive semi-definite (PSD). For

a directed graph, L is not necessarily symmetric. In the

remainder of the paper, we use (nonsymmetric) Laplacian

to emphasize the fact that a certain Laplacian matrix is

not necessarily symmetric and use symmetric Laplacian to

explicitly emphasize the fact that a certain Laplacian matrix

is symmetric. From the definition of L, it can be noted that

0 is an eigenvalue of L with an associated eigenvector 1n,

where 1n is an all-one n× 1 column vector. For undirected

graphs, L has a simple zero eigenvalue if and only if

undirected graph G is connected [19]. For directed graphs,

L has a simple zero eigenvalue if and only if directed graph

G has a directed spanning tree [20], [5].

B. Definitions

Definition 2.1: We define Zn×n := {B = [bij ] ∈
R

n×n|bij ≤ 0, i 6= j}, 0m×n ∈ R
m×n as an all-zero matrix,

and In ∈ R
n×n as an identity matrix.

Definition 2.2: A matrix E ∈ R
m×n is said positive

(nonnegative), i.e., E > (≥)0, if each entry of E is

positive (nonnegative). A square nonnegative matrix is (row)

stochastic if all of its row sums are 1.

Definition 2.3: [21] A real matrix B = [bij ] ∈ R
n×n is

called an M-matrix if it can be written as

B = sIn − C, s > 0, C ≥ 0

where C ∈ R
n×n satisfies ρ(C) ≤ s, where ρ(·) is

the spectral radius of a matrix. The matrix B is called a

nonsingular M-matrix if ρ(C) < s.

Definition 2.4: [21] A matrix D ∈ R
n×n is called semi-

convergent if limi→∞ Di exits.

III. GLOBAL COST FUNCTIONS

Consider vehicles with single-integrator kinematics given

by

ẋi(t) = ui(t) (1)

where xi(t) ∈ R and ui(t) ∈ R are, respectively, the

state and control input of the ith vehicle. A common linear

consensus algorithm is studied in [1], [2], [4], [5] as

ui(t) = −
n∑

j=1

aij [xi(t) − xj(t)], (2)

where aij is the (i, j)th entry of the weighted adjacency

matrix A associated with G. The objective of (2) is to

guarantee consensus, i.e., for any xi(0), xi(t) → xj(t) as

t → ∞. Substituting (2) into (1) and writing the closed-loop

system in matrix form gives

Ẋ(t) = −LX(t), (3)

where X(t) = [x1(t), x2(t), · · · , xn(t)]T and L is the (non-

symmetric) Laplacian matrix associated with A. It can be

noted that (3) is a linear differential equation. Consensus is

reached for (3) if and only if L has a simple zero eigenvalue

or equivalently the directed graph associated with L has a

directed spanning tree [5].

Similar to the cost function used in optimal control

problems for systems with linear differential equations, we

propose the following two consensus cost functions for

system (1) as

Jf =

∫ ∞

0







n∑

i=1

i∑

j=1

cij [xi(t) − xj(t)]
2 +

n∑

i=1

riu
2
i (t)






dt,

(4)

Jr =

∫ ∞

0







n∑

i=1

i∑

j=1

aij [xi(t) − xj(t)]
2 +

n∑

i=1

u2
i (t)






dt,

(5)

where cij ≥ 0, ri > 0, and aij is defined in (2). In (4),

both cij and ri can be chosen freely. Therefore Jf is called

the interaction-free cost function. Because (5) depends on

weighted adjacency matrix A, Jr is called the interaction-

related cost function. The motivation of (4) and (5) is to

weigh both the consensus errors and the control effort. The

optimization problems can be written as

min
aij

Jf , subject to (1) and (2) (6)

min
β

Jr, subject to (1) and

ui(t) = −
n∑

j=1

βaij [xi(t) − xj(t)]. (7)

IV. LQR-BASED OPTIMAL LINEAR CONSENSUS

ALGORITHMS IN A CONTINUOUS-TIME SETTING

In this section, we derive the optimal linear consen-

sus algorithms in a continuous-time setting from an LQR

perspective. We first derive the optimal (nonsymmetric)

Laplacian matrix using continuous-time interaction-free cost

function (4). We will then find the optimal scaling factor for a

pre-specified symmetric Laplacian matrix using continuous-

time interaction-related cost function (5). Finally, illustrative

examples will be provided.

A. Optimal Laplacian Matrix Using Interaction-free Cost

Function

With interaction-free cost function (4), optimal control

problem (6) can be written as

min
L

Jf =

∫ ∞

0

[XT (t)QX(t) + UT (t)RU(t)]dt (8)

subject to: Ẋ(t) = U(t), U(t) = −LX(t),
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where X(t) is defined in (3), U(t) = [u1(t), · · · , un(t)]T ,

Q ∈ R
n×n is symmetric with the (i, j)th entry given as

−cij for i 6= j and the (i, i)th entry given as
∑n

j=1,j 6=i cij ,

R ∈ R
n×n is a positive definite (PD) diagonal matrix with

ri being the ith diagonal entry, and L is the (nonsymmetric)

Laplacian matrix defined in (3). It can be noted that Q is a

symmetric PSD Laplacian matrix.

We need the following lemmas to derive our main theorem.

Lemma 4.1: [21] An M-matrix B ∈ R
n×n has exactly

one M-matrix as its square root if the characteristic polyno-

mial of B has at most a simple zero root.

If the characteristic polynomial of M-matrix B has at most

a simple zero root, we use
√

B hereafter to represent the M-

matrix that is the square root of B.

Lemma 4.2: An M-matrix that has a zero eigenvalue with

a corresponding eigenvector 1n is a (nonsymmetric) Lapla-

cian matrix.

Proof: Follow Definition 2.3 and definition of a (nonsym-

metric) Laplacian matrix.

Lemma 4.3: Let Q and R be defined in (8). Suppose

that Q has a simple zero eigenvalue. There exists exactly

one (nonsymmetric) Laplacian matrix W satisfying W =√

R−1Q and W has a simple zero eigenvalue.

Proof: The proof is divided into the following three steps:

Step 1: R−1Q is a (nonsymmetric) Laplacian matrix with

a simple zero eigenvalue. We first note that R−1Q is a

(nonsymmetric) Laplacian matrix because Q is a symmetric

Laplacian matrix and R is a PD diagonal matrix. Because

Q is a symmetric Laplacian matrix with a simple zero

eigenvalue, it follows that the undirected graph associated

with Q is connected, which implies that the directed graph

associated with R−1Q is strongly connected. It thus follows

that (nonsymmetric) Laplacian matrix R−1Q also has a

simple zero eigenvalue.

Step 2: W has a simple zero eigenvalue with an associated

eigenvector 1n. Let the ith eigenvalue of W be λi with

an associated eigenvector νi. Noting that W 2 = R−1Q,

it follows that the ith eigenvalue of R−1Q is λ2
i with an

associated eigenvector νi. Because R−1Q has a simple zero

eigenvalue with an associated eigenvector 1n, it follows

that W has a simple zero eigenvalue with an associated

eigenvector 1n.

Step 3: W is a (nonsymmetric) Laplacian matrix. Note

that a (nonsymmetric) Laplacian matrix is a special case

of an M-matrix according to Definition 2.3. It follows

from Lemma 4.1 and Step 1 that R−1Q has exactly one

square root W that is also an M-matrix. Because W has a

simple zero eigenvalue with an associated eigenvector 1n as

shown in Step 2, it follows from Lemma 4.2 that W is a

(nonsymmetric) Laplacian matrix.

We next show that the (nonsymmetric) Laplacian matrix

W in Lemma 4.3 corresponds to a complete directed graph.

Lemma 4.4: Let Q and R be defined in (8). Suppose that

Q has a simple zero eigenvalue. Then (nonsymmetric) Lapla-

cian matrix
√

R−1Q corresponds to a complete directed

graph.

Proof: We show that each entry of
√

R−1Q is nonzero,

which implies that
√

R−1Q corresponds to a complete

directed graph. Before moving on, we let qij denote the

(i, j)th entry of Q. We also let W =
√

R−1Q and denote

wij , wi,:, and w:,i, respectively, as the (i, j)th entry, the ith

row, and the ith column of W .

First, we will show that wij 6= 0 if qij 6= 0. We show this

statement by contradiction. Assume that wij = 0. Because

R−1Q = W 2, it follows that
qij

ri
= wi,:w:,j . When i = j,

it follows from wii = 0 that wi,: = 0n×1 because W is

a (nonsymmetric) Laplacian matrix, which then implies that
qij

ri
= wi,:w:,j = 0. This contradicts the assumption that

qij 6= 0. When i 6= j, because we assume that wij = 0,

it follows that
qij

ri
= wi,:w:,j =

∑n

k=1,k 6=i,k 6=j wikwkj ≥
0 due to the fact wi,k ≤ 0, ∀i 6= k, because W is a

(nonsymmetric) Laplacian matrix. Because Q is a symmetric

Laplacian matrix, it follows that qij ≤ 0, ∀i 6= j. Therefore,
qij

ri
≥ 0, ∀i 6= j, implies qij = 0, which also contradicts the

assumption that qij 6= 0.

Second, we will show that wij 6= 0 if qij = 0. We also

show this statement by contradiction. Assume that wij = 0.

To ensure that qij = 0, it follows from
qij

ri
= wi,:w:,j =

∑n

k=1,k 6=i,k 6=j wikwkj that wikwkj = 0, ∀k 6= i, k 6= j, k =

1, · · · , n. Denote k̂1 as the node set such that wim 6= 0 for

each m ∈ k̂1. Then we have wmj = 0 for each m ∈ k̂1

because wikwkj = 0. Similarly, denote k̄1 as the node

set such that wmj 6= 0 for each m ∈ k̄1. Then we have

wim = 0 for each m ∈ k̄1 because wikwkj = 0. From

the discussion in the previous paragraph, when wmj = 0,

we have qmj = 0, which implies that wmpwpj = 0, ∀p 6=
m, p 6= j, p = 1, · · · , n. By following a similar analysis,

we can consequently define k̂i and k̄i, i = 2, · · · , κ, where

k̂i ∩ k̂j = Ø, k̄i ∩ k̄j = Ø, ∀j < i. Noting that the undirected

graph associated with Q is connected and the directed graph

associated with W has a directed spanning tree because

W has a simple zero eigenvalue, it follows that κ ≤ n.

Therefore, each entry of w:,j is equal to zero by following

the previous analysis for at most n times. This implies that

qij = 0, ∀i 6= j, because
qij

ri
= wi,:w:,j . Considering the

fact that Q is a symmetric Laplacian matrix, it follows that

qii = 0, which also contradicts the fact that the undirected

graph associated with Q is connected.

Theorem 4.1: For optimal control problem (8), where

Q has a simple zero eigenvalue, the optimal consensus

algorithm is U(t) = −
√

R−1QX(t), that is, the optimal

(nonsymmetric) Laplacian matrix is
√

R−1Q.1 In addition,
√

R−1Q corresponds to a complete directed graph.

Proof: Consider the following standard LQR problem

min
U(t)

Jf subject to: Ẋ(t) = AX(t) + BU(t), (9)

where Jf is defined by (8), A = 0n×n, and B = In. It can

be noted that (A, B) is controllable, which implies that there

exists a P satisfying the continuous-time algebraic Riccati

1Obviously, consensus is reached for (1) using U(t) = −

√

R−1QX(t)
since

√

R−1Q has a simple zero eigenvalue.
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equation (ARE)

AT P + PA − PBR−1BT P + Q = 0n×n. (10)

It follows from (10) that PR−1P = Q, which implies

R−1PR−1P = R−1Q. It then follows from Lemma 4.3 that

R−1P =
√

R−1Q is also a (nonsymmetric) Laplacian ma-

trix when Q has a simple zero eigenvalue. Therefore, the op-

timal control is U(t) = −R−1BT PX(t) = −
√

R−1QX(t),
which implies that

√

R−1Q is the optimal (nonsymmetric)

Laplacian matrix. It also follows from Lemma 4.4 that√

R−1Q corresponds to a complete directed graph.

Remark 4.2: Note that
√

R−1Q is not necessarily sym-

metric in general. When R is a diagonal matrix with identical

diagonal entries (i.e., R = cIn, where c > 0),
√

R−1Q is

symmetric.

Remark 4.3: Theorem 4.1 requires that Q be a symmet-

rical PSD Laplacian matrix with a simple zero eigenvalue.

When Q has more than one zero eigenvalue, XT (t)QX(t)
can be written as the sum of at least two parts as

XT (t)QX(t) = XT
1 (t)Q1X1(t) + XT

2 (t)Q2X2(t) + · · · ,

where Xi

⋂
Xj = ∅, ∀i 6= j. Therefore, the requirement

that Q has a simple zero eigenvalue is necessary to ensure

consensus.

Theorem 4.4: Any symmetric Laplacian matrix L ∈
R

n×n with a simple zero eigenvalue is the optimal symmetric

Laplacian matrix for the cost function

J =

∫ ∞

0

[XT (t)L2XT + UT (t)U(t)]dt.

Proof: By letting Q = L2 and R = In, it follows directly

from the proof of Theorem 4.1 that L is the optimal

symmetric Laplacian matrix.

B. Optimal Scaling Factor Using Interaction-related Cost

Function

With interaction-related cost function (5), optimal control

problem (7) can be written as

min
β

Jr =

∫ ∞

0

[
XT (t)LX(t) + UT (t)U(t)

]
dt (11)

subject to: Ẋ(t) = U(t), U(t) = −βLX(t),

where L is a pre-specified symmetric Laplacian matrix.

Theorem 4.5: For optimal control problem (11), where the

symmetric Laplacian matrix L has a simple zero eigenvalue,

the optimal β is

√
XT (0)X(0)−XT (0)m1mT

1
X(0)

XT (0)LX(0) , where m1 =
1n√

n
.

Proof: The cost function Jr can be written as

Jr =

∫ ∞

0

XT (0)[e−βLtLe−βLt + β2e−βLtL2e−βLt]X(0)dt

Taking derivative of Jr with respect to β gives

dJr

dβ
=

∫ ∞

0

XT (0)[−2Lte−βLtLe−βLt + 2βe−βLtL2e−βLt

− 2β2Lte−βLtL2e−βLt]X(0)dt.

Setting dJr

dβ
= 0 gives

β2XT (0)

[∫ ∞

0

Lte−βLtL2e−βLtdt

]

X(0)

− βXT (0)

[∫ ∞

0

e−βLtL2e−βLtdt

]

X(0)

+ XT (0)

[∫ ∞

0

Lte−βLtLe−βLtdt

]

X(0) = 0, (12)

where we have used the fact that L and e−βLt are com-

mutable. Because L is symmetric, L can be diagonalized

as

L = M







λ1 0 · · · 0
0 λ2 · · · 0
· · · · · ·
0 0 · · · λn







︸ ︷︷ ︸

Λ

MT , (13)

where M is an orthogonal matrix and λi is the ith eigenvalue

of L. It follows that
∫ ∞

0

Lte−βLtL2e−βLtdt

=

∫ ∞

0

M







0 0 · · · 0
0 e−2βλ2tλ3

2t · · · 0
· · · · · ·
0 0 · · · e−2βλntλ3

nt







MT dt

=
1

4β2
M







0 0 · · · 0
0 λ2 · · · 0
· · · · · ·
0 0 · · · λn







MT =
1

4β2
L. (14)

Similarly, it follows that

∫ ∞

0

e−βLtL2e−βLtdt

=

∫ ∞

0

M







0 0 · · · 0
0 e−2βλ2tλ2

2 · · · 0
· · · · · ·
0 0 · · · e−2βλntλ2

n







MT dt

=
1

2β
L (15)

and
∫ ∞

0

Lte−βLtLe−βLtdt

=

∫ ∞

0

M







0 0 · · · 0
0 e−2βλ2tλ2

2t · · · 0
· · · · · ·
0 0 · · · e−2βλntλ2

nt







MT dt

=
In − m1m

T
1

4β2
, (16)

where m1 = 1n√
n

. By substituting (14), (15) and (16)

into (12), it follows that the optimal gain satisfies β =√
XT (0)X(0)−XT (0)m1mT

1
X(0)

XT (0)LX(0) .
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Fig. 1. Evolution of the cost function Jr as a function of β.

C. Illustrative Examples

In this subsection, we provide two illustrative examples

about the optimal (nonsymmetric) Laplacian matrix and

the optimal scaling factor derived in Subsection IV-A and

Subsection IV-B, respectively.

In (8), let

Q =







2 −1 −1 0
−1 2 −1 0
−1 −1 3 −1
0 0 −1 1







and

R =







1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4







.

It follows from Theorem 4.1 that the optimal (nonsymmetric)

Laplacian matrix is







1.3134 −0.5459 −0.5964 −0.1711
−0.2730 0.8491 −0.4206 −0.1556
−0.1988 −0.2804 0.8218 −0.3426
−0.0428 −0.0778 −0.2570 0.3775







.

Note that the optimal (nonsymmetric) Laplacian matrix cor-

responds to a complete directed graph.

In (11), let

L =







2 −1 −1 0
−1 2 1 0
−1 −1 3 −1
0 0 −1 1







and the initial state X(0) = [1, 2, 3, 4]T . Fig. 1 shows how

the cost function Jr evolves as the scaling factor β increases.

From Theorem 4.5, it can be computed that the optimal

scaling factor is β = 0.845, which is consistent with the

result shown in Fig. 1.

V. CONCLUSION

In this paper, we studied the LQR-based optimal lin-

ear consensus algorithms for multi-vehicle systems with

single-integrator kinematics in a continuous-time setting.

Two global cost functions, namely, interaction-free and

interaction-related cost functions, were proposed. With an

interaction-free cost function, the optimal (nonsymmetric)

Laplacian matrix was derived. The interaction graph asso-

ciated with the optimal (nonsymmetric) Laplacian matrix

was shown to correspond to a complete directed graph. In

addition, any symmetric Laplacian matrix was shown to be

inverse optimal with respect to a properly chosen cost func-

tion. With an interaction-related cost function, the optimal

scaling factor for a pre-specified symmetric Laplacian matrix

was studied. Illustrative examples were given to validate the

theoretical results.
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