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Abstract— In this note we consider centralized and decen-
tralized control policies for the detection and containment of
a moving source in 2D diffusion-advection PDE, often describ-
ing environmental processes. Such a task is enabled by the
employment of a network of sensing devices judiciously located
within the 2D spatial domain. These devices are assumed to have
actuating capabilities aimed at containing the moving source
by minimizing its effects on the process concentration. The
source-detecting ability of the sensor network is considerably
enhanced when the sensing devices are equipped to measure
spatial gradients as opposed to only process concentration. The
proposed estimation scheme provides estimates of the process
state and at the same time provides an estimate of the proximity
of the moving source. An added feature of the supervision and
monitoring scheme is a power management scheme whereby
a subset of the available sensors within the network are kept
active over a time interval while the remaining devices are
kept dormant. The resulting hybrid infinite dimensional system
switches both the actuator, deemed more suitable to contain
the source over the duration of a given time interval, and its
associated control signal. Additionally, it switches the set of
active sensors that are used by the scheme. The control policy
examines two different schemes in which both a centralized
and a decentralized scheme are considered. In the centralized
scheme, information on the status of the active sensors along
with the estimate of the state process are transmitted to the
supervisor to feed a dynamic output feedback control signal to
the actuator closest to the moving source. In the decentralized
scheme, a computationally efficient controller is implemented,
whereby the outputs from the active sensors are independently
fed to the collocated actuators via static output feedback.
Simulation studies utilizing at each time 16% of the total sensors
and having either a single actuator with a centralized scheme or
16% of the total actuators with a decentralized scheme and used
to minimize the effects of the moving source, are presented.

I. INTRODUCTION

In the past few years there has been a very large body

of work on sensor networks (mobile or stationary) and their

employment in wireless networks [18] for monitoring spa-

tially distributed processes such as wildfire control in remote

areas, border patrol [22], civil infrastructure health monitor-

ing [4], property protection [12], environmental monitoring

and weather prediction [21], [24]. Many analytical models

for the management (control, resource allocation, foraging,

coverage, navigation, collision avoidance) of wireless mobile

sensor networks, see [13], [5], [3] and references therein,

have also been developed.

More recently, there has been some works of process-

immersion of the sensing, and possibly actuating, devices

into the process at which these networks are called for to
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perform certain tasks, such as coverage, parameter identifica-

tion, intrusion detection, etc, [23], [10]. In such applications,

the inclusion of the location of the sensing and actuating

devices into the process provided a natural setting for the

detection of a moving source (intruder). It was argued that

fixed-in-space sensors would adequately detect the signature

of a source (primarily in triangulation for acoustic source

detection, see [9]), but may not adequately detect a moving

source. Such a source localization must be viewed within an

inverse problem framework [20].

This work is concerned with a methodology that allows for

the fixed-in-space scheduling policy of a sensor-and-actuator

network used for the detection and containment of a moving

source in a process described by a 2D diffusion-advection

PDE. It is assumed that the sensor network optimally dis-

tributes the sensing devices in the spatial domain and it is

desired to activate only a subset of such a sensor network

during a given time interval while the remaining sensors

stay dormant. Once the proximity of the moving source is

detected, then the sensor closest to the source is designated

the cluster head and its collocated actuator can then be used

to deliver the control signal to the process in order to contain

the source. An alternative containment policy examines the

possibility of utilizing the actuators that are collocated to the

active sensors and via a static output feedback, to contain the

source by minimizing its effects on the process state.

The mathematical formulation for the 2D process is

presented in § II with the sensor scheduling, and source

and containment detection schema summarized in § III. An

example of a 2D PDE with a moving pointwise source and

a network of 400 collocated sensors and actuators which

engages at most 61 such devices with the remaining 339

kept idle over a given time interval, is presented in § IV.

Conclusions and future extensions follow in § V.

II. PROBLEM FORMULATION

We consider a simplified version of a transport model [19],

[15], [14] described by the 2D diffusion-advection PDE
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(1)

where c(t,χ,ψ) denotes the concentration as a function

of time t and spatial variables (χ,ψ) ∈ Ω. For simplicity

of exposition, a rectangular domain is assumed with Ω =
[0,Lχ]× [0,Lψ]⊂ R

2. Further, it is assumed that the velocity

vector u = (uχ,uψ) and the (eddy) diffusivities κχχ(t,χ,ψ),
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κψψ(t,χ,ψ) are constant [19].

The spatial function b2(χ,ψ) describes the spatial distri-

bution of the actuating devices and u(t) the control signal

dispensed by these devices to the process. In the decentral-

ized scheme the term b2(χ,ψ)u(t) will be given by

b2(χ,ψ)u(t) =
m

∑
i=1

b2i(χ,ψ)ui(t)

whereas in the centralized case a single actuating device will

be active and therefore the control signal u(t) will be a scalar.

Similarly, the effects of the moving source on the state

are described through the term b1(t,χ,ψ), which is assumed

to be a point source with intensity f (t). The motion of the

source term is described by a time-varying 2D delta function

δχ(χ−χs)δψ(ψ−ψs) [2]. Using the above, then

b1(t,χ,ψ) = δχ(χ−χs(t))δψ(ψ−ψs(t)) f (t) (2)

where θs(t) , (χs(t),ψs(t)) denotes the trajectory of the

point source within the spatial domain Ω. Following the ear-

lier work in [9], [11], state measurements are available in the

form of pointwise-in-space information of the concentration

c(t,χ,ψ) at the i th spatial location (χi,ψi)

yi(t) = c(t,χi,ψi)

=
∫ Lχ

0

∫ Lψ

0
δχ(χ−χi)δψ(ψ−ψi)c(t,χ,ψ)dχdψ,

(3)

for i = 1, . . . ,m. The system given by (1)-(3) is viewed as an

evolution equation in a Hilbert space [6], [8], [16],

Ẋ (t) = AX (t)+B1(t) f (t)+B2u(t),

yi(t) = CiX (t), i = 1, . . . ,m,
(4)

where X (·) is the state of the infinite dimensional system

and A , B1(t), B2, Ci are the operators associated with

the state operator, the time varying source (moving) spatial

distribution function δχ(χ−χs(t))δψ(ψ−ψs(t)), the actua-

tor distribution function b2(χ,ψ) and output measurement

distribution function c(t,χi,ψi), respectively.

The m-dimensional output associated with the measure-

ment provided by the m sensing devices which are spatially

distributed within the 2D spatial domain, is given by

y(t) =




y1(t)

...

ym(t)



 =




C1(t)X (t)

...

Cm(t)X (t)



 = C (t)X (t). (5)

In the above framework, the motion or scheduling of the

sensing agents within a network is naturally represented by

the time dependence of the output operator C (t). There-

fore, the advantage of the process-immersion of the sensor

scheduling is that now one has to provide the time variation

of the operator. Alternatively, this time variation represents

the activation/deactivation (scheduling) of the fixed-in-space

sensors within the sensor/actuator network.

In view of the above framework and the process-

immersion of the sensing and actuating devices within the

network, the problem under consideration can be stated along

with the control and detection objectives:

Problem statement: It is assumed that a moving source

(alternatively thought of as a moving intruder whose sig-

nature affects the advection-diffusion process) whose spatial

distribution is described by a spatially moving point source

and having a constant intensity as given by (2). A supervisory

detection scheme is required which must utilize the sensing

devices within the network and at the same time provide

a power management scheme whereby only a subset of the

sensing devices will be active over a given time interval while

the remaining devices will be dormant. At the same time,

the supervisory scheme must estimate the proximity of the

moving source and engage a number of the actuating devices

that are collocated to the sensing devices and provide the

appropriate control strategy in order to contain the source

by minimizing its effects on the state process.

Remark 2.1: It should be noted that the supervisory

scheme has to provide conflicting objectives: of detecting the

intruder and of containing the intruder. Once the proximity

of the moving source is detected, then the control policy

will minimize its effects on the state process. Once this is

attained, then the effects of the moving source will not be

detected for a given time interval. Consequently the location

of the moving source will go undetected till its effects on

the process state can be “sensed” by the detection scheme.

The main objectives of the supervisory scheme can now

be stated:

1) estimate the process state c(t,χ,ψ) for all t in a time

interval I , t ∈ I ⊆R
+ and all spatial points (χ,ψ)∈ Ω

2) estimate the location θs(t) = (χs(t),ψs(t)) of the un-

known moving source

3) provide a computationally feasible containment policy

of the moving source via the reconfiguration of both

the control signal and the appropriately scheduled

actuating device.

In order to simplify the detection scheme, assumptions on

the moving source will be considered, while the more general

estimation scheme will be the topic of future research.

Assumption 2.1: It is assumed that the intensity of the

moving source f (t) ≡ 1 and thus the problem of source

detection reduces to that of estimating its position or its

proximity at each time t within Ω.

Using Assumption 2.1, the abstract representation of (1),

with the moving source (2) and the measured output (3), as

given by (4) and (5), is now rewritten as

Ẋ (t) = AX (t)+B1(t)+B2u(t),

y(t) = C (t)X (t).
(6)

III. SOURCE DETECTION SCHEME

The knowledge of the proximity of the moving source

will heavily depend on the state estimate where the source

position can be viewed within the context of a change (fault)

detection. The proposed state estimator takes the form

˙̂
X (t) = (A −L(t)C (t)) X̂ (t)+L(t)y(t)+B̂1(t)+B2u(t) (7)

where L(t) denotes the observer gain associated with the

sensing devices defined by C (t).

The state estimation error e(t) = X (t)− X̂ (t) which will
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serve as the residual in the detection scheme, is governed by

ė(t) = (A −L(t)C (t))e(t)+
(

B1(t)− B̂1(t)
)

. (8)

Following the earlier work [10], [11], the distributed

estimation error can provide the scheduling policy for the

sensors by simply activating the sensors situated in the spatial

region with the largest (localized) error e(t,χ,ψ). A similar

guidance policy can be used when the sensing devices are

capable of moving within the spatial domain Ω. The above

assumes that the state estimation error converges to zero

asymptotically. Such convergence is attainable when both

the moving source and its estimate are square integrable

functions in an appropriate space.

An alternative to this approach, which is based on Lya-

punov stability arguments, is to use a gradient-type optimiza-

tion by finding the sensitivity of the state error with respect

to the sensor positions. However, in this work, the motivation

stems from computationally tractable schemes that propose

to change (engage) a set of active sensors at the beginning

of a given time interval, and keep them in active mode

(transmit and receive) throughout the duration of the time

interval while the remaining sensors are kept dormant (idle

mode). At the beginning of a new time interval, the process

of activating/deactivating is updated so that possibly new

sensors that are deemed more relevant are used and sensors

that do not provide useful information are turned off.

A significant factor in the ability of the sensor network

to effectively detect moving sources, is the type of measure-

ments that the sensing devices provide. Associated with that

is the important factor of the location of the sensors within

the network, i.e. the position inside the spatial domain Ω.

A. Sensor type

The sensing devices in the network can significantly

increase the identifiability by providing information not on

the concentration but on the gradients of the concentration.

Usually, the sensing devices can measure concentration at

a spatial point (χi,ψi) within the domain Ω, and therefore

such devices must be modified so that they can provide

information on the spatial gradients of the concentration. To

achieve this, a given sensing device can be equipped with a

quadruple probe that can provide pointwise concentration

at four points on the circumference of a ring [17], as

shown in Figure 1. In view of (5), the signal from the ith

device equipped with four concentration sensors that can be

transmitted to the supervisor is given by




c(t,χi + ε/2,ψi)

c(t,χi − ε/2,ψi)

c(t,χi,ψi + ε/2)

c(t,χi,ψi − ε/2)




.

In essence, the sensor provides concentration at four points

on the circumference of the ring. To obtain gradient informa-

tion, one can use an approximation to arrive at the following

triple-signal observation at the sensor location (χi,ψi)

yi(t) =





c(t,χi,ψi)
∂c
∂x

(t,χi,ψi)
∂c
∂y

(t,χi,ψi)



 ≈





c(t,χi+ε/2,ψi)+c(t,χi−ε/2,ψi)+c(t,χi,ψi+ε/2)+c(t,χi,ψi−ε/2)
4

c(t,χi+ε/2,ψi)−c(t,χi−ε/2,ψi)
ε

c(t,χi,ψi+ε/2)−c(t,χi,ψi−ε/2)
ε





=





1
4

1
4

1
4

1
4

1
ε − 1

ε 0 0

0 0 1
ε − 1

ε









c(t,χi + ε/2,ψi)

c(t,χi − ε/2,ψi)

c(t,χi,ψi + ε/2)

c(t,χi,ψi − ε/2)




.

It is assumed that each sensor in the network can pre-process

the four measurements and therefore only three signals can

be transmitted to the base station. The radius ε of the circular

cc(t,χi −
ε
2
,ψi) c c(t,χi +

ε
2
,ψi)

cc(t,χi,ψi +
ε
2
)

c
c(t,χi,ψi −

ε
2
)

"!
# `

6
ψ

- χ

Fig. 1. Cross configuration of a quadruple concentration-measuring probe
on a circular ring, placed at location (χi,ψi) ∈ Ω.

ring is dictated by spatial resolution [19] considerations that

would justify the approximations

c(t,χi,ψi) ≈
1

4
c(t,χi + ε/2,ψi)+

1

4
c(t,χi − ε/2,ψi)

+
1

4
c(t,χi,ψi + ε/2)+

1

4
c(t,χi,ψi − ε/2),

∂c

∂x
(t,χi,ψi) ≈

c(t,χi + ε/2,ψi)− c(t,χi − ε/2,ψi)

ε
,

and
∂c

∂y
(t,χi,ψi) ≈

c(t,χi,ψi + ε/2)− c(t,χi,ψi − ε/2)

ε
.

B. Sensor positioning

As was already mentioned in [10], [11], the location of

the sensing devices within Ω has a significant effect on the

identifiability of the scheme and the quality of the signal, and

can significantly affect the detection speed. This is especially

so when the detection scheme heavily relies on the fast

convergence of the state error to zero.

While it is assumed that a subset of the sensing devices

will be active over a given time interval, all devices must

be positioned in the spatial domain in an optimal manner.

Therefore, it is assumed that the network consists of N

sensing devices, of which m will be active at a given

time interval [tk, tk + ∆t] (in sensing/transmitting/receiving
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mode) and with the remaining (N − m) to be disengaged

(in sleep mode). Such optimality can be expressed in terms

of observability [6].

We denote the set of locations within Ω that are the zeros

of the eigenfunctions of the 2D elliptic operator by

Θnull =
{
(χ,ψ) ∈ Ω : φk j(χ,ψ) = 0, j,k = 1,2 . . .

}
,

where φ jk(χ,ψ) are the eigenfunctions of the 2D elliptic

operator. Hence the sensor locations should be restricted to

the set Ωob = Ω \Θnull which will ensure that no sensing

device renders the system unobservable. Choosing N loca-

tions from this infinite set can be computationally expensive.

However, one may employ computationally efficient schemes

to obtain N locations for the sensing devices that would

enhance the observability of the network. One such approach

is based on spatial norms [1]. It is henceforth assumed that

N such optimal sensing devices have been positioned in the

spatial domain Ω either using the approach outlined above,

or following the alternative methods presented in the earlier

work [10], [11]. The set of these locations in denoted by ΘN .

The next step is then to address the primary objective

of state estimation with sensor scheduling that would also

provide an estimate of the location of the moving source.

C. Numerical implementation

Using a finite element scheme [7] with the approximation

c(t,χ,ψ) =
I1

∑
j=1

I2

∑
k=1

φ jk(χ,ψ)X jk(t)

where φ jk(χ,ψ) is the 2D approximating function and X jk(t)
is the generalized coordinate with jk being the approximation

indices in the (χ,ψ) space, the PDE in (1) is semi-discretized

in space. By substituting this expansion in (1) and viewing it

in weak form with φ jk(χ,ψ) as the test functions, one arrives

at the matrix representation of (1), given by

ẋ(t) = Ax(t)+B1(t)+B2u(t), (9)

where x(t) denotes the state vector whose entries are the

generalized coordinates X jk(t), and A,B1(t),B2 are the matrix

representations of the elliptic operator A , source distribution

operator B1(t), and input distribution operator B2, respec-

tively. The expression for the ith sensor is given by

yi(t) =




Cicx(t)

Ciχx(t)

Ciψx(t)



 =





∑
I1
j=1 ∑

I2
k=1 φ jk(χi,ψi)X jk(t)

∑
I1
j=1 ∑

I2
k=1

∂φ jk

∂χ (χi,ψi)X jk(t)

∑
I1
j=1 ∑

I2
k=1

∂φ jk

∂ψ
(χi,ψi)X jk(t)




,

where yi(t) denotes the measurements from the sensor placed

at location (χi,ψi) and which provides information on the

concentration Cicx(t), the χ-direction gradient Ciχx(t) and

the ψ-direction gradient Ciψy(t).
Since a subset of the N available sensing devices will be

scheduled at a given time interval, the sensor outputs and the

output distribution vectors are parameterized by the locations

θi = (χi,ψi) ∈ ΘN and therefore

y(t;θi) = C(θi)x(t) =
[

CT
c (θi) CT

χ (θi) CT
ψ(θi)

]T
x(t)

with C(θ) : R
n → R

3, ∀θ ∈ ΘN . Due to this parametrization,

now any sensor scheduling will be constrained in the set ΘN .

Using the above approximation, the 2D process with

a moving source and a time varying output measurement

matrix is given by

ẋ(t) = Ax(t)+B1(t)+B2u(t)

y(t) = C(t)x(t).
(10)

Similarly, the finite dimensional representation of the pro-

posed state estimator in (7), is given by

˙̂x(t) = (A−L(t)C(t)) x̂(t)+L(t)y(t)+ B̂1(t)+B2u(t), (11)

where B̂1(t) is the on-line estimate of the moving source

vector B1(t). The above two finite dimensional systems,

when combined, yield the state estimation error system

ė(t) = (A−L(t)C(t))e(t)+(B1(t)− B̂1(t)). (12)

Using the fact that both the filter gain and observation matrix

are constant over a given interval [tℓ, tℓ + ∆t] is taken into

account, then the state error is conveniently written as

ė(t) = (A−LℓCℓ)e(t)+(B1(t)− B̂ℓ
1). (13)

The above result in a hybrid system and one must ensure

that well-posedness and stability under switching can be es-

tablished. Following [10], one uses the fact that the switching

interval ∆t is above the dwell time and that during any time

interval [tℓ, tℓ+∆t], the term (B1(t)− B̂ℓ
1) is square integrable.

In addition to the scheduling of the m sensing devices

that will be active over the interval [tℓ, tℓ + ∆t] and the

representation of the estimate B̂ℓ
1, one must also provide a

containment policy for the effects of the moving source.

Spatial gradient information can be used to detect the

moving source location because gradients are sensitive to

changes in concentration. In this case, one searches among all

m sensors in the set ΘN and finds the one that has the highest

absolute value of either gradient. Such a sensor is termed

the cluster head. This provides the sensor location closest

to the source. Using this information, the source location

estimate B̂ℓ
1 over the interval [tℓ, tℓ + ∆t] can then be made.

Consequently, the estimated source location θℓ
loc-in fact the

cluster head closest to the source location-is given by

θℓ
loc = arg max

θi∈ΘN

{
max

(
|Cχ(θi)x(t)|, |Cψ(θi)x(t)|

)}
. (14)

The above detection scheme compares the absolute value of

each of the spatial gradients Cχ(θi)x(t) and Cψ(θi)x(t) and

chooses the largest one. It then compares all such gradients

from the sensor network to find the maximum gradient.

The way one decides which m sensors should be activated

over the next interval depends on the average spacing of the

sensors within Ω. At a given time tℓ, the sensor location

θℓ
loc will be within a distance ρ from the source posi-

tion (χs(t),ψs(t)) where ρ denotes the maximum distance

between any two adjacent sensors from the set ΘN . To

incorporate the activation of m devices out of the N available

ones, one considers a ball of radius R centered at the cluster

head sensor. Then one expresses the radius R in terms of the

number m and the sensor spacing ρ. Therefore, for a given

spacing ρ and given radius R ≫ ρ, one can find the number

of sensors m that are contained within the ball of radius R.
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Once the cluster head sensor θℓ
loc = (χℓ

loc,ψ
ℓ
loc) has been

declared for the interval [tℓ, tℓ +∆t], then the distribution vec-

tor of the estimated source position is given by [MB̂1(tℓ)] =
φpq(χ

ℓ
loc,ψ

ℓ
loc), where M denotes the mass matrix of the finite

dimensional approximation.

Two algorithms are considered for declaring the cluster

head and containing the moving source.

Algorithm 1: Moving source estimation with sensor manage-

ment and centralized source containment; single actuator

1) consider the time interval [t0, t0 + ∆t) and employ all

N sensors in the network for the first time interval

2) find sensor location with maximum gradient

θ0
grad = arg max

θi∈ΘN

{
max(|Cχ(θi)x(t)|, |Cψ(θi)x(t)|)

}

3) find sensor location with maximum concentration

θ0
conc = arg max

θi∈ΘN

|Cc(θi)x(t)|

4) if |Cc(θ
0
conc)x(t)| > |Cc(θ

0
grad)x(t)|

then set θ0
loc = θ0

grad

else set θ0
loc = θ0

conc

end loop

5) sensor nearest the source at t0 is at θ0
loc = (χ0

loc,ψ
0
loc).

6) activate actuator collocated with θ0
loc = (χ0

loc,ψ
0
loc)

〈B̂2(θ
0
loc)u(t),φ〉 =

∫ Lχ

0

∫ Lψ

0 δχ(χ−χ0
loc)δψ(ψ−ψ0

loc)φ(χ,ψ)dχdψu(t)

7) provide control signal to actuator B̂2(θ
0
loc)

u0(t) = −K(θ0
loc)x̂(t), t ∈ [t0, t0 +∆t]

8) find set of m sensors within a distance R from θ0
loc

ΘR(t0) = {θ ∈ ΘN : |θ−θ0
loc|R2 ≤ R} (15)

9) consider next interval by setting t0 = t1 , t0 +∆t, and

perform search in steps 2 and 3 over ΘR(t0) instead of

ΘN . Repeat steps 4,5,6,7,8 for new interval and define

the new set ΘR(t1) in (15) as ΘR(t1) = {θ ∈ ΘN : |θ−
θ1

loc|R2 ≤ R}. Repeat step (9) for subsequent intervals.

The above policy uses the actuator that is collocated to the

cluster head as declared by the supervisor for the duration of

the interval [tℓ, tℓ +∆t). To enhance the containment effects,

one may consider activating the actuators that are collocated

to the m active sensors. However, this might significantly

increase the computational load and therefore one may con-

sider a simplified control policy. This takes the form of static

output feedback of all the m collocated sensors/actuators.

Such a control policy is decentralized since each actuator

only uses information from its collocated sensor.

Algorithm 2: Moving source estimation with sensor manage-

ment and decentralized source containment; m actuators

1) consider the interval [t0, t0 + ∆t) and employ all N

sensors in the network for the first time interval

2) find sensor location with maximum gradient

θ0
grad = arg max

θi∈ΘN

{
max(|Cχ(θi)x(t)|, |Cψ(θi)x(t)|)

}

3) find sensor location with maximum concentration

θ0
conc = arg max

θi∈ΘN

|Cc(θi)x(t)|

TABLE I

L2(0,20;L2(0, ℓ) AND L2(0,20;R2) NORMS

case plant observer error traj. error

no control 17.90 16.60 2.31 0.368

1 actuator, dynamic control 3.12 1.51 2.58 0.415

m actuators, static control 16.04 15.52 1.64 0.308

4) if |Cc(θ
0
conc)x(t)| > |Cc(θ

0
grad)x(t)|

then set θ0
loc = θ0

grad

else set θ0
loc = θ0

conc

end loop

5) sensor nearest the source at t0 is at θ0
loc = (χ0

loc,ψ
0
loc).

6) find set of m sensors within a distance R from θ0
loc

ΘR(t0) = {θ ∈ ΘN : |θ−θ0
loc|R2 ≤ R} (16)

7) activate the actuators that are collocated to the m− 1

sensors encircling the sensor at θ0
loc, i.e. θ0

loci
∈ ΘR(t0)

〈B̂2(θ
0
loc)u(t),φ〉 =





∫ Lχ

0

∫ Lψ

0 δχ(χ−χ0
loc1

)δψ(ψ−ψ0
loc1

)φ(χ,ψ)dχdψ
...

∫ Lχ

0

∫ Lψ

0 δχ(χ−χ0
locm

)δψ(ψ−ψ0
locm

)φ(χ,ψ)dχdψ





8) provide decentralized control to m actuators B̂2(θ
0
loc)

u0(t) = −diag[k1, . . . ,km]y(t;θ0
loc), t ∈ [t0, t0 +∆t]

9) consider next interval by setting t0 = t1 , t0 +∆t, and

perform search in steps 2 and 3 over ΘR(t0) instead of

ΘN . Repeat steps 4,5,6,7,8 for new interval and define

the new set ΘR(t1) in (16) as ΘR(t1) = {θ ∈ ΘN : |θ−
θ1

loc|R2 ≤ R}. Repeat step (9) for subsequent intervals.

IV. NUMERICAL RESULTS

We consider the PDE in (1) with Lχ = 0.1, Lψ = 0.06

and κχχ = κψψ = 1.5 × 10−5, uχ = uψ = 10−4 and µ =
−3× 10−4. The system was approximated using 20 linear

elements in each direction. A uniform grid of 20 × 20

sensing devices was considered. We consider c(0,χ,ψ) =
5002(χψ)3(Lχ − χ)3(Lψ − ψ)3/(LχLψ)6 and ĉ(0,χ,ψ) = 0.

Using the proposed moving source detection algorithm, the

system was simulated with a moving source described by

χs(t) =
Lχ(10−9 sin( 5πt

t f
))

20
, ψs(t) =

Lψ(10−9 cos( 3πt
t f

))

20
.

The system was simulated in [0,20]s with ∆t in Algorithms 1

and 2 taken as ∆t = 0.1s, i.e. the position of a new sensor

closer to the moving source was declared every ∆t = 0.1s.

The radius of a circle containing the sensors around θk
loc

was R = 0.15
√

L2
χ +L2

ψ giving a total of m = 61 sensors

out of the N = 400 available ones in usage, or 15.25%.

A snapshot of the source position θs(t) and the active

sensors is depicted in Figure 2. The position of θloc (◦)

along with θs(t) (�) are depicted for different time in-

stances. The largest distance between θs(t) and θℓ
loc was

maxt∈[0,20] |θs(t)− θℓ
loc|R2 = 0.0139. Note that at each time

θs(t) (�) is surrounded by the active sensors (♦) and hence
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Fig. 2. Source position (green square) and sensor θloc (◦) using Algorithm 1
without containment for t = 0,0.4,0.8,1.2,1.6,2.0. The active sensors are
depicted by (♦).
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Fig. 3. Evolution of source trajectory θs(t) and its estimates based on
cluster head using no containment and Algorithms 1 and 2.

one can detect the region where the moving source resides.

The trace of θs(t) and its time estimate (cluster head

sensor) is depicted in Figure 3 for three different containment

cases, where it is seen that the no-containment case provides

the best estimate of the source position. Additionally, the

L2(0,20;L2(Ω)) norms for the plant, observer and state error

and the L2(0,20,R2) of the trajectory error are presented in

Table I.

V. CONCLUSION

The proposed moving source detection scheme utilizing

a sensor/actuator network, examined the possibility of con-

taining the moving source by minimizing its effects on the

state. Two different containment strategies were proposed, a

centralized one whereby the actuator collocated to the cluster

head was used along with a dynamic feedback controller, and

a decentralized scheme in which the actuators collocated to

the active sensors utilized a static output feedback to contain

the source. An extension to the above is the incorporation

of a mobile sensor/actuator network that includes collision

avoidance and peer-to-peer communication limitations.
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