
Switched System Based Approach to Analysis and Synthesis of

Discrete-Time Linear Systems With Time-Varying State Delay

Xin Du and Guang-Hong Yang

Abstract— This paper establishes a framework for stability
analysis and memoryless state-feedback control synthesis of
linear discrete-time systems with time varying state delay. The
underlying idea is converting the considered system into an
equivalent constrained switched system, leading to sufficient
and necessary condition for stability analysis. Based on this
switched system modeling, available information about the time-
varying delay such as known bounds of variation rate can be
incorporated into the analysis in a natural way. Moreover,
sufficient conditions for memoryless state-feedback control
design are obtained in a similar style. The analysis and synthesis
conditions are given in terms of solvability of a set of linear
matrix inequalities (LMIs). Numerical examples are included
for illustration.

I. INTRODUCTION

Systems with time-delay exist in many engineering fields

such as chemical processes, communication systems and

networked control systems. Analysis and Synthesis of

time-delay systems have been received extensive attention

in recent years. (see, e.g., [1]-[18], survey papers [26] [27]

and the references therein).

The fundamental problem in the research area of systems

with state delay is the stability analysis in the presence of

available information about the delay. General characteristics

capturing real situations of delay is that it is time-varying

within known bounds and It’s varying behavior obeys

some known limitations such as bounded variation rate.

Many researchers have been tried their best for deriving

stability conditions and many results have been reported. In

the continuous-time setting, both range-dependent [1] [2]

[3] and range-derivative-dependent [4] [5] [6] [7] [8] [9]

conditions have been obtained. It should be noted that the

latter ones are generally of less conservatism since more

information are taken into account. In the discrete-time

context, besides bounds of variation rate, more types of

the known limitations imposed on the varying behavior

of delay may be exist.A typical example can be found in
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networked control systems(NCSs). For discrete-time NCSs,

the existing literature (such as [20] [21] [22] [23] [24] [25])

usually suppose that if the NCSs experience time delay or

packet dropout, the latest available control inputs will be

used, which means that d(k + 1) = d(k) + 1 (where d(k) is

the network-induced sensor-to-actuator delay), on the other

hand, if the newly generated control inputs arrive at the

actuator on time, we have d(k +1) ≤ d(k). However, to our

best knowledge, only range-dependent conditions [10] [11]

[12] [13] [14] [15] [16] [17] [18] are available under the

discrete-time setting in the existing literatures. It should be

noticed that almost all the above mentioned conditions are

derived by constructing an appropriate Lyapunov function

and adopting some bounding techniques. Therefore, there

are two challenging and interesting tasks remained to be

further investigated for linear discrete-time systems with

time-varying delay. One is to provide a way such that

exact stability analysis of the discrete-time system with

time-varying delay can be achieved since all the existing

stability conditions are sufficient ones. The other is to

establish connections between the stability and the known

limitations about the varying behavior of the delay.

In this paper, we are dedicated to solve the problems

of stability and memoryless state-feedback stabilization

for linear discrete-time systems with time-varying state

delay. Our approach is based on converting the considered

system into an equivalent constrained switched system

(A,M). Where A is a vertex set that consists of a group

of subsystems which are in augmented dimension and

delay free, M is an adjacency matrix that representing the

known information about the varying behaviors such as the

bounds of variation rate of the delay. Thus, the equivalence

enables us to address the considered complicated problems

in a simple manner. Consequently, sufficient and necessary

condition for stability analysis is derived Based on the

constrained switched system and multiple Lyapunov

functions. Moreover, it is shown that the problem of

memoryless state-feedback stabilization is cast to design a

robust static output feedback controller for the equivalent

constrained switched system, and sufficient conditions

for (H∞) controller synthesis are given by using LMI

techniques.

The rest of the paper is organized as follows. In section 2,

the system and problems under consideration are given and

some graph theory preliminaries are presented. Section 3

shows the modeling procedures that converting the studied

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

ThB12.5

978-1-4244-4524-0/09/$25.00 ©2009 AACC 3033



system into a constrained switched system. The stability and

stabilization conditions are given in Section 4 and Section

5 respectively. Several examples are given in Section 6 and

some conclusions are drawn in Section 7.

II. PROBLEM STATEMENTS AND PRELIMINARIES

A. System description

Consider the following discrete-time system with time-

varying state delay

x(k + 1) = Ax(k) + Adx(k − d(k)) + B2u(k) + B1ω(k)

z(k) = C1x(k) + D12u(k)

y(k) = x(k)

x(k) = φ(k) k = −dM ,−dM + 1, ..., 0.
(1)

where x(k) ∈ R
n is the state vector, u(k) ∈ R

m is

the control input. z(k) ∈ R
q is the controlled output.

A,Ad, B2, B1, C1, D12 are system matrices with compatible

dimensions, d(k) is a time-varying state delay in the state.

Assumption 1:

i) It is assumed that the range of time-varying delay d(k) is

bounded and known, i.e.,

dm ≤ d(k) ≤ dM

where dm and dM are constant positive scalars representing

the lower and upper delays, respectively.

ii) There are information about the varying behavior of d(k)
such as the bound of variation rate

dv ≤ |∆d(k)| ≤ dV

available. where dv and dV are constant positive scalars

representing the lower and upper delays, respectively.

Remark 1.

i) The bounded range assumption about the time varying

delay is a natural one, a great deal of delay range-dependent

stability analysis conditions have been reported both in

continuous-time setting and discrete-time setting

ii) For deriving less conservative results, the bound of

variation rate ḋ(t) have been take into consideration in

continuous-time domain [4] -[9]. However, to our best

knowledge, there is no existing result tackling the stability

analysis with the consideration about |∆d(k)| in discrete-

time domain.

iii) Besides the variation rate |∆d(k)|, other types of restric-

tion about the varying behavior of d(k) may be exist. For

example, in the networked control system, it is known that

d(k) = d(k) + 1 during the waiting period and d(k + 1) ≤
d(k) while the newly control input arrived at k + 1 instant

(See [20]-[25]).

B. Problem statements

In this paper, we consider questions of stability analysis and

stabilizing controller synthesis for system (1).

P1): With u(k) and ω(k) identically zero, i.e., consider the

following system:

x(k + 1) = Ax(k) + Adx(k − d(k))

x(k) = φ(k) k = −dM ,−dM + 1, ..., 0.
(2)

does the state of system (2) satisfy limt→∞ x(k) = 0 for

every initial condition φ(0)? If so, we say that system is

asymptotically stable with the time-varying delay d(k).

P2): Does there exist a memoryless state-feedback control

law

u(k) = Kx(k) (3)

such that the resulting closed-loop system:

x(k + 1) = (A + B2K)x(k) + Adx(k − d(k)) + B1ω(k)

z(k) = C1x(k) + D12u(k)

x(k) = φ(k) k = −dM ,−dM + 1, ..., 0.
(4)

is asymptotically stable or simultaneously meets H∞ perfor-

mance bound? i.e.,‖Tωz‖∞ ≤ γ, where Tωz is the closed-

loop transfer function from ω to z.

C. Graph theory preliminaries and useful Lemma

In this section, we briefly present some basic concepts

and notations in graph theory that will be used in this paper.

A graph G consists of a vertex set V = {1, 2, ..., N} and

an edge set E = {(i, j) : i, j ∈ V}, where an edge is

an unordered or ordered pair of distinct vertices of V . If

i, j ∈ V , and (i, j) ∈ E , then we say that i and j are

adjacent or that j is a neighbor of i, and denote this by

writing j ∼ i. A graph is called complete if every pair of

vertices are adjacent. The valence of a vertex v of G is

defined as the number of edges of G which are incident

with v if one of the two vertices of the edge is v. A

path of length r form i to j in a graph is a sequence of

r + 1 distinct vertices starting with i and ending with j

such that consecutive vertices are adjacent. If there is path

between any two vertices of G, the G is connected. The

adjacency matrix M(G) of G is an n × n matrix of

whose ijth entry is 1 if (i, j) is one of G′s edges and 0 if

it is not. Any undirected graph can be represented by its

adjacency matrix M(G), which is a matrix with 0-1 elements.

Lemma 1. (Finsler’ Lemma) Letting that ξ ∈ R
N , P =

PT ∈ R
N×N , and H ∈ R

M×N such that rank(H) = R <

N , then the following statements are equivalent:

1) ξTPξ < 0, for all ξ 6= 0, Hξ = 0;

2)∃X ∈ R
N×M such that P + XH + HTX T < 0.
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III. SWITCHED SYSTEM MODELING

To avoid dealing with the time-varying term d(k), the

augmentation technique will be adopted here. Defining an

augmented signal η(k) as

η(k) =
[

xT (k) xT (k − 1) · · · xT (k − dM )
]T

Then, we can obtain an equivalent switched system model:

η(k + 1) = Aδ(k)η(k) + B2δ(k)u(k) + B1δ(k)ω(k)

z(k) = C1δ(k)η(k) + D12δ(k)u(k)

y(k) = C2δ(k)η(k)

(5)

The mapping δ(k) : R
n × [0,∞) → {1, ..., N} is so-called

switching signal that orchestrating the switching between the
subsystems Ssi : (Ai, B2i, B1i, C1i, D12i, C2i), where

(Ai, B2i, B1i, C1i, D12i, C2i)
∈ {S : (A,B2,B1, C1,D12, C2)}
= {(A1, B21, B11, C11, D121, C21), ...,

(AN , B2N , B1N , C1N , D12N , C2N )}

(6)

and

Ai =

»

Au
i

Al
i

–

Al
i =

ˆ

IndM
0

˜

, for i ∈ {1, ..., N}
Au

i =
ˆ

A 0 · · · 0
˜

+
ˆ

Z0
i Z1

i · · · Z
dM

i

˜

Z
j
i =



Ad if j = dm + i − 1
0 else

B2i =

»

B2

0

–

B1i =

»

B1

0

–

C1i =
ˆ

C1 0
˜

D12i =
ˆ

D12 0
˜

C2i =
ˆ

In×n 0
˜

(7)

It is set that the evolution of δ(k) is synchronized with the

varying delay d(k) by letting δ(k) = d(k) − dm + 1. The

consequence is that the switched system Ss (5) is totally

equivalent with the system Sd (1) since the equality

η(k) =
[

xT (k) xT (k − 1) · · · xT (k − dM )
]T

holds for any k ∈ [0,∞). As the constraint on the transition

of δ(k) is inherited form the constraint of d(k), the adjacency

matrix M of them will be identical. For the extreme case

that there exist no any restriction except the bounded range

of d(k), i.e., dm ≤ d(k) ≤ dM , |∆d(k)| ≤ dM − dm, M is

just the identity matrix 1. While some additional constraints

such as bounded variation rate are imposed on d(k), the

corresponding entries of M will becomes zero. In the sequel,

we will use (S ,M) to describe the considered constrained

switched system Ss (5).

IV. SWITCHED SYSTEM METHOD BASED STABILITY

In this section, we are concerned with the asymptotically

stability of linear discrete-time systems with time-varying

delay Sd (1). Based on the modeling way of last section,

we will only focus on the stability analysis of the equivalent

constrained switched system Ss : (S ,M) (5).

Definition 1. Let Ω be the set of every infinite sequence

in {1,...,N}; each element of Ω shall be called a switching

sequence. Let L be a nonnegative integer and ΩL+1 denote

the set of every sequence with L-paths in {1, ..., N}
L+1

, and

if i = (i0, ..., iL) with i0, ..., iL ∈ 1, ..., N , then i is called

a switching path of length L. Let Ωa be a nonempty subset

of Ω, then Ωa is called admissible set if every switching

sequence in it is generated according M, then we can write

Ωa = {δ(·) : δ(k) → δ(k + 1) in M for all k ≥ 0}

where i → j reads that there exists a directed edge

form node i to node j. Similarly, a nonempty subset

ΩL+1
a of ΩL+1 is said to be an admissible set of L-paths

if, for each (i0, ..., iL) ∈ ΩL+1
a , there exist an integer

K ≥ L and a switching path (iK−L, ..., iK) such that

(iK−L, ..., iL) = (i0, ..., iL) and (ik, ..., ik+L) ∈ ΩL+1
a for

all k ∈ {0, ...,K − L}.

Theorem 1. The constrained switched system Ss : (S ,M)
(5) is asymptotically stable if and only if there exists a

nonnegative integer L and symmetric positive definite ma-

trices Pi ∈ R
n(dM+1)×n(dM+1), i ∈ {1, ..., N}, such that the

following LMIs

(AiL−1
...Ai1Ai0)

T PiL
(AiL−1

...Ai1Ai0) − Pi0 < 0 (8)

hold, where (i0, i1, ..., iL) ∈ ΩL+1
a is an admissible

switching path of length L.

Proof. The sufficiency part of the proof is as follows: suppose

that there exist Pi > 0, i ∈ 1, ..., N such that (8) holds

for all admissible (i1, i2, ..., iL) ∈ ΩL
a . Let us consider the

following Lyapunov function candidate

V (k) = ηT (k)Piη(k), if δ(k) = i, i ∈ {1, ..., N}
(9)

The L-step difference of V (k) is:

V (k + L) − V (k)

= ηT (k + L)Pδ(k+L)η(k + L) − ηT (k)Pδ(k)η(k)

= ηT (k)Ξη(k)

(10)

where

Ξ = Aδ(k+L−1) · · ·Aδ(k))
T

Pδ(k+L)(Aδ(k+L−1) · · ·Aδ(k)) − Pδ(k)

It can be concluded that V (k+L)−V (k) < 0, k ∈ {0,∞},

which means limk→∞ V (k) = 0, i.e., limk→∞ η(k) = 0.

To show necessity, suppose that the constrained switched

system Ss : (S ,M) is asymptotically stable, i.e.,

η(k)k→∞ = 0 for all admissible δ(·). In the sequel it is

assumed that at least one of the sets of LMI conditions in (8)

does not satisfied for any finite L, and let Cu denotes this

condition and iu denotes switching path of length L induced

form Cu. Since M is inreducible, there always exists an

admissible switching sequence δ(·) which is recurrent, such

that the sequence iu ∈ ΩL
a occurs infinitely many times in

δ(·). Then, for any positive function V (k) = ηT (k)Qη(k),
where Q is a any given symmetric positive matrix, which

will never vanish to zero. Along with V (k), η(k) will never

vanish to zero for any η(0) 6= 0. This is contradict with

x(k)k→∞ = 0 as the system is assumed to asymptotically
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stable. Thus, the proof is complete. ¤

Remark 2. Theorem 1 provide a framework for checking

the stability of discrete-time systems with time-varying

delay exactly. It is given in a union of increasing family of

linear matrix inequality conditions which can be effectively

solved via LMI toolbox [30] by applying the following

simple algorithm.

Algorithm 1

1. Set L=0.

2. Solve the feasibility problem (8) for all admissible

iL ∈ ΩL
a .

3. If not feasible and L < Lmax, increment L to L + 1 and

go to step 1, where Lmax is a prescribed constant according

with the requirement of exactness on stability analysis. else

terminate the algorithm.

Remark 3. The conditions given by Theorem 1 is presented

in a semi-definite fashion, i.e., the path length L is not

known a priori. Therefore, the main disadvantage of the

proposed stability analysis technique is that, in the worst case

(M = 1), the complexity of verifying the asymptotically

stability of system (1) increases exponentially with the

path length L. However, this is the price one has to pay

for nonconservatism. In fact, the value of L required for

stability is usually very small, so the technique is expected

to find wide-ranging application-especially. Moreover, the

adjacency matrix may be a sparse one for the cases that

there are constraints such as |∆d(k)| imposed on the varying

behaviors of d(k), which directly leads to reduction of the

number of LMI conditions involved and the corresponding

computational burden. It should be noticed that the size of

matrices Ai will be increased with the upper bound of d(k),
this brings limitation for applying the LMI method provided

here as the limited available computing power nowadays.

V. CONTROLLER SYNTHESIS

The objective of this section is to design a memoryless H∞

state-feedback controller (3) for the time-delay systems Sd

(1). It is easy to convert it as a problem that design a static

output feedback controller

u(k) = Ky(k) (11)

for the equivalent constrained switched system Ss : (S ,M)
(5). The resulting closed-loop system can be described as:

η(k + 1) = Acl
i η(k) + Bcl

i ω(k)

z(k) = Ccl
i η(k) + Dcl

i ω(k)
i ∈ {1, ..., N}

(12)

where














Acl
i = Ai + B2iKC2i

Bcl
i = B1i

Ccl
i = C1i + D12iKC2i

Dcl
i = 0

i ∈ {1, ..., N}

(13)

Theorem 3. If there exist symmetric matrices

Pi ∈ Rn(dM+1)×n(dM+1), and matrices G ∈
Rn(dM+1)×n(dM+1), F ∈ Rn(dM+1)×n(dM+1),

Y ∈ R(H+1)m×n i ∈ 1, ..., N , with the following

structure

G =

[

G11 0

G12 G22

]

Y =
[

Y1 0
]

F =

[

λG11 0

F12 F22

]

(14)
satisfying the following LMIs,
2

6

6

4

Pj − G − GT ∗ ∗ ∗
0 −I ∗ ∗

AiG + B2iY − FT B1i He(AiF + B2iY) − Pi ∗
C1iG + D12iY 0 C1iF + D12Y −γ2I

3

7

7

5

< 0

where (i, j) ∈ Ω2
a

(15)

then the closed-loop system (12) is asymptotically stable

and the memoryless state-feedback controller (3) with

K = Y1G−1
11 renders the H∞-norm of the corresponding

closed-loop system (12) less than γ, i.e.,‖Tzω‖∞ < γ.

Proof: From the structure of G, F, Y (14), K = Y1G−1
11 , and

(13), we have
8

>

>

<

>

>

:

AiG + B2iY = Ai
clG

C1iG + D12iY = Ci
clG

AiF + B2iY = Ai
clF

C1iF + D12iY = Ci
clF

(16)

Substituting (16) with D21i = 0 in (15), it can be equiva-

lently rewritten as:

Pji + XHi + HT
i X

T < 0 (17)

where

Pji :=









Pj 0 0 0
0 I 0 0
0 0 −Pi 0
0 0 0 −γ2I









X :=









GT 0
0 I

FT 0
0 0









Hi :=









−I 0
0 −I

Acl
i Bcl

i

Ccl
i Dcl

i









T (18)

Consider the following dual system of the constrained

switched system (12)

η′(k + 1) = AclT
i η′(k) + CclT

i ω′(k)

z′(k) = BclT
i η′(k) + DclT

i ω′(k)
, i ∈ {1, ..., N}

(19)

It is easy to verify that









−I 0
0 −I

Acl
i Bcl

i

Ccl
i Dcl

i









T 







η′(k + 1)
z′(k)
η′(k)
ω′(k)









= 0 (20)

Applying the Finsler’s Lemma, onecan obtain








η′(k + 1)
z′(k)
η′(k)
ω′(k)









T

Pji









η′(k + 1)
z′(k)
η′(k)
ω′(k)









< 0, (i, j) ∈ Ω2
a

(21)
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From (21), we can find that for any nonzero ω(k) ∈ l2[0, N),
the following inequality

J :=
∞
∑

k=0

(

zT (k)z(k) − γ2ωT (k)ω(k)
)

< 0 (22)

holds with the aid of Lyapunov function V (k) =
η′T (k)Pδ(k)η

′(k), δ(k) ∈ {1, ..., N}. Moreover, form (15),

we can deduce that the matrix G is positive-definite (not

necessarily symmetric) which implicitly implies that the

matrix G11 is invertible. Then KG11 = Y1 admits the

solution of the controller gain K = Y1G−1
11 . Thus, the proof

is complete. ¤

VI. NUMERICAL EXAMPLES

Example 1. Stability analysis with bounded variation rate

on d(k)

Consider the following discrete-time system with a time-
varying state delay

x(k+1) =

»

−0.12 −0.07
0.86 −0.16

–

x(k)+

»

0.4 0.2
−0.2 0.4

–

x(k−d(k))

(23)

Here, d(k) represents the time-varying state delay. Now

assume the lower delay bound of d(k) is dm = 0. We are

interested in the upper delay bound dM below which the

above system is asymptotically stable for all 0 ≤ d(k) ≤
dM under different varying rate |∆d(k)|. Via the stability

results of this paper, we can obtain the following table that

containing the details.

L |∆d(k)| ≤ 1 |∆d(k)| ≤ 2 ... |∆d(k)| ≤ dM

L=1 9 6 ... 5

L=2 9 7 ... 5

TABLE I

UPPER BOUND OF d(k) UNDER DIFFERENT VARIATION RATE

RESTRICTIONS OF EXAMPLE 1

The numerical data of Table 1 shows the impact of different

variation rate on the stability of the discrete-time system

with time varying delay. This is a natural rule which is

never investigated in the existing literature. It is also shows

that increasing the length of path L in Theorem 1, one can

obtain less conservative results.

Besides, it is found that the upper delay bound dM = 1
by using the latest delay-bound dependent LMI method

proposed by (Gao [18]), which is a very conservative result

for this example.

Example 2. Stability analysis with network-induced time-

varying delay

Consider the following system

x(k + 1) =

[

1.08 0.10
−0.06 0.70

]

x(k) +

[

0.64
0.32

]

u(k) (24)

It is assumed that a state-feedback control law is given by

u(k) =
[

−0.3161 −0.4205
]

x(k − d(k))

where 0 ≤ d(k) ≤ 5 is the network-induced time-varying
delay. The mechanism of network-based control is that the
latest available control inputs will be used in the presence of
sensor-to-actuator delay, i.e., d(k + 1) = d(k) + 1. On the
other hand, if the newly generated control inputs arrive at the
actuator on time, we have d(k + 1) ≤ d(k) (see [20]-[25]),
then we can conclude that the adjacency matrix of equivalent
switched system is:

T =

2

6

6

6

4

1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1
1 1 1 1 1

3

7

7

7

5

Using the LMI method of (Gao[18]), the stability of the

closed-loop system cannot be verified. However, it can be

confirmed that the closed-loop system is stable via our ap-

proach. Figure 1 shows the responses of the signals involved

in this system.

0 10 20 30 40 50 60
−5

0

5

10

Time(k)

0 10 20 30 40 50 60
−1

−0.5

0

0.5

1

Time(k)

0 10 20 30 40 50 60

0

2

4

6

Time(k)

u(k)

x
1
(k)

x
2
(k)

d(k)

System States

Control Input

Time−varying Delay

Fig. 1. Evolutions of the signals involved of Example 2

Example 3. Memoryless H∞ state-feedback stabilization

Consider the following discrete-time system:

x(k + 1) =

»

−1.08 0.10
−0.12 0.00

–

x(k) +

»

1
2

–

u(k)

+

»

−0.3 0.2
0.0 0.1

–

x(k − d(k)) +

»

0
1

–

ω(k)

z(k) =
ˆ

1.00 1.00
˜

x(k) + [1] ω(k)

(25)

Where 0 ≤ d(k) ≤ 3. The objective here is design a mem-

oryless H∞ state-feedback controller u(k) = Kx(k) such

that the close-loop system is stable and the H∞-norm of

‖Tzω‖∞ is optimized. By applying the LMI conditions given

in Theorem 3, the following memoryless H∞ state-feedback

controllers can be obtained corresponding with different

known variation rate ∆d(k).
For comparison, the obtained optimal H∞ memoryless state-

feedback controller using the LMI method [10] is given in

Table 3. From the numerical results of Table 2, one can find

that lower bound of rate of variation on d(k) will leads to

3037



Variation rate Controller gain γopt λ

|∆d(k)| ≤ 1 K =
ˆ

0.9643 −0.0766
˜

3.6650 0.23

|∆d(k)| ≤ 2 K =
ˆ

1.1380 −0.0990
˜

6.0519 0.17

|∆d(k)| ≤ 3 K =
ˆ

1.2366 −0.1050
˜

8.1230 0.16

TABLE II

MEMORYLESS H∞ STATE-FEEDBACK CONTROL DESIGN OF VIA OUR

APPROACH FOR EXAMPLE 3

Method Controller gain γopt

Song [10] K =
h

1.6963 −0.1544
i

76.2892

TABLE III

MEMORYLESS H∞ STATE-FEEDBACK CONTROL DESIGN OF VIA SONG

[10] FOR EXAMPLE 3

less H∞-norm bound of the closed-loop system. Comparing

the results of Table 2 and Table 3, one can see the sharpness

of our approach.

VII. CONCLUSION

In this paper, we have developed a framework for sta-

bility analysis of linear discrete-time systems with time-

varying state delay. The underlying idea is to convert the

considered system into a equivalent constrained switched

system. Then, necessary and sufficient condition for stability

is given by a union of increasing family of linear matrix

inequality conditions. Based on the switched system model,

the problem of memoryless state-feedback control design

also discussed. It is shown that it is equivalent to solve a

robust static output feedback one. Sufficient conditions for

controller synthesis are given both for stabilization and H∞

stabilization. Moreover, the proposed method allows us take

the available knowledge such as the bounds of variation rate

into consideration. Several numerical examples have been

provided to illustrate the effectiveness and advantage of the

proposed method.
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