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Abstract— We propose a low order two-channel decentralized
controller design for stabilizing the multi-input multi-output
linearized model of a self balancing autonomous robot. The
robot model is based on a form of an inverted pendulum and
the robot was constructed into a mechanical system in order
to implement the stabilizing controller design.

I. INTRODUCTION

Motivated by the inverted pendulum, we designed and
constructed a mobile robot, obtained a mathematical model,
and designed a stabilizing controller for the unstable plant
model obtained by linearizing around the equilibrium. There
are many variations of the inverted pendulum (e.g., [1], [2]).
The robot, with two opposed wheels, is modeled from a
schematic using Newton’s laws of motion (e.g., [3]). The
system has six states describing its motion with three degrees
of freedom (DOF). The robot has linear motion characterized
by position x and velocity ν. It can rotate about the z-
axis characterized by pitch angle θ and angular velocity ω,
and about the y-axis characterized by the yaw angle δ and
yaw velocity ψ. Any motion about the x-axis is considered
negligible. The equations describing the nonlinear system are
linearized about an operating point and the multi-input multi-
output (MIMO) plant obtained from the linearized model has
a 2 × 2 transfer matrix from the motor input voltages (vL

and vR) to the states (x and θ).
We designed the stabilizing controller so that it balances

and regulates the position and orientation. With x and θ
as measured states used in feedback, the control system
is a two-channel linear time-invariant (LTI) decentralized
configuration, where each channel’s controller actuates a
control signal to one motor. We designed a second order
integral-action controller for the first channel and a first order
stable controller for the second channel. The decentralized
PID control synthesis proposed here is a novel design for
unstable MIMO systems and we prove that it achieves
closed-loop stability.
Notation: Let C , R+ denote complex and positive real
numbers; C+e = {s ∈ C |Re(s) ≥ 0}∪{∞} is the extended
closed right-half complex plane; Rp is real proper rational
functions of s; S is the stable subset with no C+e poles.
A square stable matrix is called unimodular if M−1 is also
stable. The H∞-norm of H ∈ S is ‖H‖ := sup

ω
|H(jω)|.

We drop (s) in transfer functions such as G(s) where this
causes no confusion. We use coprime factorizations over S.
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II. SYSTEM DYNAMICS AND MODEL

The dynamics of the three DOF system are described
as nonlinear second order differential equations represent-
ing the motion of the robot. The nonlinear equations are
linearized about an operating point (corresponding to the
robot standing straight up at rest). See [5] for details. With
[ẋ ẍ θ̇ θ̈]T = [ẋ ν̇ θ̇ ω̇]T , χT := [x ν θ ω]T , µT =
[vL vR]T , the state-space representation is χ̇ = Aχ + Bµ

=




0 1.0000 0 0
0 −9.4932 0.1894 0
0 0 0 1.0000
0 33.3538 9.2355 0


 χ +



↑ ↑
b b
↓ ↓


 µ, where

b =
[
0 0.4893 0 −0.0367

]T . This model provides a
linear representation of our plant close to the operating
point and only describes the dynamics of two DOF. More
detailed state-space representations including the yaw and
yaw rate states can be found in [5]. Using the position
and angle states x and θ as output, we obtain y =[
x
θ

]
= Cχ + Dµ =

[
1 0 0 0
0 0 1 0

]
χ +

[
0 0
0 0

]
µ. The

plant is P = C(sI − A)−1B + D =
[
P1 P1

P2 P2

]
=

1
duds

[
s−1n1 s−1n1

n2 n2

]
∈ Rp

2×2, where n1 = (0.4893s2 −
4.526), n2 = (−0.0367s+15.97), p = 3.1203, z1 = 3.0414,
z2 = 435.1499, du = (s−p), ds = (s+9.4136)(s+3.1999),
n2 = −0.0367s + 15.975 = −0.0367(s − z2), n1 =
0.4893s2−4.526 = 0.4893(s−z1)(s+z1). The eigenvalues
are {0, 3.1203,−9.4136,−3.1999}. Due to the eigenvalues
at 0 and 3.1203, the plant P is unstable.

III. DECENTRALIZED CONTROLLER DESIGN

We use a novel two-channel LTI decentralized control
design with low order controllers in each channel. The
feedback configuration we consider, called Sys(P,CD), is
shown in Fig. 1. Write the plant P ∈ Rp

2×2 as

P = D−1
p Np =

[
D1 V
0 D2

]−1 [
N1 N1

N2 N2

]
, (1)
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Fig. 1. The two-channel decentralized system Sys(P, CD)
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where, for any a1, a2 ∈ R+ , D1 = s
a1s+1 , D2 = s−p

a2s+1 ,
V = s−3.1353

a1s+1 , N1 = 0.4526s+17.4973
ds(a1s+1) , N2 = n2

ds(a2s+1) .
Let the input and output vectors in the system Sys(P,CD)
be u :=

[
u1 u2

]T
, µ :=

[
vL vR

]T
, e :=

[
e1 e2

]T
,

w :=
[
w1 w2

]T , y :=
[
x θ

]T . Then the closed-loop
transfer function Hcl ∈ Rp

4×4 from (u,w) to (µ, y) is

Hcl =
[

CD(I + PCD)−1 −CD(I + PCD)−1P
PCD(I + PCD)−1 (I + PCD)−1P

]
.

Definition 1: a) The system Sys(P, CD) is stable if the
closed-loop transfer-function Hcl from (u,w) to (µ, y) is
stable. b) The controller CD is a stabilizing controller for
P if CD is proper, and the system Sys(P,CD) is stable.
c) The stable system Sys(P, CD) has integral-action if the
closed-loop transfer-function Heu from u to e has blocking-
zeros at s = 0, i.e., Heu(0) = 0. ¤
Let CD be a two-channel LTI decentralized controller:

CD =
[
C1 0
0 C2

]
= XY −1 =

[
X1Y

−1
1 0

0 X2Y
−1
2

]
. (2)

With P as in (1) and CD as in (2), the sys-
tem Sys(P,CD) is stable if and only if M :=[
D1Y1 + N1X1 V Y2 + N1X2

N2X1 D2Y2 + N2X2

]
is unimodular [4]. We

first design C2 = X2Y
−1
2 such that M2 := D2Y2 + N2X2

is unimodular, equivalently, C2 is a stabilizing controller for
P2. We design C2 as a stable first order controller

C2 = (α + p)K2
(f2s + 1)
(ρ2s + 1)

. (3)

In (3), let K2 = N2(0)−1 = 1.8862, and define Φ2 :=
1
s

[
(f2s+1)
(ρ2s+1)du(s)P2(s)K2 − 1

]
, where f2, ρ2 ∈ R+ are cho-

sen so that p < ‖Φ2 ‖−1. Choosing ρ2 = 0.01, f = 0.5 we
have ‖Φ2 ‖−1 = 10.1174 > p = 3.1203. Choose any α ∈
R+ satisfying α < ( ‖Φ2 ‖−1 − p ). If α = 6.8 < 6.9971,
the controller C2 in (3) becomes C2 = 18.7117 (0.5s+1)

(0.01s+1) .
The order of C2 is one, which is lower than the order of
P2. To prove C2 = Y −1

2 X2 = I−1C2 in (3) stabilizes P2 =
D−1

2 N2, write M2 = D2+N2C2 = (s−p)
(a2s+1) + n2

ds(a2s+1) (α+

p)K2
(f2s+1)
(ρ2s+1) = (s+α)

a2s+1) (
s−p
s+α + (α+p)

(s+α)duP2K2
(f2s+1)
(ρ2s+1) ) =

(s+α)
(a2s+1) (1 + (α+p)

(s+α) [duP2K2
(f2s+1)
(ρ2s+1) − 1]) = (s+α)

(a2s+1) (1 +
(α+p) s

s+α Φ2). The norm ‖ (α+p) s
s+α Φ2‖ ≤ (α + p)‖Φ2‖ < 1

by choice of α; hence, M2 is unimodular, i.e., C2 stabilizes
P2.

With M2 unimodular due to the design of C2 in (3),
the closed-loop Sys(P, CD) is stable if and only if M is
unimodular, equivalently, M1 := D1Y1 + [N1 − (V Y2 +
N1X2)M−1

2 N2]X1 = D1Y1 + D1P1(I + C2P2)−1X1 is
unimodular, equivalently, C1 = X1Y

−1
1 stabilizes the sys-

tem W := P1(I + C2P2)−1. The controller C1 should
be designed to stabilize W = P1(I + C2P2)−1 =

n1
sduds

(ρ2s+1)duds

dm
= (0.01s+1) (0.4893s2−4.5260)

s dm
, where dm =

dsdu(ρ2s+1)+(α+p)K2(f2s+1)n2 = (0.01s4+1.0949s3+
9.0575s2 + 138.5506s + 204.8335). We design C1 as a
second order integral-action controller

C1 = K1
(f1s + 1)( 2βs + β2)

s (ρ1s + 1)
. (4)

In (4), choose any f1, ρ1 ∈ R+ ; one choice is ρ1 = 0.009,
f = 0.1. Let K1 = (sW )(0)−1 = −45.2571. Define
Ψ1 := 1

s

[
(f1s+1)
(ρ1s+1) sW K1 − 1

]
. Choose any β ∈ R+

satisfying β < 0.5 ‖Ψ1 ‖−1, where ‖Ψ1 ‖−1 = 1.7379 for
the chosen ρ1, f1. If β = 0.867 < 0.8689, the controller
C1 in (4) becomes C1 = −45.2571 (0.1s+1)(1.7340s+0.7517)

s (0.009s+1) .
The order of C1 is two, which is lower than the order
of the fifth order W . To prove that C1 in (4) stabilizes
W = P1(I + C2P2)−1, write C1 = X1Y

−1
1 with Y1 = s

s+β
and X1 = C1

s
s+β ; then M1 = D1Y1 + D1WX1 =

(s+β)
(a1s+1) (

s2

(s+β)2 + (2βs+β2)
(s+β)2

(f1s+1)
(ρ1s+1) sW K1) = (s+β)

(a1s+1) (1 +
(2βs+β2)
(s+β)2 [ (f1s+1)

(ρ1s+1) sW K1−1]) = (s+β)
(a1s+1) (1+ (2βs+β2) s

(s+β)2 Ψ1).

The norm ‖ s(2βs+β2)
(s+β)2 Ψ1‖ ≤ β‖ s(2s+β)

(s+β)2 ‖‖Ψ1‖ ≤
β‖ s

s+β ‖‖ (2s+β)
(s+β) ‖‖Ψ1‖ = 2β‖Ψ1‖ < 1 by choice

of β and hence, M1 is unimodular, i.e., C1

stabilizes P1. Therefore, the decentralized controller
CD = diag[ C1, C2 ] as in (4) and (3) stabilizes
the system Sys(P, CD). The closed-loop poles are
{−115.19,−101.36,−0.56,−0.82± j9.11,−0.92± j1.51}.
The different choices of the PD and PID-controller
parameters in C2 and C1 obviously effect the closed-loop
input-output transfer-function Hyu from u to y =

[
x θ

]T .
Due to the integral-action in C1, the steady-state error in
the first channel for step input references at both u1 and
u2 goes to zero asymptotically. Although the first channel
output x asymptotically tracks constant input references with
no steady-state error, the steady-state error in the second
channel is small but not zero. We tested the robot with
different initial conditions and reference inputs. Simulation
results can be found in [5].

IV. CONCLUSIONS

We presented a low order two-channel decentralized con-
troller synthesis to stabilize the linearized MIMO model of
an autonomous mobile robot that was constructed based on
the inverted pendulum. The controller in the first channel is
second order and has integral-action, which provides asymp-
totic tracking of constant reference inputs with zero steady-
state error. The second channel has a first order controller
achieving very small steady-state error. The decentralized
PD/PID controller is programmed into a 8-bit microcontroller
to validate the accuracy of the physical implementation of
the modeling.

REFERENCES

[1] F. Grasser, A. D’Arrigo, S. Columbi, A. Rufer, “Joe: a mobile, inverted
pendulum,” in IEEE Transactions on Industrial Electronics, vol. 49,
no. 1, pp. 107-114, 2002.

[2] S. McGilvray, “Self-erecting inverted pendulum: swing up and stabi-
lization control,” in IEEE Canadian Review, Issue 45, pp. 17-19, 28,
Fall 2003.

[3] “Lab 3: Balancing the Inverted Pendulum,” Lab manual for ECE 147b,
Department of Electrical and Computer Engineering, University of
California, Santa Barbara, 2002.
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