
 

 

Abstract––Recently, active suspension has been applied 

to many commercial automobiles. To develop the control 

algorithm for active suspension, a quarter-car test bed 

was built by using a direct-drive tubular linear brushless 

permanent-magnet motor (LBPMM) as a 

force-generating component. Modified lead-lag control, 

linear-quadratic (LQ) servo control with a Kalman filter, 

the fuzzy control methodologies were implemented for 

active-suspension control. In the case of fuzzy control, an 

asymmetric membership function was introduced. This 

controller could attenuate road disturbance by up to 78%. 

Both simulation and experimental results are presented 

to demonstrate the effectiveness of these control 

methodologies. 
 

Keywords––tubular linear actuator, quarter-car, 

lead-lag control, LQ servo, fuzzy control. 

I. INTRODUCTION 

Active suspension supports a vehicle and isolates 

passengers from road disturbances for ride quality and 

vehicle handling using force-generating components under 

feedback control. Development of an active-suspension 

system should be accompanied by the methodologies to 

control it. Considering costly commercial vehicles with active 

suspension, Allen constructed a quarter-car test bed to 

develop the control algorithms [1]. 

Many researchers developed active-suspension control 

techniques [2]–[7]. These researches could be categorized 

according to the applied control theories. When it comes to 

the LQ control, Peng, et al. presented the virtual input signal 

determined by the LQ optimal theory for active-suspension 

control [2]. Tang and Zhang applied 

linear-quadratic-Gaussian (LQG) control, neural networks, 

and genetic algorithms in an active suspension and presented 

simulation results [3]. Sam, et al. applied LQ control to 

simulate an active-suspension system [4]. As for the robust 

control, Lauwerys, et al. developed a linear robust controller 

based on the µ-synthesis for the active suspension of a quarter 

car [5]. Wang, et al. presented the algorithm to reduce the 

order of the H
controller in the application of active 

suspension [6]. They were able to reduce the controller‟s 

order by nearly one third while the performance was only 

slightly degraded. Abbas, et al. applied sliding-mode control 

for nonlinear full-vehicle active suspension [7]. They 

considered not only the dynamics of the nonlinear 

full-vehicle active-suspension system but also the dynamics 

of the four actuators.  

The LBPMM is directly applicable to active suspension 

without converting rotary motion to linear motion [8]. 

Besides its smooth, precise translational motion without 

cogging, the fact that the length of the mover can be 

conveniently adjusted makes it appropriate for the 

force-generating component in an active-suspension system.  

 Since a human body is most susceptible to vibration at 

around 3 Hz (20 rad/s) [10], disturbance from the road is 

modeled as a sinusoidal input with a frequency of 3.5 Hz (22 

rad/s) and a magnitude of ±0.03 m in this research. The 

LBPMM was designed to be able to generate the force up to 

29.6 N with a ±6-A phase current [8]. Since NdFeB magnet 

would lose magnetization around 150°C, control performance 

is compromised with the maximum current swing that yields 

temperature rise. As a result, controllers are designed to have 

the current limit of around ±4 A. The piezoelectric 

accelerometers (Piezotronics model 336B18) used in the 

quarter-car test bed also limit the performance. These 

accelerometers can be used only in the frequency range of 0.5 

to 3000 Hz (3 to 20000 rad/s). Particularly, this implies that 

our active-suspension system is not able to attenuate the 

disturbance with a frequency component lower than 0.5 Hz.  

The fact that the LBPMM is used for active suspension and 

three different classes of control methodologies are 

developed and successfully implemented is the key 

contribution of this research and differentiates this paper from 

others. Especially, in the case of fuzzy control, an asymmetric 

fuzzy controller was implemented to compensate for dc offset 

in sensor data. 

 This paper is organized as follow. In Section II.A, working 

principles of the LBPMM are summarized. Section II.B 

presents the modeling of the quarter-car test bed. In Section 

III.A, implementation of a modified lead-lag controller and 

its disturbance attenuation are presented. Section III.B 

describes the design and performance of an LQ servo 

controller and the state estimation by a Kalman filter. Section 

III.C presents a fuzzy controller with asymmetric 

membership functions and its performance. The conclusions 

follow in Section IV.     
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II. TEST BED FOR ACTIVE SUSPENSION CONTROL 

A.  Linear Brushless Permanent-Magnet Motor 

Fig.1 shows a conceptual configuration of the LBPMM.  

The mover of the LBPMM consists of a series of cylindrical 

permanent magnets. The magnets are fixed in a brass tube and 

connected each other in an NS–NS––SN–SN fashion with 

spacers between the pairs. The stator consists of 9 coils (3 per 

each phase). 

 
Fig. 1. Schematic diagram of the LBPMM. The direction of 

the generated force on the mover is in the negative z-direction 

in this particular current distribution. 

By the Lorentz force equation, the generated force is the 

vector cross product of the current density J in the coils and 

the magnetic flux density B generated by the magnets, 

 F J B  [8]. The inverse Blondel-Park transformation in the 

LBPMM  that governs the relationship between the 

three-phase currents and the desired force is defined as 

follows [8].
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where ( ), ( ),a bi t i t  and ( )ci t are the currents flowing in phases 

, ,A B and  ,C  respectively. zdf is the desired force in the 

axial direction. 1 2 / l  , where l is the pitch of the motor 

(63.3 mm). 0z is relative displacement between the mover 

and the stator. In active suspension, it is the distance between 

the sprung and unsprung masses. The inverse force constant 

C  was determined as 0.1383 A/N
 
by experiments [8]. 

B.  Quarter-Car Test Bed 

Fig. 2 shows a photograph of the quarter-car test bed. The 

sprung mass ( sM ) is considered to be the body of a car, and 

the unsprung mass ( usM ) represents the mass between its 

suspension and a wheel. As shown in Fig. 2, two masses are 

connected with a mechanical spring and the LBPMM. The 

stator of the LBPMM is fixed to the sprung mass and one end 

of the mover is fixed to the unsprung mass so that the 

LBPMM force can act on this quarter-car test bed. The 

rotating cam shown at the bottom of Fig. 2 simulates 

sinusoidal road disturbance at various frequencies. 

As in [9], the states of the quarter-car test bed are defined as 

 ( ) ( ) ( ) ( ) ( ) ( ) ,
T

s us s us us rx t x t x t x t x t x t   and its dynamics is 

expressed as the following state-space matrix form.  
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where  sx t and  usx t are the velocities of the sprung and 

unsprung masses, respectively, ( )rx t is the sinusoidal 

disturbance generated by the rotating cam, and ( )actF t  is the 

force generated by the LBPMM. Additionally, the wheel is 

modeled by the spring constant wk  and the viscous damping 

coefficient wc . The parameter values are given in Table I. The 

tire is assumed to be made of natural isoprene which has 

modulus of elasticity of 0.01 GPa. 

LVDT

LBPMM

accelerometer

accelerometer

wheel

cam

sprung mass

unsprung mass

 
Fig. 2. Photograph of the quarter-car test bed with active 

suspension. 

 

 

TABLE I 

PARAMETERS AND CORRESPONDING VALUES OF 

QUARTER-CAR 

Parameters Values 

sM  2.299 kg 

usM  2.278 kg 

k  1521 N/m 

wc  50 N-s/m 

wk  156 N/m 
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III. CONTROL METHODOLOGIES AND EXPERIMENTAL 

RESULTS 

In this Section, three classes of controllers are designed and 

implemented in the quarter-car test bed and their 

experimental results are presented. 

A. Modified Lead-Lag Control 

The output force controls the velocity of the sprung mass 

rather than its position. From (2) and Table I, the transfer 

function from  actF t to ( )sx t is determined as follows.  
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The control objectives are as follows. First, high loop gain 

is desirable around the operating frequency at 22 rad/s for 

good disturbance attenuation and command following. 

However, this high gain would yield large current flow in the 

LBPMM, which would raise its temperature and demagnetize 

the magnets. Therefore, the gain was limited by examining 

the simulation result of the maximum current flow (±4 A) in 

the LBPMM.  Finally, the loop gain of the controller at 

around the operating frequency was determined as 56 dB.  

Second, the control bandwidth was set to be [10 rad/s, 80 

rad/s].  Since the open-loop frequency response of this quarter 

car has low gain in low and high frequencies and high gain in 

the middle frequency with two cross-over frequencies, the 

bandwidth could be adjusted by changing either the lower 

cross-over frequency or the higher cross-over frequency. In 

this paper, a lag compensation    0.2252 1.15 1.005s s   

was applied in the low-frequency range to achieve this goal.  

Third, since the gain should be low in the high frequency 

range to attenuate noise, another lag compensation 

   0.04681 100.5 100.54s s  was applied. Finally, sufficient 

gain and phase margins should be obtained due to modeling 

uncertainties. To achieve this objective, a lead compensation 

   1.949 100 100.02s s   was introduced between the two 

lag controllers. 

The lower-frequency lag controller yields a lower loop gain. 

The lead controller around the operating frequency broadens 

the bandwidth. Therefore, each lead or lag controller should 

be fine-tuned by examining the overall loop transfer function. 

To decide the exact corner frequencies in each of the lead or 

lag controllers, the Matlab SISO (single-input-single-output) 

tool was used. The modified lead-lag controller with one lead 

and two lag controllers was finalized in the s domain as (4).   

Fig. 3 shows the frequency response of the loop transfer 

function. 

As seen from Fig. 3, the loop-transfer-function gain is 

higher than that of the quarter-car transfer function around the 

operating frequency (22 rad/s). The bandwidth is acceptable 

since it is close to the frequency range of [10 rad/s, 80 rad/s].   

The simulation and experimental results of disturbance 

rejection are presented in Fig. 4.  

 

 

 
Fig. 3. Quarter-car and loop-transfer-function frequency 

responses of the quarter-car dynamics (3) and the modified 

lead-lag controller (4). Gain and phase margins are 28.2 dB 

and  66.4°, respectively. 
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Fig. 4. Experiment and simulation results of the modified 

lead-lag control for the 3.5 Hz disturbance. 

B. Linear-Quadratic Servo Control 

LQ servo control is developed by introducing the command 

input and the output disturbance. From (2), quarter-car model 

can be expressed as follows. 
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as in (2) 

Thus,   ( )p sy t x t  , and  tpx is partitioned as follows. 
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 The vertical line indicates that    p sy t x t  .
  

As shown in Fig. 5, the control gain matrices yG  and rG  

are applied to  py s and  sRx , respectively. To eliminate a 

non-zero steady-state error for the step command input or the 

output disturbance, this LQ servo controller is implemented 

with an integrator. In this application, the LQ servo model is 

determined by considering the frequency responses of the 

loop transfer function of model given in Fig. 5.         
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Fig. 5. Block diagrams of LQ servo control in this application. 

The control objectives are similar to those of the modified 

lead-lag control. As shown in Fig. 5, the control gains for the 

integrator, output state, and rest states 

are , , ,i y rG G G respectively [11]. This LQ servo system 

consisted of the standard LQ servo dynamics (5) and the 

integrator dynamics. With   0r s 
 
in a regulation 

problem, 
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 The augmented system is defined as follows. 
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where i y rG G G G 
 

.  

To obtain G , a control algebric Riccati equation (CARE) 

should be solved. To construct this CARE, a symmetric 

positive definite matrix R  and a symmetric positive 

semi-definite matrix Q should be determined. The R matrix 

affects the loop gain that determines the system bandwidth. 

After several design iterations, R  was set to be 0.005. The 

diagonal elements of the Q matrix are the weights of each 

state, after several design iterations, the Q matrix was 

determined as follows.  

                                                           

             
   0.01 170 0.01 0.01 0.01

0 forij

diag Q

Q i j



 
           (10) 

    A unique positive semi-definite symmetric matrix K is 

determined by the following CARE. 
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K is solved with Matlab as follows. 
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The feedback gain G is determined as follows.  

   

        
1 0.0013 147.58 25.72   0  272.54G R BK         (13) 

1) Kalman Filter Design 

LQ servo requires full state feedback. The last state of the 

system is defined as the tire deflection ( ( ) ( )us rx t x t ) which is 

difficult to be measured because locating any type of the 

sensor in the rotating wheel is inconvenient. Therefore, it is 

estimated by a Kalman filter. To solve the filter algebric 

riccati equation (FARE) and obtain the Kalman filter gain, a 

positive value   and a non-negative value   should be 

determined in (15). They are adjusted and determined 

as 0.00001 and 0.01  after several design iterations. The 

disturbance matrix L defined as follows. 
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T

L                                  (14) 

 

Then the unique positive semi-definite symmetric matrix P is 

determined by solving the following FARE. 
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The solution is obtained as follows by Matlab „CARE‟ 

function.                                                            
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The Kalman filter gain H is determined as follow.     

                                                                

                1 46.92   41.96   1.66  28.97TH PC             (17) 

Fig. 6 shows the estimated tire deflection ( ( ) ( )us rx t x t ) by 

the Kalman filter algorithm in closed-loop control. The solid 

line represents the estimated state generated from Control 

Desk during the experiment. The dashed line represents the 
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estimated state generated from the Simulink block without 

the experiment setup. There is some discrepancy between the 

simulation and experimental results of state estimation. In the 

Kalman filter algorithm, the measured output and the 

disturbance are assumed as zero-mean white Gaussian noises. 

In the quarter-car model, there is some discrepancy between 

the measured output ( ( )sx t ) and the zero-mean white 

Gaussian noise (Figs. 4 and 7), which limits the performance 

of the state estimator. Noises from three sensors also degrade 

the performance of the state estimator. 
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Fig. 6. Estimated state comparison between simulation and 

experiment results. 

The performance of the disturbance attenuation is presented 

in Fig. 7. Due to the error from the state estimator, 

disturbance attenuation contains some discrepancy between 

the experiment and simulation results.   

 

        
 

Fig. 7. Experiment and simulation results of the LQ servo 

control when the controller is turned on. 

C. Fuzzy Control 

A Mamdani-type fuzzy controller is implemented in this 

section [12]. The input to this fuzzy controller is the system 

error ( ( )e t ), and the output is the control input  ( )actF t . To 

determine  actF t , ( )e t  is fuzzified by the membership 

functions shown in Fig. 8 (a) and  defuzzified by the 

membership functions shown in Fig. 8 (b). The area under the 

membership functions are defined by i  ( 1, 2, ,7i   ). 

The range of error in Fig. 8 (a) was set as [–0.8, 0.8] 

because the magnitude of the largest measured error ( ( )sx t ) 

was 0.8 m/s. The range of outputs in Fig. 8 (b) was set as [–30, 

30] because the LBPMM could generate force up to near ±30
 

N.  

Since this active-suspension test bed is a single-input, 

single-output system, the input and the output from 

single-dimension arrays. Each fuzzified value is one-to-one 

matched for the defuzzification. For example, if the error is 

NLE, the output is NLF. Each rule has the same weight.  
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Fig. 8. (a) Membership functions for fuzzification. (b) 

Membership functions for defuzzification. 

The control input as the result of this fuzzy controller is 

determined by the center of gravity (COG) method. The COG 

method computes actF  as follows [12]. 

                              

7 7

1 1

act i i i

i i

F g  
 

    ,                            (18) 

where ig is defined as the COG of the each membership 

function. 

Fig. 9 shows the relation between the error and the 

generated control force. This input-output curve was designed 

not to be symmetric with respect to the origin. When the 

active-suspension system is under closed-loop control, the 

sprung mass‟s maximum absolute velocity is larger when its 

velocity is positive compared to that with a negative velocity. 

This phenomenon was examined through the modified 

lead-lag control and the LQ servo control (Figs. 4 and 7). 
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Fig. 9. Input-output relation of the asymmetric fuzzy 

controller.      

  This phenomenon 
 
indicates that the position of the sprung 

mass is higher than the desired position and its insufficient 

control. Therefore, additional control input should be 

generated. To solve the problem, a membership function PSF 

in Fig. 8 (b) was widened. In Fig. 10, this phenomenon  is 

reduced in comparison with Figs. 4 and 7 due to the additional 

control input generated in the hump where 0.1 < Error (m/s) < 

0.4 in Fig. 9.  

 

 
 

Fig. 10. Fuzzy control result of experiment and simulation 

when controller is turned on. 

IV. CONCLUSIONS 

An active-suspension system with a quarter-car test bed 

was constructed with an LBPMM in this research. Modified 

lead-lag, LQ servo, fuzzy controllers were designed and 

implemented to attenuate modeled road disturbance.  The 

fuzzy controller was able to reject the disturbance by up to 

78%.  

The LQ servo‟s performance in disturbance rejection was 

slightly inferior to the two other controllers. The reason is that 

the estimator could not perfectly generate the estimated state 

because the noise and the disturbance were not zero-mean 

white Gaussian.  Moreover, an additional sensor (the LVDT) 

was used in this control method. The performance of the 

modified lead-lag control was fairly acceptable. The fuzzy 

controller turned out to be the most suitable control 

methodology for this active-suspension application. It is 

because its asymmetric membership functions allowed the 

LBPMM to generate the most suitable control force. Due to 

the asymmetric membership functions, the discrepancy 

between the ideal and practical test beds was reduced. 

However, a fuzzy controller is difficult to design since it has 

infinitely many design parameters such as selecting the 

domain for the fuzzification and defuzzyfication. In this 

research, these design parameters were finalized with the 

results from the modified lead-lag and LQ servo controllers.               
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