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Abstract— AFM imaging requires precision positioning of
the AFM probe relative to the sample in all x-y-z axes,
especially the vertical z-axis direction. Recently, the current-
cycle-feedback iterative-learning-control (CCF-ILC) approach
is proposed for high-speed AFM imaging. The CCF-ILC
feedforward-feedback 2 degree-of-freedom (DOF) controller
design has been successfully implemented for iteratively imag-
ing on one scanline. In this article, we extend this CCF-
ILC approach to the entire imaging of samples. The main
contribution of this article is the analysis and the use of the
CCF-ILC approach for tracking sample profiles with variations
between scanlines (called line-to-line sample variations). The
convergence (stability) of the CCF-ILC system is analyzed
for the general case where the line-to-line sample variation
occurs at each iteration. The allowable line-to-line sample
profile variation is quantified. The performance improvement
of the CCF-ILC is discussed by comparing the tracking error
of the CCF-ILC technique to that of using feedback control
alone. The proposed CCF-ILC control approach is illustrated
by implementing it to the z-axis direction control in AFM
imaging. Experimental results show that the imaging speed can
be significantly increased by using the proposed approach.

I. INTRODUCTION

In this article, we extend recently developed CCF-ILC

approach from high-speed AFM imaging of one scanline

to the entire imaging of the samples. Since its invention

[1], AFM has been established as an enabling tool to image

as well as to manipulate matters at nanoscale [2]. Current

AFM system, however, is slow and AFM imaging, therefore,

is time consuming. Although precision positioning of the

AFM-probe in high-speed lateral x-y axes scanning can be

achieved by using recently-developed control techniques

[3], [4] such as the inversion-based iterative learning control

[3], challenges exist in the precision positioning of the

AFM-probe in the vertical z-axis.

Efforts have been made to improve the z-axis precision

positioning of the probe during AFM imaging. For example,

Robust feedback control [4] and 2DOF control system [5]

have been used in AFM systems to increase the AFM

imaging bandwidth. However, the bandwidth and the

robustness of feedback-based approaches are limited by the

fundamental constraints of closed-loop feedback control.

And in previous 2DOF controller design, feedforward

controller is designed to be causual and the current

feedforward control signal was generated by using the total

control signal from the last scanline in [5], which limit the
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performence of previous 2DOF control approach.

Recently, the current-cycle-feedback iterative-learning-

control (CCF-ILC) approach is proposed in [6] for high-

speed AFM imaging. The CCF-ILC approach integrated the

H∞ robust control technique [7] with the inversion-based

feedforward control technique [8], [9]. Particularly, the

feedback controller is designed based on the H∞ robust

control theory, and the feedforward controller is designed

based on the recently-developed robust-inversion technique

[10] to overcome the causality limits and explicitly account

for the uncertainties of system dynamics when finding the

inverse feedforward controller [10]. Moreover, iteration

is introduced to further exploit the priori knowledge of

the sample profile in the AFM imaging, as well as to

compensate for the disturbances and uncertainties effects.

As the first step, the CCF-ILC 2DOF controller design has

been successfully implemented in [6] to iteratively image on

the same scanline. In this article, we extend this CCF-ILC

approach to the entire sample imaging.

The main contribution of this article is the analysis and the

use of the CCF-ILC approach for AFM z-axis positioning

with line-to-line sample variations. The proposed CCF-ILC

control approach is illustrated by implementing it to the

z-axis direction control in AFM imaging. Experimental

results show that the speed of obtaining an entire image can

be significantly increased by using the proposed approach.

II. PROBLEM FORMULATION AND CONVERGENCE

ANALYSIS

In this section, we formulate and discuss the CCF-ILC

approach to the vertical positioning of the AFM probe,

when there exists line-to-line sample variation. We start with

briefly describing the feedback control system of z-axis for

the AFM imaging.

In general, the feedback control system for z-axis AFM

probe positioning can be schematically presented by Fig.

1(a), where Gz(s) denotes the dynamics model of the piezo

actuator for the z-axis positioning, Gc(s) denotes the can-

tilever dynamics (from the output of the z-axis piezo to the

cantilever deflection), Ks(s) denotes the photodiode sensi-

tivity, ds(·) denotes the sample profile, and ns(·) denotes the

system noise. The goal of the z-axis AFM probe positioning

is to maintain a constant setpoint value (i.e., constant normal

force between the tip and the sample) during the scanning

process. Then the image of the sample topography can be

estimated using the control signal or the deflection error [6].
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Fig. 1. The block diagram of (a) a standard feedback loop, (b) the modified
feedback loop, and (c) the proposed CCF-ILC approach for the vertical z-
axis positioning in AFM imaging.

Unlike the above feedback-based approach to z-axis posi-

tioning, the proposed CCF-ILC approach integrates an online

iterative-learning control (ILC) as feedforward to the z-

axis feedback control. First, to simplify the presentation of

the controller design, the unknown sample profile is scaled

with the DC-gain of the cantilever-photodiode dynamics

Gc(0)K(0), and then right-shifted to the joint point at the

cantilever deflection output in the control block diagram,

as shown in Fig. 1 (b) (The same notation ds(·) is used

for simplification). Thus, the proposed CCF-ILC controller

can be schematically shown in Fig. 1 (c), where Q(jω) and

L(jω) are the ILC filters to be designed, ‘delay D(jω)’
denotes the one-scanline-period delay, and R(jω) denotes

the observer to be designed for obtaining the measured

sample profile de(jω). Specifically, the objectives of the

proposed CCF-ILC design are that, during the entire imaging

process, the CCF-ILC system should

1) guarantee the convergence of the CCF-ILC approach,

i.e., the feedforward control input uk,FF (jω) remains

bounded for all iterations (∀k > 1) when there exists

line-to-line sample variations between each iteration,

and the residual error ek(jω) converges to zero when

the noise n(jω) and the line-to-line sample variation

vanishes;

2) improve the output tracking with the augmented feed-

forward control, i.e., for the same feedback controller,

the tracking error e(jω) (e.g., the deflection signal)

when using the CCF-ILC approach is smaller than that

when using the feedback control alone; and

3) improve the imaging accuracy (denoted as d e(jω) in

Fig. 1 (c)) , i.e., the estimation of the sample profile

ds(jω), is more accurate than the estimation obtained

by using current commercial AFMs.

In the proposed CCF-ILC technique, a stabilizing feedback

controller GFB(s) is designed first—the feedback controller

GFB(s) guarantees that the feedback loop is internally stable

[7]. This implies that the first objective of the proposed

controller design requires all the signals in the control system

(Fig. 1 (c)) to be bounded throughout the iterations. It is

noted that the z-axis positioning of the AFM probe can be

sensitive to effects such as the variation of the cantilever

type and/or mounting, the setpoint value of the loading force

(i.e., the cantilever deflection), and the measurement noise.

Therefore, the feedback controller is designed to enhance the

robustness of the entire control system against these adverse

effects. We design the feedback controller by using the robust

control technique [6], [10] (The readers are referred to [10]

for details). In the following, we assume that such a feedback

controller has already been in place.

A. CCF-ILC Design: Convergence Analysis

In the proposed CCF-ILC approach, the following general

form of the iterative learning control law is employed :

u0,FF (jω) = 0

uk+1,FF (jω) = Q(jω)(uk,FF (jω) + L(jω)ek(jω)),

for k ≥ 1

(1)

where Q(jω) and L(jω) are the ILC filters to be designed,

and the filter Q(jω) is factored out without loss of generality.

We note that the CCF-ILC approach can be implemented

in several different schemes. For example, the CCF-ILC

algorithm can be applied to repeatedly image on the first

scanline until the required imaging precision (i.e., tracking

precision) is achieved before moving to image at the next

scanline. Or alternatively, the CCF-ILC approach can be

applied to image at each scanline with a pre-chosen number

of iterations. These schemes are all special cases of the more

general one where the line-to-line sample profile variation

occurs at each iteration. Thus, we discuss next the conditions

to guarantee the convergence of the CCF-ILC law (the first

design objective) for this general scenario.

Lemma 1: Let GPD(jω) be the frequency response of

a linear time invariant plant, GFB(jω) be a stabilizing

feedback controller, and let S(jω) be the closed-loop sensi-

tivity transfer function. Then for bounded measurement noise

nk(jw) during the kth iteration, i.e., |nk(jω)| ≤ δ(ω), and

bounded modified line-to-line sample variation as defined

below,

∆̂dk(ω) � |Q(jω)dk(jω) − dk+1(jω)|
≤ max

k
∆̂dk(ω) � ∆̂dmax(ω), (2)

both the iterative control input uk(jω) and the residual error

ek(jω) are bounded throughout the iterations, provided that

the following iteration coefficient ρ(jω) is less than one, i.e.,

ρ(ω) = |Q(jω) {1 − GPD(jω)S(jω)L(jω)}| < 1. (3)
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Moreover, the residual error ek(jω) is bounded by an affine

function of the maximum modified line-to-line sample vari-

ation ∆̂dmax(jω) and the noise level δ(ω)

|e∞(jω)| � lim
k→∞

|ek(jω)|

≤
∣∣∣∣

S(jω)

1 − ρ(ω)

∣∣∣∣
∣∣∣∆̂dmax(jω)

∣∣∣ + Eδ(jω)δ(ω),
(4)

where the limit of the residual error e∞(jω) is called the

ultimate ILC error, and the frequency dependent coefficient

Eδ(jω) is defined as

Eδ(ω) �
|Q(jω)GPD(jω)S(jω)L(jω)S(jω)| + |S(jω)|

|1 − ρ(ω)|
(5)

Proof We proceed by quantifying the residual error

ek(jω) for given noise/disturbance nk(jω). Note that from

the block diagram in Fig. 1 (c), for any given stabilizing

feedback controller, the feedforward control input u k,FF (jω)
in the kth iteration can be written as

uk,FF (jω) = S−1(jω)G−1
PD(jω)

[−ek(jω) − S(jω)dk(jω) − S(jω)nk(jω)] (6)

In the following derivation, the dependence on jω is omitted
for economy. Substituting Eq. (6) into Eq. (1) leads to

G
−1

PD [−ek+1 − Sdk+1 − Snk+1] = QG
−1

PD [−ek − Sdk − Snk]

+SQLek (7)

Then the residual error at the next iteration k + 1 can be
obtained from Eq. (7) as

ek+1 = Q (1 − GPDSL) ek + (Qdk − dk+1)S

+QSnk − Snk+1

= {Q (1 − GPDSL)}k+1
e0

+

k∑

j=0

{Q (1 − GPDSL)}j (Qdk − dk+1)S

+

k∑

j=0

{Q (1 − GPDSL)}j
QSnk−j

−
k∑

j=0

{Q (1 − GPDSL)}j
Snk+1−j (8)

By changing the index used in the last term in Eq. (8), the
last two terms in Eq. (8) can be simplified as:

{
k∑

j=0

{Q (1 − GPDSL)}j
QGPDSLSnk−j

}

−snk+1 + {Q (1 − GPDSL)}k+1
sn0 (9)

Substituting Eq. (9) into Eq. (8) and using triangle inequal-
ity, the iterative residual error ek+1 can be bounded as

|ek+1| ≤ |{Q (1 − GPDSL)}|k+1 |e0|

+
k∑

j=0

|{Q (1 − GPDSL)}|j |(Qdk − dk+1)S|

+
k∑

j=0

|Q (1 − GPDSL)|j |QGPDSLS| |nk−j |

+
∣∣∣{Q (1 − GPDSL)}k+1

Sn0 − Snk+1

∣∣∣

≤ ρ
k |e0| +

∆̂dmaxS(1 − ρk)

1 − ρ

+
|QGPDSLS| |δ| (1 − ρk)

1 − ρ

+(1 + ρ
k+1) |S| |δ| . (10)

Thus, it is evident from the above Eq. (10) that when

the iteration coefficient ρ(ω) < 1, the tracking error ek is

bounded for all iterations k ≥ 1, and the ultimate error,

|e∞| is eventually bounded as in Eq. (4) when k → ∞.

Similarly, it can be shown that under the same condition

(i.e., |ρ(ω)| < 1), the iterative control input, uk(jω), is also

bounded for all iteration k ≥ 1. This completes the proof.

It is noted that, for the special case of Lemma 1 where the

line-to-line sample variation vanishes as in [6], the CCF-ILC

law (1) is also converge.

Lemma 1 implies that when the noise effect is small

(δ(jω) → 0), the bound of the residual error is monotonically

decreasing with iterations (see Eq. (10)). Thus, to guarantee

the overall imaging quality in implementations, it is preferred

to iteratively image on one scanline until the residual error

is smaller than a user-chosen thresh-hold value, then proceed

the imaging on the rest of scanlines with a pre-chosen, given

number of iterations. Therefore, we propose to design the

CCF-ILC filters Q(jω) and L(jω) for repetitively imaging

on one scanline as in [6], and then quantify the size of the

allowable line-to-line sample variation such that the imaging

on the rest of scanlines can be proceeded with no iterations

(i.e., scan once at each scanline).

Remark 1: The proposed CCF-ILC approach aims at

achieving high-speed imaging of samples with relatively

smooth topography (i.e., the line-to-line sample variation is

relatively small).

B. Controllers Design

As in [6], a two-step approach to design the CCF-ILC

filters is proposed and, in the following, we call L(jω)
the ‘inversion-based ILC filter’ and Q(jω) the ‘roll-off ILC

filter’.

Design of the inversion-based ILC filter L(jω)
The inversion-based ILC filter L(jω) is designed to minimize

the term |1 − GPD(jω)S(jω)L(jω)| in the iteration coeffi-

cient ρ(ω), by using the recently developed robust inversion

technique [10]. We start with defining the model uncertainties

as

∆G(jω) =
GL(jω)

GL,m(jω)
= ∆r(ω) · ej∆θ(ω), (11)
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where GL(jω) denotes the true linear dynamics response of

the system, e.g., for the z-axis AFM dynamics,

GL(jω) = GPD(jω)S(jω), (12)

and GL,m(jω) denotes the model of the linear dynamics

GL(jω). Then the inversion-based ILC filter L(jω) is de-

signed as

L(jω) = αopt(ω) · G−1
L,m(jω), (13)

where αopt(ω) is the optimal frequency-dependent gain

to compensate for the dynamics uncertainty of the

system GL(jω), i.e., the optimal gain αopt(jω) is

sought to minimize the feedforward tracking error,

|1 − GPD(jω)S(jω)L(jω)|, with the presence of the dy-

namics uncertainty ∆G(jω),

min
L(jω)

sup
∆G

∣∣1 − GPD(jω)S(jω)L(jω)
∣∣ =

min
α(jω)

sup
∆G

∣∣1 − α(ω)∆G(jω)
∣∣.

(14)

It can be shown that the optimal gain αopt(jω) is given as

[10]

αopt(ω) =

{ 2 cos (∆θm(ω))
∆rmin(ω)+∆rmax(ω) ω ∈ Ωc,

0 otherwise.
(15)

where ∆rmin, ∆rmax and ∆θm are the bounds to quantify

the system uncertainties, i.e.,

∆r(jω) ∈ [∆rmin(jω), ∆rmax(jω)]

|∆θ(jω)| ≤ |∆θm(jω)| < π/2 for ω ∈ Ωc

and the set Ωc contains the frequencies where the phase

variation is less than π/2, i.e.,

Ωc �
{
ω ∈ Ωc

∣∣|∆θ(jω)| < π/2 for ω ∈ Ωc

}
. (16)

Then with the robust inverse filter (13, 15), the term

|1 − GPD(jω)S(jω)L(jω)| is minimized for bounded dy-

namics uncertainties,

min
α

sup
∆G

∣∣1 − GPD(jω)S(jω)L(jω)
∣∣

=

{
cos (∆θm(ω))

√
2∆r2

min
(ω)+∆r2

max
(ω)

∆rmin(ω)+∆rmax(ω) < 1 ω ∈ Ωc,

1 otherwise.

(17)

Design of the roll-off ILC filter Q(jω)
Secondly, we design the roll-off ILC filter Q(jω) as a zero-

phase low-pass filter to ensure the convergence of the CCF-

ILC algorithm, and render a small ultimate error e∞(jω)
(see Eq. (4)). To facilitate the implementation, the zero-phase

low-pass filter Q(jω) is given in z-transfer function in the

discrete-time:

Q(z) = b0 +

N∑

k=1

(bkzk) +

N∑

k=1

(bkz−k) (18)

where the coefficients bk ∈ ℜ. It can be easily verified that

the frequency response of Q(ejωT ) is real—thus the phase

of Q(z) is zero. The ILC roll-off filter Q(jω) is realized by

combining a linear phase FIR low-pass filter with a linear

phase lead as discussed in [6] and the bandwidth of the ILC

roll-off filter Q(jω) can be tuned during the experiments to

assure the convergence.

III. TRACKING IMPROVEMENT

To show that the CCF-ILC approach can enhance the to-

tal imaging performance over feedback control alone, the

tracking error of using the CCF-ILC approach is compared

with that of using the feedback control alone (the second

design objective). We first discuss the enhancement when

the line-to-line sample variation is ignored (i.e., when using

the CCF-ILC algorithm to repetitively image on the same

scanline).

A. No line-to-line sample variation case

It can be shown that in this case the ultimate error of the

CCF-ILC approach, |e∞(·)|, is less than or equal to the

residual error with feedback only, |eFB(·)| = |S(jω)d(jω)|,
when the noise is negligible, i.e., δ(ω) = 0. By Eq. (4),

when the noise is ignored, the ratio of the ultimate error of

the CCF-ILC approach with respect to the feedback control

error, q(ω), becomes

q(ω) =
|e∞(jω)|
|eFB(jω)| =

|1 − Q(jω)|
|1 − ρ(ω)| .

=
|1 − Q(jω)|

|1 − |Q(jω)| |1 − GPD(jω)S(jω)L(jω)||(19)

Then the discussion is proceeded by considering the tracking

within and outside the frequency set Ωc separately,

1) In the frequency set Ωc where the dynamics variation is

small and the CCF-ILC controller L(jω) is applied, the

term |1 − GPD(jω)S(jω)L(jω)| in the error ratio (19)

is less than one (as shown in (17)). Consequently, the

error ratio is less than one, q(ω) < 1, because the

ILC filter Q(jω) is a zero phase low-pass filter and

Q(jω) ≤ 1 for frequency ω ∈ Ωc;

2) At other frequencies where the dynamics variation is

large and the CCF-ILC controller L(jω) is set to zero,

the term |1 − GPD(jω)S(jω)L(jω)| = 1 (see (17)),

and thereby the error ratio q(ω) equals to one.

Thus by the continuity of the system dynamics, the above

discussion implies that when the noise/disturbance is small

and the line-to-line variation is ignored, the use of the

proposed CCF-ILC approach will enhance the tracking per-

formance.

B. Line-to-line variation case

Next, we consider the more general case where the line-to-

line sample profile variation occurs at each iteration, i.e.,

|dk − dk+1| ≥ 0 for k ≥ 1. Similar in Section III-A, the

CCF-ILC ultimate error, e∞(jω), is compared with the error

of feedback only, |eFB,max(·)| � |S(jω)| |dmax|, where

dmax = maxk dk (Note the ultimate error e∞(jω) is the

upper bound of the limit of the residual error when using

the CCF-ILC). The following lemma provides a sufficient

condition to guarantee that the CCF-ILC approach will

improve the tracking over feedback alone.

Lemma 2: Let the noise effect nk be negligible, the use of

the proposed CCF-ILC approach will enhance the tracking

performance, i.e.,

|e∞(jω)| ≤ |eFB,max(jω)| for ω ∈ Ωc, (20)
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if the relative line-to-line sample variation ∆Rd(%) is

bounded as

∆Rd(%) �

∣∣∣∣∣
∆̂dmax(jω)

dmax(jω)

∣∣∣∣∣ ≤ |1 − ρ(ω)| × 100% (21)

Lemma 2 can be easily proved by using Eq. (4) in Lemma

1. Note that in the low frequency range, the dynamics uncer-

tainty tends to be small, so are the noise/disturbance effects.

As a result, the inversion-based ILC filter L(jω) can be

chosen to render the iterative coefficient ρ → 0, and the roll-

off filter Q(jω) can be chosen to be one. Therefore, the above

Eq. (21) implies that as large as nearly 100% line-to-line

sample variation can be allowed in the low-frequency range

(or alternatively, when the imaging speed is relatively low).

Next, we introduce a more conservative sufficient condition

which quantifies the allowable line-to-line sample variation

in terms of the line-to-line variation directly (instead of the

modified line-to-line variation ∆̂dmax(jω), which depends

on the ILC filter Q(jω)).

IV. EXPERIMENTAL EXAMPLE

We implement the proposed CCF-ILC approach on an AFM

system (DimensionTM 3100, Veeco Inc.). The efficacy

of the CCF-ILC approach to improve the imaging on one

scanline (over using feedback control only) has been demon-

strated through experiments in [6]. In this paper, we focus

on the use of CCF-ILC method to obtain an entire image.

Note that the CCF-ILC law was designed by following the

procedure described in Sec. II-B, similar to the experiment

example described in [6].

The proposed CCF-ILC technique was implemented to scan

a calibration sample (TGZ02, from MikroMasch) where the

nominal pitch size is 3 µm, and the nominal step height is

84 nm. The image area is 20 µm × 20 µm, and the precision

positioning in the lateral x-y scanning was achieved by using

the inversion-based iterative control (IIC) approach [3]. In

this experiments, less than 1% of the maximum relative

tracking error in the lateral scanning was achieved by using

the IIC technique for the three different scan rates, 16 Hz,

32 Hz, and 64 Hz (The imaging results of lower scan rate

at 8 Hz was not shown).

The experimental results show that the imaging speed can

be significantly improved by using the proposed CCF-ILC

approach — much smaller residual error was obtained than

that by using the feedback control only. At the scan rate

of 16 Hz, the maximum residual error under the CCF-ILC

approach was 3 times smaller than that under the PI control,

as shown in Fig. 2 (a1) (b1). Such large reduction of the

residual error by using the proposed CCF-ILC technique over

the PI control was maintained even when the equivalent scan

rate was doubled (32 Hz) and tripled (64 Hz) as shown in

Fig. 2 (a2), (b2), (a3) and (b3). Therefore, the experimental

results demonstrated the efficacy of the proposed CCF-ILC

approach in improving the AFM imaging speed.

The experimental results also showed that the sample estima-

tion at high-speed can also be significantly improved with the

use of the CCF-ILC approach, even when there existed large

cross-axis dynamics-coupling effect. The sample estimation
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Fig. 2. Comparison of the deflection error (the residual error) by using
the proposed CCF-ILC approach with that by using the PI control for four
different equivalent scan rates of (a1, b1) 8Hz, (a2, b2) 16Hz, (a3, b3)
32Hz, and (a4, b4) 64Hz in sample imaging, where the left column shows
the total of 10 repeated scan result; and the right column is the zoomed-in
view of the one scanline result in the dashed window in the left column.
The effective lateral scan range is 20 µ m.

results obtained by using the CCF-ILC approach and those

by using the PI control approach are compared in Fig. 3

for the three different scan rates. Note that the dynamics

coupling effect were removed from the sample estimation

for the CCF-ILC approach as in [6]. At the scan rate of

16 Hz, the estimated sample profile obtained by using the

CCF-ILC approach was close to the true sample profile

(the rectangle pitches can be clearly identified), whereas the

estimated sample profile by using the PI control showed

pronounced sample distortions (the top of the pitches were

cornered around instead of being flat, see Fig. 3 (a)). As the

scan rate increased (to 32 Hz), the estimation error became

larger by using the PI control (where not only the top but also

the bottom of the pitches were cornered around), while the

sample profile can still be relatively well estimated by using

the proposed approach. When the scan rate was increased

to 64 Hz, the imaging distortion was even more pronounced

under the PI control—the basic shape of the sample surface

can not be recognized, and large variations occurred among

the estimated pitches. On the contrary, by using the CCF-ILC

approach, the sample estimation signal was still relatively

close to the sample profile. Therefore, the experiment results

showed that the proposed CCF-ILC approach can achieve a

smaller tracking error as well as a better sample estimation

than those obtained by using the feedback control alone.
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Fig. 3. Comparison of the sample estimation results by using (the upper row) the proposed CCF-ILC approach with that by using (the bottom row) the
PI control for three different equivalent scan rates of (a1, b1) 16Hz, (a2, b2) 32Hz, and (a3, b3) 64Hz. The lateral scan range is 20 µ m.
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Fig. 4. Comparison of the sample estimation results (cross section view) by using the proposed CCF-ILC approach with that by using the PI control for
three different equivalent scan rates of (a) 16Hz, (b) 32Hz, and (c) 64Hz. The lateral scan range is 20 µm.

V. CONCLUSION

The CCF-ILC approach was extended in this article from

high-speed AFM imaging of one scanline to the entire

imaging of the samples. First, the convergence (stability) of

the CCF-ILC law was analyzed for the general case where

the line-to-line sample profile variation (i.e., the desired tra-

jectory in general) occurred at each iteration. The conditions

for the convergence of the CCF-ILC approach were charac-

terized. Secondly, the allowable line-to-line sample variation

was quantified for the CCF-ILC approach so that the imaging

on the rest of the scanlines can be proceeded with no

iterations.Then the proposed CCF-ILC control approach was

illustrated by implementing it to the z-axis direction control

in AFM imaging. Experimental results show that the imaging

speed as well as the sample estimation can be significantly

improved by using the proposed approach.
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