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Abstract— In this work, we introduce a two-tier control
architecture for nonlinear process systems with both continuous
and asynchronous sensing and/or actuation. This class of sys-
tems arises naturally in the context of process control systems
based on hybrid communication networks (i.e, point-to-point
wired links integrated with networked wired/wireless commu-
nication) and utilizing multiple heterogeneous measurements
(e.g., temperature and concentration). Assuming that there
exists a lower-tier control system which relies on point-to-point
communication and continuous measurements to stabilize the
closed-loop system, we propose to use Lyapunov-based model
predictive control to design an upper-tier networked control
system to profit from both the continuous and the asynchronous
measurements as well as from additional networked control
actuators. The proposed two-tier control system architecture
preserves the stability properties of the lower-tier controller
while improving the closed-loop performance. The theoretical
results are demonstrated using a chemical process example.

I. INTRODUCTION

Increasingly faced with the requirements of safety, envi-

ronmental sustainability, and profitability, chemical process

operation is relying extensively on highly automated con-

trol systems. Traditionally, control systems utilize point-to-

point wired communication links using a small number of

sensors and actuators. The operation of chemical processes,

therefore, could benefit from the deployment of control

systems using hybrid communication networks that take

advantage of an efficient integration of the existing, point-to-

point communication networks (wire connections from each

actuator/sensor to the control system using dedicated local

area networks) and additional networked (wired or wireless)

actuator/sensor devices. Such an augmentation in sensor

information and networked based availability of wired and

wireless data is now well underway in the process industries

[1], [2], [3] and clearly has the potential to be transformative

in the sense of dramatically improving the ability of the

single-process and plantwide model-based control systems

to optimize process and plant performance (in terms of

achieving control objectives that go well beyond the ones
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that can be achieved with control systems using wired, point-

to-point connections) and prevent or deal with adverse and

emergency situations more quickly and effectively (fault-

tolerance). Hybrid communication networks allow for easy

modification of the control strategy by rerouting signals,

having redundant systems that can be activated automati-

cally when component failure occurs, and in general, they

allow having a high-level supervisory control over the entire

process [1], [2], [3]. However, augmenting existing control

networks with real-time wired/wireless sensor and actuator

networks challenges many of the assumptions in traditional

process control methods dealing with dynamical systems

linked through ideal channels with flawless, continuous

communication. In the context of hybrid communication

networks which utilize networked sensors and actuators,

key issues that are important for process control include

robustness, reliability and interference. These issues need to

be carefully handled because integrated wired and wireless

communication networks introduce more components in or-

der to substantially improve closed-loop performance and

fault-tolerance, and this increases the probability of missing

data at any given point in time.

Within control theory, the study of control over networks

has attracted considerable attention in the literature [4], [5]

and early research focused on analyzing and scheduling

real-time network traffic [6], [7]. Research has also studied

the stability of network-based control systems. A common

approach is to insert network behavior between the nodes

of a conventional control loop. In [8] it was proposed

to first design the controller using established techniques

considering the network transparent, and then to analyze the

effect of the network on closed-loop system stability and

performance. This approach was further developed in [9]

using a small gain analysis approach. However, the available

results on network-based control have primarily utilized

wired networks. In the last few years, however, several

research papers have studied control using the IEEE 802.11

and Bluetooth wireless networks, see [10] and the references

therein. In the design and analysis of networked control sys-

tems, the most frequently studied problem considers control

over a network having constant and time-varying delays.

This network behavior is typical of communications over the

Internet but does not necessarily represent the behavior of

dedicated wireless networks in which the sensor, controller,

and actuator nodes communicate directly with one another

but might experience data losses. An appropriate framework

to model lost data, is the use of asynchronous systems [11],

[12]. In this framework, data losses occur in an stochastic
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manner, and the process is considered to operate in an open-

loop fashion when data is lost. The most destabilizing cause

of packet loss is due to bursts of poor network performance

in which case large groups of packets are lost nearly con-

secutively. A more detailed description of bursty network

performance using a two-state Markov chain was considered

in [13]. Modeling networks, using Markov chains results

in describing the overall closed-loop system as a stochastic

hybrid system [14]. Stability results have been presented for

particular cases of stochastic hybrid systems in [15], [16]. In

the MPC framework, several different control schemes for

systems subject to asynchronous measurements have been

proposed [17], [18]. However, these results do not directly

address the problem of augmentation of dedicated, wired

control systems with networked actuator/sensor devices to

improve closed-loop performance.

In this work, we introduce a two-tier control architecture

for nonlinear process systems with both continuous and

asynchronous sensing and/or actuation. This class of systems

arises naturally in the context of process control systems

based on hybrid communication networks (i.e, point-to-

point wired links integrated with networked wired/wireless

communication) and utilizing multiple heterogeneous mea-

surements (e.g., temperature and concentration). Assuming

that there exists a lower-tier control system which relies

on point-to-point communication and continuous measure-

ments to stabilize the closed-loop system, we propose to

use Lyapunov-based model predictive control to design an

upper-tier networked control system to profit from both the

continuous and the asynchronous measurements as well as

from additional networked control actuators. The proposed

two-tier control system architecture preserves the stability

properties of the lower-tier controller while improving the

closed-loop performance. The theoretical results are demon-

strated using a chemical process example.

II. PRELIMINARIES

A. Problem formulation

In this work, we consider nonlinear systems described by

the following state-space model

ẋ(t) = f(x(t), us(t), ua(t), w(t))
ys(t) = hs(x(t))
ya(t) = ha(x(t))

(1)

where x(t) ∈ Rnx denotes the vector of state variables,

ys(t) ∈ Rnys denotes continuous and synchronous mea-

surements, ya(t) ∈ Rnya are asynchronous and sampled

measurements, us(t) ∈ Rnus and ua(t) ∈ Rnua are two

different sets of possible control inputs and w(t) ∈ Rnw

denotes the vector of disturbance variables. The disturbance

vector is bounded, i.e., w(t) ∈ W where

W := {w ∈ Rnw s.t. |w| ≤ θ, θ > 0}1.

We assume that f is a locally Lipschitz vector function, hs

and ha are sufficiently smooth functions, f(0, 0, 0, 0) = 0,

1| · | denotes Euclidean norm of a vector.

hs(0) = 0 and ha(0) = 0. This means that the origin is an

equilibrium point for the nominal system (system (1) with

w(t) ≡ 0 for all t) with us = 0 and ua = 0.

B. Modeling of measurements/network

As we have mentioned before, system (1) is controlled us-

ing both continuous synchronous and sampled asynchronous

measurements/actuation. We assume that ys(t) is available

for all t, while ya(t) is sampled and only available at

some time instants tk where {tk≥0} is a random increasing

sequence of times. We assume that the measurement of the

full state x(tk) can be obtained from measurements ys(tk)
and ya(tk). Due to the asynchronous nature of ya(t), the

time interval between two consecutive state measurements is

unknown. A controller based on the asynchronous measure-

ments ya(t) must take into account that during consecutive

state measurements, it has to operate in open-loop. This class

of systems arises naturally in process control, where different

process variables have to be measured such as temperature,

flow or concentration. This model is also of interest for

systems controlled through a hybrid communication network

in which wireless sensors are used to add redundancy to

existing working control loops (which use point-to-point

wired communication links and continuous measurements)

because wireless communication is often subject to data

losses due to interference.

Remark 1: We have considered that the full state is avail-

able asynchronously for the controller ua to simplify the

notation. The results can be extended to controllers based on

partial state information.

C. Lower-tier Controller

The continuous measurement ys(t) can be used to design a

continuous output-feedback controller to stabilize the system.

We term the control system based only on the continuous

measurements ys(t) as lower-tier controller. This control

scheme does not use the asynchronous measurements ya(t).
Figure 1 shows a schematic of the lower-tier controller.

Following this idea, we assume that there exist an output

feedback controller us(t) = ks(y(t)) that renders the origin

of the nominal closed-loop system (i.e., w(t) ≡ 0) asymp-

totically stable with ua(t) ≡ 0. Using converse Lyapunov

theorems (see [19]), this assumption implies that there exist

functions αi(·), i = 1, 2, 3, 4 of class K2 and a Lyapunov

function V for the nominal closed-loop system which is

continuous and bounded in Rnx , that satisfy the following

inequalities

α1(|x|) ≤ V (x) ≤ α2(|x|)
∂V (x)

∂x
f(x, ks(hs(x)), 0, 0) ≤ −α3(|x|)

|
∂V (x)

∂x
| ≤ α4(|x|)

(2)

for all x ∈ D ⊆ Rnx where D is an open neighborhood of

the origin. We denote the region Ωρ
3 ⊆ D as the stability

2Class K functions are strictly increasing functions of their argument and
satisfy ρ(0) = 0.

3We use Ωr to denote the set Ωr := {x ∈ Rnx |V (x) ≤ r}.
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Fig. 1. Lower-tier controller with dedicated point-to-point, wired commu-
nication links and continuous sensing/actuation.
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Fig. 2. Two-tier control strategy (solid lines denote dedicated point-
to-point, wired communication links and continuous sensing/actuation;
dashed lines denote networked (wired/wireless) communication and/or asyn-
chronous sampling/actuation).

region of the closed-loop system under the controller ks(ys).
In the remainder, we will refer to the controller ks as the

lower-tier controller.

The lower-tier controller based on the output-feedback

controller ks is able to stabilize the system, however, it does

not profit from the extra information ya(t) and correspond-

ing actuation ua. In what follows, we propose a two-tier

control architecture that profits from this extra information

to improve the closed-loop performance.

Remark 2: We have considered static lower-tier con-

trollers to simplify the notation. The formulation can be

extended to dynamic lower-tier controllers. In the example

in section IV, a proportional-integral (PI) controller is used

as the lower-tier controller.

III. TWO-TIER ARCHITECTURE AND LMPC DESIGN

A. Two-tier Architecture

The main objective of the two-tier control architecture

is to improve the performance of the closed-loop system

using the information provided by ya(t) and corresponding

actuation ua while guaranteeing that the stability properties

of the lower-tier controller are maintained. This is done by

defining a controller (upper-tier controller) based on the full

state measurements obtained from both the synchronous and

asynchronous measurements at time steps tk. The upper-tier

controller decides the trajectory of ua(t) between successive

samples, i.e., for t ∈ [tk, tk+1]. Figure 2 shows a schematic

of the proposed strategy. Due to the asynchronous nature

of ya(t), the upper-tier controller has to take into account

that the time interval between two consecutive samples is

unknown and there exists the possibility of an infinitely large

interval.

B. LMPC Design

In order to take advantage of the model of the system

and the asynchronous state measurements, we propose to

use model predictive control to decide ua. The main idea

is the following: at each time instant tk that a new state

measurement is obtained, an open-loop finite horizon optimal

control problem is solved and an optimal input trajectory

is obtained. This input trajectory is implemented until a

new measurement arrives at time tk+1. If the time between

two consecutive measurements is longer than the prediction

horizon, ua is set to zero until a new measurement arrives

and the optimal control problem is solved again. In order

to define a finite dimensional optimization problem, ua is

constrained to belong to the family of piece-wise constant

functions with sampling period ∆, S(∆). In order to guaran-

tee that the resulting closed-loop system is stable, we follow

a Lyapunov-based approach, see [20]. Lyapunov-based MPC

(LMPC) is based on including a contractive constraint that

allows one to prove practical stability. In previous LMPC

controllers [21], [22], [20], the contractive constraints are

defined based on a known Lyapunov-based state feedback

controller. In the present work, the contractive constraint of

the proposed upper-tier LMPC design is based on the lower-

tier controller. The proposed upper-tier LMPC optimization

problem is defined as follows:

min
ua∈S(∆)

∫ τf

0

L(x̃(τ), ks(hs(x̃(τ))), ua(τ), 0)dτ (3a)

˙̃x(τ) = f(x̃(τ), ks(hs(x̃(τ))), ua(τ), 0) (3b)

˙̂x(τ) = f(x̂(τ), ks(hs(x̂(τ))), 0, 0) (3c)

x̂(0) = x̃(0) = x(tk) (3d)

V (x̃(t)) ≤ V (x̂(t)) ∀t ∈ [0, τf ] (3e)

where x(tk) is the state obtained from both the measurements

of ys and ya, x̃ is the predicted trajectory of the two-tier

nominal system with the input trajectory computed by the

LMPC, x̂ is the predicted trajectory of the two-tier nominal

system with the input trajectory ua(τ) ≡ 0 for all τ ∈ [0, τf ],
L(x, us, ua) is a positive definite function of the state and

the inputs that defines the cost, and τf is the prediction

horizon. This optimization problem does not depend on the

uncertainty and assures that the system in closed-loop with

the upper-tier controller maintains the stability properties

of the lower-tier controller. The optimal solution to this

optimization problem is denoted u∗
a(τ |tk). This signal is

defined for all τ > 0 with u∗
a(τ |tk) = 0 for all τ > τf .

The control inputs of the proposed two-tier control archi-

tecture based on above LMPC are defined as follows:

us(t) = k(hs(x(t))), ∀t
ua(t) = u∗

a(t − tk|tk), ∀t ∈ [tk, tk+1)
(4)

where u∗
a(t − tk|tk) is the optimal solution of the LMPC

problem at time step tk. This implementation technique

takes into account that the lower-tier controller uses the

continuously available measurements, while the upper-tier

controller has to operate in open-loop between consecu-

tive asynchronous measurements. Note that by definition,

u∗
a(τ |tk) = 0 for all τ > τf . This implies that the upper-

tier controller switches off when it has been operating in

open-loop for a time longer than its prediction horizon τf .
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Remark 3: Note that even the lower-tier controller can

stabilize the closed-loop system, if the upper-tier controller

is not carefully designed, integrating continuous and asyn-

chronous measurements from a hybrid communication sys-

tem may lead to loss of the stability properties achieved

by the lower-tier controller because of the nonlinearity and

asynchronous properties of the resulting closed-loop system

[23].

Remark 4: Because of the introduction of the contractive

constraint (3e) in the proposed upper-tier LMPC, it is guar-

anteed that the closed-loop system maintains the stability

achieved by the lower-tier controller (please see Theorem

1 in section III-C). Moreover, if the Lyapunov function V
has the same or similar structure as or with the performance

index L (see the example in section IV in which V and L
are both quadratic functions of x), it is guaranteed that the

closed-loop performance is better or no worse than the case

when only the lower-tier controller is used. (This property

follows once Theorem 1 is proved. To make the statement

brief, it is not shown in this paper.)

C. Two-tier Controller Stability

In this work, we follow a Lyapunov-based approach to

prove the stability. The main idea is to compute the input

ua(t) applied to the system in a way such that the value

of the Lyapunov function at time steps tk, V (x(tk)), is a

decreasing sequence of values with a lower bound. This

guarantees practical stability of the closed-loop system. This

is achieved thanks to the contractive constraint (3e) of the

LMPC optimization problem. This property is presented

in Theorem 1 below. To state this theorem, we need the

following propositions:

Proposition 1 (c.f. [19]): Consider system (1) in closed-

loop with the lower-tier controller. Taking into account (2),

there exists a KL4 function β(r, s) such that if x(0) ∈ Ωρ

and w(t) = 0, ua(t) = 0 for all t then

V (x(t)) ≤ β(V (x(0)), t).
This proposition provides us with a bound on the trajectories

of the Lyapunov function of the state of the nominal system

in closed-loop with the lower-tier controller with ua(t) = 0.

Proposition 2: Consider the following state trajectories

ẋa(t) = f(xa(t), us(t), ua(t), w(t))
ẋb(t) = f(xb(t), us(t), ua(t), 0)

(5)

with initial states xa(t0) = xb(t0) ∈ Ωρ. There exists a class

K function fW (s) such that

|xa(t) − xb(t)| ≤ fW (t − t0), (6)

for all xa(t), xb(t) ∈ Ωρ and all w(t) ∈ W .

Proof: Define the error vector as e(t) = xa(t)−xb(t).
The time derivative of the error is given by

ė(t) = f(xa(t), us(t), ua(t), 0) − f(xb(t), us(t), ua(t), 0).

4Function β(r, s) is said to be a class KL function if, for each fixed s,
β(r, s) belongs to class K function with respect to r and, for each fixed r,
β(r, s) is decreasing with respect to s and β(r, s) → 0 as s → 0.

By continuity and the local Lipschitz property assumed for

the vector field f(x, us, ua, w), there exist positive constants

Lw and Lx such that

|ė(t)| ≤ Lw|w(t)−0|+Lx|xa(t)−xb(t)| ≤ Lwθ +Lx|e(t)|

for all xa(t), xb(t) ∈ Ωρ and w(t) ∈ W . Integrating |ė(t)|
with initial condition e(t0) = 0 (recall that xa(t0) = xb(t0)),
the following bound on the norm of the error vector is

obtained

|e(t)| ≤
Lwθ

Lx

(eLx(t−t0) − 1).

This implies that (6) holds for

fW (τ) =
Lwθ

Lx

(eLxτ − 1).

The following proposition bounds the difference between

the magnitudes of the Lyapunov function of two different

states in Ωρ.

Proposition 3: Consider the Lyapunov function V (·) of

system (1). There exists a quadratic function fV (·) such that

V (x) ≤ V (x̂) + fV (|x − x̂|) (7)

for all x, x̂ ∈ Ωρ.

Proof: Because the Lyapunov function V (x) is contin-

uous and bounded on compact sets, we can find a positive

constant M such that a Taylor series expansion of V around

x̂ yields

V (x) ≤ V (x̂) +
∂V

∂x
|x − x̂| + M |x − x̂|2,∀x, x̂ ∈ Ωρ.

Note that the term M |x − x̂|2 bounds the high order terms

of the Taylor series of V (x) for all x, x̂ ∈ Ωρ. Taking into

account (2), the following bound for V (x) is obtained

V (x) ≤ V (x̂)+α4(α
−1
1 (ρ))|x− x̂|+M |x− x̂|2,∀x, x̂ ∈ Ωρ.

This implies that (7) holds for fV (x) = α4(α
−1
1 (ρ))x+Mx2.

Theorem 1: Consider system (1) in closed-loop with the

two-tier control architecture (4). If x(t0) ∈ Ωρ, and there

exist a concave function g such that

g(x) ≥ β(x, τf )

for all x ∈ Ωρ, and a positive constant c ≤ ρ such that

c − g(c) ≥ fV (fW (τf )), (8)

then x(t) is ultimately bounded in a region that contains the

origin.

Proof: In order to prove that the closed-loop system

is ultimately bounded in a region that contains the origin,

we will prove that V (x(tk)) is a decreasing sequence of

values with a lower bound for the worst possible case, that

is, the upper-tier controller always operates in open-loop

for a period of time longer that τf between consecutive

samples, that is, tk+1 − tk > τf for all k. The trajectory

x̂(t) corresponds to the nominal system in closed-loop with
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the lower-tier controller with initial state x(tk). Taking into

account Proposition 1 the following inequality holds

V (x̂(t)) ≤ β(V (x(tk)), t − tk).

The contractive constraint of the proposed LMPC guarantees

that

V (x̃(t)) ≤ V (x̂(t)),∀t ∈ [tk, tk + τf ].

Assuming that x(t) ∈ Ωρ for all times, we can apply

Proposition 3 to obtain the following inequalities

V (x(tk + τf )) ≤ V (x̃(tk + τf )) + fV (|x(tk) − x̃(tk)|).

This assumption is automatically satisfied if the system is

proved to be ultimately bounded. Applying Proposition 2

we obtain the following upper bounds on the deviation of

x̃(t) from x(t)

|x(tk + τf ) − x̃(tk + τf )| ≤ fW (τf ).

Using these inequalities the following upper bound on

V (x(tk + τf )) is obtained:

V (x(tk + τf )) ≤ β(V (x(tk)), τf ) + fV (fW (τf )). (9)

Taking into account that the lower-tier controller renders

the equilibrium point asymptotically stable (after t + τf , the

Lyapunov function is monotonically decreasing), and that for

all t > tk + τf the upper-tier controller is switched off, i.e.,

ua(t) = 0, this implies that

V (x(tk+1)) ≤ V (x(tk + τf ))

for all w(t) ∈ W . Because function g is concave, z − g(z)
is an increasing function. If there is a constant c ≤ ρ
satisfying (8), then (8) holds for all z > c. Taking into

account that g(z) ≤ β(z, τf ) for all z ≤ ρ, the following

inequality is obtained

z − β(z, τf ) ≥ fV (fW (τf ))

when c ≤ z ≤ ρ. From this inequality and inequality (9), we

obtain that

V (x(tk+1)) ≤ V (x(tk))

for all V (x(tk)) ≥ c. It follows using Lyapunov arguments

that

lim sup
t→∞

V (x(t)) ≤ ρc

where

ρc = max
c

β(c, τf ) + fV (fW (τf )).

Remark 5: Referring to Theorem 1, condition (8) puts a

constraint on the combination of the values of τf , θ and ∆,

under which the proposed two-tier control architecture (4)

works. It implies that when θ and ∆ are fixed, there is a

maximum value for τf which sets the maximum period of

time in which the upper-tier controller can be operating in

open-loop.

Remark 6: Although the proof of Theorem 1 is construc-

tive, the constraints obtained are conservative. In practice,

the parameters τf , θ and ∆ are better estimated through

TABLE I

PROCESS PARAMETERS

F 4.998 [m3/h] k10 3*106 [h−1]

Vr 1[m3] k20 3*105 [h−1]

R 8.314 [KJ/kmol · K] k30 3*105 [h−1]

TA0 300 [K] E1 5*104 [KJ/kmol]
CA0s 4 [kmol/m3] E2 7.53*104 [KJ/kmol]
∆H1 -5.0*104 [KJ/kmol] E3 7.53*104 [KJ/kmol]
∆H2 -5.2*104 [KJ/kmol] σ 1000 [kg/m3]

∆H3 -5.4*104 [KJ/kmol] cp 0.231 [KJ/kg · K]

closed-loop simulations. The condition (8) is more useful as

a guideline on the interaction among the various parameters

that define the system.

IV. APPLICATION TO A CHEMICAL REACTOR

Consider a well mixed, non-isothermal continuous stirred

tank reactor where three parallel irreversible elementary

exothermic reactions take place of the form A → B, A → C
and A → D. B is the desired product and C and D
are byproducts. The feed to the reactor consists of A at

temperature TA0 and CA0 and flow rate F + ∆F , where

∆F is a time-varying uncertainty. Due to the non-isothermal

nature of the reactor, a jacket is used to remove/provide

heat from/to the reactor. Using first principles and standard

modeling assumptions the following mathematical model of

the process is obtained

dT

dt
=

F + ∆F

Vr

(TA0 − T ) −
3

∑

i=1

∆Hi

σcp

ki0e
−Ei
RT CA +

Q

σcpVr

dCA

dt
=

F + ∆F

Vr

(CA0 − CA) +
3

∑

i=1

ki0e
−Ei
RT CA +

F

Vr

∆CA0

(10)

where CA denotes the concentration of the reactant A, T
denotes the temperature of the reactor, Vr denotes the volume

of the reactor, ∆Hi, ki0, Ei, i = 1, 2, 3 denote the enthalpies,

pre-exponential constants and activation energies of the three

reactions, respectively, and cp and σ denote the heat capacity

and the density of the fluid in the reactor. The inputs to the

system are the rate of heat input/removal Q and the change

of the inlet reactant A concentration ∆CA0. The values of

the process parameters are shown in Table I.

System (10) has three steady-states (two locally asymp-

totically stable and one unstable). The control objective is

to stabilize the system at the open-loop unstable steady-state

Ts = 388 K, CAs = 3.59 mol/l. The flow rate uncertainty

is bounded by |∆F | ≤ 3 m3/h.

We assume that the measurement of temperature T is

available continuously, and the measurements of the con-

centration CA are available asynchronously at time instants

{tk≥0}. We also assume that there exists a lower bound Tmin

on the time interval between two consecutive concentration

measurements.

In order to model the time sequence {tk≥0} we use a

random Poisson process. The Poisson process is defined by

the number of events per unit time W . The interval between

two consecutive concentration sampling times (events of

the Poisson process) is given by ∆a = −lnχ
W

, where χ

137



is a random variable with uniform probability distribution

between 0 and 1. The sequence {tk≥0} for a simulation of

length tf is generated as follows:

t0 = 0, k = 0
while tk < tf

χ = rand(1)
tk+1 = tk + −lnχ

W

if tk+1 < tk + Tmin, then tk+1 = tk + Tmin

k = k + 1
end

where rand(1) generates a uniformly distributed random

value χ between 0 and 1, Tmin is the minimum time interval

between two consecutive samplings. For the simulations

carried out in this section we pick the value of the minimum

time interval to be Tmin = 0.025 hr = 1.5 min, which is

meaningful from a practical point of view with respect to

concentration measurements.

The process model (10) belongs to the class of nonlinear

systems described by system (1) where xT = [x1 x2] =
[T − Ts CA − CAs] is the state, us = Q and ua = ∆CA0

are the manipulated inputs, θ = ∆F is a time varying

bounded disturbance, ys = x1 = T − Ts is the continuous

temperature measurement and ya = x2 = CA − CAs is the

asynchronously sampled concentration measurement.

An output feedback controller (lower-tier controller) based

on the continuous temperature measurements (i.e., x1(t)) is

first designed to stabilize system (10) using only the rate of

heat input us = Q as the manipulated input. The manipulated

input is bounded by |us| ≤ 105 KJ/h. In particular, the

following proportional-integral (PI) control law is used as

the lower-tier controller:

us(t) = ks(x1(t)) (11)

with ks(x1(t)) = K(x1 + 1
Ti

∫ t

0
x1dt) where K is the

proportional gain and Ti is the integral time constant. To

compute the parameters of the PI controller, the linearized

model ẋ = Ax+Bus of system (10) around the equilibrium

point is obtained. The proportional gain K is chosen to

be −8100. This value guarantees that the origin of ẋ =
(A+BK[1 0])x is asymptotically stable with its eigenvalues

being λ1 = −1.06 × 105 and λ2 = −4.43. A quadratic

Lyapunov function V (x) = xT Px with

P =

[

0.024 5.21
5.21 1.13 × 103

]

is obtained by solving an algebraic Lyapunov equation

AT
c P + PAc + Qc = 0 for P with Ac = A + BK[1 0].

This Lyapunov function will be used to design the upper-

tier LMPC controller. The integral time constant is chosen

to be Ti = 49.6 hr. For simplicity, the Lyapunov function

V (x) is determined on the basis of the closed-loop system

under the proportional (P) term of the PI controller only; the

effect of the integral (I) term is very small for the specific

choice of the controller parameters used in the simulations.

The state and input trajectories of system (10) starting from

x0 = [370 3.41]T under the PI controller are shown in Fig. 3.

From Fig. 3, we see that the PI controller (11) stabilizes
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Fig. 3. State and input trajectories of system (10) under lower-tier PI
control (11).

the temperature and concentration of system (10) at the

equilibrium point in about 0.2 hr and 0.3 hr, respectively.

We have implemented the proposed two-tier control ar-

chitecture to improve the performance of the closed-loop

system. In this set of simulations, the PI controller (11) is

used as the lower-tier controller. Instead of abandoning the

less frequent concentration measurement, we take advantage

of both the continuous measurements of the temperature T
and the asynchronous concentration measurements CA to-

gether with the nominal model of system (10) to design the

upper-tier LMPC. The inlet concentration change ∆CA0 is

the manipulated input for the LMPC.

The LMPC is designed next. The performance index is

defined by the following positive definite function

L(x, us, ua) = xT Qcx (12)

where x is the state of the system and Qc is the following

weight matrix

Qc =

[

1 0
0 104

]

.

The values of the weights in Qc have been chosen to account

for the different range of numerical values for each state.

The sampling time of the LMPC is ∆ = 0.025 hr which

is the same as Tmin; the prediction horizon is chosen to

be τf = 11∆ so that the prediction captures most of the

dynamic evolution of the process; the quadratic control Lya-

punov function V (x) is used in the design of the contractive

constraint (3e) and the inlet concentration change ∆CA0 is

bounded by |ua = ∆CA0| ≤ 1 kmol/m3.

The two-tier control architecture is implemented as dis-

cussed in the previous section. The lower-tier controller uses

the continuous temperature measurements to control us(t).
When the measurements of T and CA are obtained at time

instant tk, an estimate of the state of system (10), xe(tk), is
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Fig. 5. State and inputs trajectories of system (10) under the proposed
two-tier control architecture when W = 30 (solid curves) and W = 20
(dashed curves).

obtained by integrating the two measurements using the pro-

cess model. Based on the estimated state xe(tk), the LMPC

optimization problem (3) is solved and an optimal input

trajectory u∗
a(τ |tk) is obtained. This optimal input trajectory

is implemented until a new concentration measurement is

obtained at time tk+1 (note that k indexes the number of

concentration samples received, not a given sampling time).

Note that because a PI controller is used in the lower-tier, we

need to predict the controller dynamics (the control effects

generated by the integral part) in the optimization problem

of the proposed LMPC scheme (3).

The stability and robustness of the two-tier control ar-

chitecture (4) have been studied with two different initial

conditions x(0) = [370 3.41]T and x(0) = [375 3.46]T

associated with two different concentration measurements

sequences {tk≥0} (see Fig. 4) generated with W = 30 and

W = 20, respectively. The average time intervals between

two consecutive sampling times are 0.0625 hr for W = 30
and 0.0833 hr for W = 20. In addition, two different

disturbance trajectories of w(t) with a random value at

each simulation step are added to the closed-loop system.

The state and inputs trajectories of system (10) under the

proposed two-tier control architecture are shown in Fig. 5.

TABLE II

TOTAL PERFORMANCE COST ALONG THE CLOSED-LOOP TRAJECTORIES.

sim. Two-Tier PI Controller sim. Two-Tier PI Controller

1 203.92 704.54 11 224.03 831.63
2 188.74 815.47 12 203.78 738.47
3 198.33 922.87 13 265.44 617.15
4 221.76 640.87 14 210.58 704.95
5 240.44 656.47 15 190.68 723.05
6 226.44 847.43 16 209.66 695.60
7 199.19 779.03 17 205.90 808.71
8 233.40 736.65 18 211.29 749.24
9 200.45 702.26 19 214.79 737.62
10 198.74 753.25 20 217.13 813.70

From Fig. 5, we see that the two-tier control architecture (4)

stabilizes the temperature and concentration of the system in

about 0.1 hr and 0.05 hr respectively. This implies that the

resulting closed-loop system response is faster. Moreover, the

cost associated with the resulting closed-loop trajectories is

lower.

Another set of simulations was carried out to compare

the proposed two-tier control architecture with the lower-

tier PI control system from a performance index point

of view. Table II shows the total cost computed for 20

different closed-loop simulations under the proposed two-tier

control architecture and the PI control scheme. To carry out

this comparison, we have computed the total cost of each

simulation based on the integral of the performance index

defined by L(x, us, ua) from the initial time to the end of

the simulation tf = 0.5 hr. For this set of simulations W is

chosen to be 10. For each pair of simulations (one for each

controller) a different initial state inside the stability region,

a different uncertainty trajectory and a different random

concentration measurement sequence is chosen. As it can be

seen in Table II, the proposed two-tier control architecture

has a cost lower than the corresponding total cost under the

PI controller in all the simulations.

We have also carried out another set of simulation to

compare the proposed two-tier scheme with a controller

based on using the measurements of T and CA to decide

both control inputs us and ua in an LMPC framework.

This controller is based on solving an LMPC optimization

problem that optimizes both us(τ |tk) and ua(τ |tk) when a

new full state measurement is available at time step tk. It

based on the following optimization problem

min
ua,us∈S(∆)

∫ τf

0
L(x̃(τ), us(τ), ua(τ))dτ

˙̃x(τ) = f(x̃(τ), us(τ), ua(τ), 0)
˙̂x(τ) = f(x̂(τ), ks(hs(x̂(j∆))), 0, 0)
∀τ ∈ [j∆, (j + 1)∆),

x̂(0) = x̃(0) = xe(tk)
V (x̃(t)) ≤ V (x̂(t)) ∀t ∈ [0, τf ].

which was proposed in [20] for system subject to mea-

surement data losses and asynchronous measurements. We

denote this controller as single-tier LMPC. It applies both

us and ua in a sample and hold fashion and its optimal

input trajectories are applied in open-loop until a new full

state measurement is available, which implies that it does not

profit from the continuous temperature measurements. The
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Fig. 6. State and inputs trajectories of system (10) under the single-tier
LMPC scheme with concentration sampling times generated with W = 30
(solid curves) and W = 20 (dashed curves).

single-tier LMPC is also based on the PI controller (11) to

design the contractive constraint (although in a sample and

hold fashion), however, the applied ua(t) is not decided using

the lower-tier controller, but the solution of the optimization

problem, that is

us(t) = u∗
s(t − tk|tk), ∀t ∈ [tk, tk+1)

ua(t) = u∗
a(t − tk|tk), ∀t ∈ [tk, tk+1).

For these simulations, the single-tier LMPC uses the

same controller parameters, initial conditions, concentration

sampling times (see Fig. 4) and disturbance trajectories as

the ones used in the two-tier control architecture. The state

and inputs trajectories of the closed-loop system under the

single-tier LMPC scheme are shown in Fig. 6. From the

figure, it can be seen that the single-tier LMPC stabilizes the

system (solid curves) when the time intervals between two

consecutive measurements are small (0.0625 hr), but loses

stability and can not stabilize the system (dashed curves)

when these time intervals get bigger (0.0833 hr). The results

are expected because the single-tier LMPC scheme does not

profit from the continuous measurements of the temperature,

thus, the stability region of the closed-loop system is in

general reduced to a much smaller one compared to that

obtained under the two-tier control architecture.

Remark 7: We considered a performance index

L(x, us, ua) that only penalizes the closed-loop system

state and not the control action because the two-tier control

architecture utilizes different manipulated inputs from the

lower-tier controller. Since the performance index has only

penalty on the closed-loop system state, we have included

an input constraint on the upper-tier manipulated input to

avoid computation of unnecessarily large control actions by

the upper-tier controller (i.e., |ua| ≤ 1 kmol/m3).
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