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Abstract— This paper deals with the issues of observer-based
reliable stabilization and H∞ control for a class of continuous-
time switched Lipschitz nonlinear systems in the sense that
actuators suffer a “destabilizing failure”. When the never-faulty
actuators cannot stabilize the corresponding system, the closed-
loop switched systems can still be exponentially stable based
on the average dwell time scheme. Under the condition requir-
ing that activation time ratio between stabilizable subsystems
and unstabilizable ones is not less than a specified constant,
sufficient condition is derived for the switched systems to be
exponentially stabilizable for all admissible actuator failures via
switching and associated observer-based feedback controllers.
The result is also extended to solve the observer-based reliable
H∞ control problem.

I. INTRODUCTION

The last decade has witnessed rapidly increasing inter-

est in switched systems [1-6]. Dwell time approach has

been developed in several references [7-10] to be one of

effective tools of constructing some proper switching law.

In particular, exponential stability of a switched system is

considered in [7] if all subsystems are stable and the dwell

time is set sufficiently large. The concept of dwell time was

extended to average dwell time by Hespanha and Morse

[8] with switching among stable subsystems. Furthermore,

[9,10] generalized the results to the case where stable and

unstable subsystems co-exist.

On the other hand, the popularity of studying reliable

control problem is raised for the growing demands of system

reliability in aerospace and industrial process. When control-

ling a real plant with failures of control components, classical

control methods may not achieve satisfactory performance.

To overcome this problem, reliable control has made great

progress recently. Among the existing studies, [11] presented

the reliable control via a robust pole region assignment

scheme. [12] solved the reliable H∞ control problem for

affine nonlinear systems with actuator and sensor failures via

Hamilton-Jacobi inequality. However, these design methods
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are all based on a basic assumption that the never-faulty actu-

ators must stabilize the given system. These design methods

of existing reliable control do not work, when actuators suffer

a “destabilizing failure”–the never-faulty actuators are not

assumed to be able to stabilize the considered system. For

this case, [13] dealt with exponential stability for a class of

linear systems with faulty actuators using switching control

technique.

The information of state variable is usually unavailable or

not fully available in engineering practice. So the feedback

control and the switching law can not be designed depending

on state variable. Inspired by this fact, this paper focuses

on the observer-based reliable control problems for a class

of switched Lipschitz nonlinear systems with destabilizing

actuator failure by exploiting the average dwell time ap-

proach. Due to the complexity of switched systems, few

results have been devoted to reliable control for switched

systems until now [15-17]. Unlike the previous works on the

reliable control for switched systems, this paper owns three

features. First, only the estimate state x̂ rather than the state

x is available for designing the control feedback. Secondly,

a class of time dependent switching signals is employed

via average dwell time scheme. Thirdly, the differentiable

Lipschitz nonlinearity allows large values of the Lipschitz

constant compared with the classical ones.

Throughout this paper, λ̄(·)(λ(·)) is the largest (smallest)

eigenvalue of a symmetric matrix, the set Co(a, b)= {λa+
(1−λ)b, 0≤λ≤1} is the convex hull of a, b, es(i)s≥1 are

vectors of the canonical basis of ℜs.

II. PRELIMINARIES

In this paper, we consider the class of switched nonlinear

systems represented by the following state-space description:

ẋ(t)= Aσx(t) + Bσuσ + Dσfσ(x(t), y(t), uσ),
y(t)= gσ(x(t), uσ),

(1)

where σ :ℜ+ 7→M = {1, 2, . . . ,m} is the right continuous

piecewise constant switching signal to be designed, x∈ℜn is

the state vector, ui∈ℜmi and y∈ℜpi denote the control input

and measured output, Ai, Bi and Di are constant matrices

of appropriate dimensions, the functions fi and gi satisfy:

Assumption 1: The nonlinear functions fi : ℜn× ℜpi ×
ℜmi 7→ℜqi and gi : ℜn×ℜmi 7→ℜpi are differentiable with

respect to x, and satisfy f i

jk
≤

∂fij

∂xk
(x, y, ui) ≤ f̄ i

jk, gi
jk

≤
∂gij

∂xk
(x, ui)≤ ḡi

jk,where gi
jk

=infZ∈ℜn×ℜmi

(∂gij

∂xk
(Z)

)

, ḡi
jk =

supZ∈ℜn×ℜmi

(∂gij

∂xk
(Z)

)

, f i

jk
= infZ∈ℜn×ℜpi×ℜmi

(∂fij

∂xk
(Z)

)

,

f̄ i
jk = supZ∈ℜn×ℜpi×ℜmi

(∂fij

∂xk
(Z)

)

, fij , gij and xj denote
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the j-th components of fi, gi and x respectively. Moreover,

fi(0, y, ui) ≡ 0.

Actuator failures are assumed to occur within a prescribed

subset of control input channel. We classify actuators of

the i-th subsystem of the system (1) into two groups. One

is a set of actuators susceptible to failures, denoted by

Θi ⊆ {1, 2, · · · ,mi}, i ∈ M . The actuators in this set may

occasionally fail. The other is a set of actuators robust to

failures, denoted by Θ̄i ⊆ {1, 2, · · · ,mi}−Θi, i ∈ M .

According to the classification of actuators, we have the

decomposition Bi = BΘ̄i
+BΘi

, i ∈ M, where BΘ̄i
and BΘi

are formed from Bi by zeroing out columns corresponding

to Θi and Θ̄i, respectively.

Define the set of actual actuator failures of the system

(1) as wi, obviously wi ⊆ Θi, and the outputs of faulty

actuators are assumed to be zero. For wi ⊆ Θi, introduce the

decomposition Bi = Bwi
+Bw̄i

, i ∈ M, where Bwi
and Bw̄i

are formed from Bi by zeroing out columns corresponding

to w̄i and wi, respectively. Thus the following inequalities

are obvious and will be used in the sequel

BΘ̄i
BT

Θ̄i
≤ Bw̄i

BT
w̄i

, Bwi
BT

wi
≤ BΘi

BT
Θi

. (2)

Consider the following standard state observers

˙̂x(t)=Aσx̂(t)+Bσuσ+Dσfσ(x̂(t), y(t), uσ)
−Lσ(gσ (x̂, uσ)−gσ (x, uσ)) ,

(3)

where x̂(t) denotes the estimate of the state x(t) and observer

gain matrices Li ∈ ℜn×pi will be determined later. The

estimation error e(t) = x̂(t)−x(t) satisfies

ė(t) = Aσe(t) + Dσ (fσ(x̂, y, uσ) − fσ(x, y, uσ))
−Lσ (gσ(x̂, uσ) − gσ(x, uσ)) .

(4)

Definition 1: ([11]) For any switching signal σ(t) and any

t > τ ≥ 0, let Nσ(τ, t) denote the number of switchings of

σ(t) on the interval (τ, t). If

Nσ(τ, t) ≤ N0 +
t − τ

τa

(5)

holds for N0 ≥ 0, τa > 0. The constant τa is called average

dwell time and N0 is the chatter bound. As commonly used

in the literature, we choose N0 = 0.

The reliable control problem can be easily solved if all

subsystems are stabilizable. Therefore, we consider the case

that stabilizable and unstabilizable subsystems coexist. Let

Mp denote a proper nonempty subset of M , M̃p denote a

complement of Mp with respect to M . If i∈Mp, then i-th

subsystem is stabilizable and satisfies the reliable control,

otherwise, if i∈M̃p, then i-th subsystem is unstabilizable.

For any switching signal and any 0 ≤ τ < t, we let

T+(τ, t) (resp., T−(τ, t)) denote the total activation time

of unstabilizable subsystems (resp., stabilizable subsystems)

during the interval [τ, t). Denote λ+ = maxi∈M̃p
{−λi},

λ− = mini∈Mp
{λi}. Then, for any given λ ∈ (0, λ−), we

choose an arbitrary λ∗ ∈ (λ, λ−). Motivated by the idea in

[9], we propose the following switching law:

(S) Determine the switching signal σ(t) such that

inf
t≥t0

T−(t0, t)

T+(t0, t)
≥

λ+ + λ∗

λ− − λ∗
(6)

holds for any given initial time t0.

III. RELIABLE EXPONENTIAL STABILIZATION

Define sets H i
qi,n

=
{

vi =(vi
11 . . . vi

1n . . . vi
qin

) : f i

jk
≤vi

jk≤

f̄ i
jk, j =1, . . . , qi, k=1, . . . , n

}

,∀i∈M. Each set H i
qi,n

is a

bounded convex domain whose vertices set is V i
qi,n

=
{

αi =

(αi
11 . . . αi

1n . . . αi
qin

) : αi
jk ∈{f i

jk
, f̄ i

jk}
}

. Define the affine

matrix functions

Ai(v
i)=Ai+Di

∑qi,n

j,k=1
vi

jkeqi
(j)eT

n(k), vi∈H
i

qi,n
. (7)

By the differential mean value theorem [14], there exist

zj(t), z̄j(t)∈Co(x(t), x̂(t)) such that

fi(x̂, y,ui)−fi(x, y,ui)

=
(

∑qi,n

j,k=1
eqi

(j)eT
n(k)

∂fij

∂xk

(zj , y,ui)
)

e, (8)

gi(x̂, ui)−gi(x, ui)=
(

∑pi,n

j,k=1
epi

(j)eT
n(k)

∂gij

∂xk

(z̄j , ui)
)

e. (9)

With (7), (8) and hi(t) =
(

hi
11(t) . . . hi

1n(t) . . . hi
qin

(t)
)

,

hi
jk(t)=

∂fij

∂xk
(zj ,y,ui), (4) can be rewritten as

ė(t)=(Aσ(hσ(t))−LσGσ(ρσ(t))) e(t), (10)

where Gi(·) are given by Gi(ρ
i(t))=

∑pi,n
j,k=1ρ

i
jkepi

(j)eT
n(k),

with ρi(t) = (ρi
11(t) . . . ρi

1n(t) . . . ρi
pin

(t)), ρi
jk(t) =

∂gij

∂xk
(z̄j ,ui). From Assumption 1, ρi(·) remains in a bounded

domain F i
pi,n

of which vertices set is W i
pi,n

=
{

βi =
(βi

11 . . . βi
1n . . . βi

pin
) : βi

jk ∈ {gi
jk

, ḡi
jk}

}

. It follows from

fi(0, y, ui) = 0 and (8) that there exist z̃j(t) ∈ Co(0, x̂)
(without loss of generality, suppose that z̃j(t)=zj(t)), such

that Difi(x̂, y, ui) = (Ai(h
i(t)) − Ai)x̂. Then, the closed-

loop system composed of (3), (10) and uσ = Kσx̂(t) is:

˙̃x(t) = Ãσx̃(t), (11)

where

Ãi=

[

Ai(h
i(t))+BiKi −LiGi(ρ

i(t))
0 Ai(h

i(t))−LiGi(ρ
i(t))

]

, x̃(t)=

[

x̂(t)
e(t)

]

.

The observer-based reliable stabilization problem is to

construct switching signals associated with observer-based

output feedback controllers uσ = Kσx̂ under which system

(1) is exponentially stabilizable for actuator failures corre-

sponding to any wi ⊆Θi, i.e., there exist positive constants

c and λ such that ‖x̃(t)‖≤c‖x̃(t0)‖e
−λ(t−t0),∀t>t0 for all

trajectories of the closed-loop system (11).

The following result is used to develop the main result.

Lemma 1: Given positive constants λi for i ∈ Mp and

negative constants λi for i∈M̃p, if

(a) There exist matrices Pi >0 such that

Block-diag
{

Ψi(α
i
1),Ψi(α

i
2), . . . ,Ψi(α

i
2qin)

}

<0 (12)

hold for ∀ i=M, j =1, . . . , 2qin, αi
j ∈V i

qi,n
, where

Ψi(α
i
j)= A T

i (αi
j)Pi+PiAi(α

i
j)−2PiBΘ̄i

BT
Θ̄i
Pi

+PiLiL
T
i Pi+2λiPi.
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(b) There exists a matrix S >0 and matrices Ri such that

Block-diag
{

Γi(α
i
1, β

i
1), . . . ,Γi(α

i
2qin , βi

1),Γi(α
i
1, β

i
2),

. . . ,Γi(α
i
2qin , βi

2pin)
}

<0 (13)

hold for ∀ i = M, j = 1, . . . , 2qin, k = 1, . . . , 2pin, αi
j ∈

V i
qi,n

, βi
k∈W i

pi,n
, where

Γi(α
i
j , β

i
k)=

[

Ξi(α
i
j , β

i
k) G T

i (βi
k)

Gi(β
i
k) −I

]

,

Ξi(α
i
j , β

i
k)= A T

i (αi
j)S−G T

i (βi
k)Ri+SAi(α

i
j)

−RT
i Gi(β

i
k)+2λiS.

Then, there exist feedback controllers ui =Kix̂ such that

Vi(t) ≤ e−2λi(t−t0)Vi(t0) (14)

hold along the trajectory of system (11) for actuator failures

corresponding to any wi ⊆ Θi, where the controller and

observer gain matrices are Ki =−BT
i Pi, Li =S−1RT

i , i∈M .

Proof: Choose a piecewise Lyapunov function candi-

date for closed-loop system (11) of form

V (t) = Vσ(t)(x̃) = x̃TP̃σ(t)x̃ = x̃T

[

Pσ(t) 0
0 S

]

x̃, (15)

where Pi(i ∈ M), S are positive definite matrices to be

determined later. In view of the zero outputs of the faulty

actuators and observer-based controllers ui = Kix̂, one has

BiKi =−Bw̄i
BT

w̄i
Pi. It follows from (2) that the derivative

of each Vi in (15) along the trajectory of the corresponding

subsystem satisfies

V̇i+2λiVi

≤ x̂T
(

A
T
i (hi)Pi+PiAi(h

i)−2PiBΘ̄i
BT

Θ̄i
Pi

+PiLiL
T
i Pi+2λiPi

)

x̂+eT
(

A
T
i (hi)S−G

T
i (ρi)Ri

+SAi(h
i)−RT

i Gi(ρ
i)+G

T
i (ρi)Gi(ρ

i)+2λiS
)

e. (16)

On the other hand, denote Ψi(h
i)=A T

i (hi)Pi+PiAi(h
i)−

2PiBΘ̄i
BT

Θ̄i
Pi+ PiLiL

T
i Pi+2λiPi, which are affine in hi(t).

(12) implies that Ψi(α
i) < 0 for all αi ∈V i

qi,n
. Using the

convexity principle (see [18] for more details), we deduce

that Ψi(h
i(t))<0 for all hi(t)∈H i

qi,n
, which means that

A
T
i (hi(t))Pi+PiAi(h

i(t))−2PiBΘ̄i
BT

Θ̄i
Pi

+PiLiL
T
i Pi+2λiPi <0. (17)

Similarly, condition (b) implies

A
T
i (hi(t))S−G

T
i (ρi(t))Ri+SAi(h

i(t))−RT
i Gi(ρ

i(t))

+G
T
i (ρi(t))Gi(ρ

i(t))+2λiS <0 (18)

holds for all hi(t)∈H i
qi,n

, ρi(t)∈F i
pi,n

. Substituting (17)

and (18) into (16), we have

V̇i + 2λiVi < 0. (19)

The differential inequality theory and (19) gives (14).

Remark 1: It follows from fi(0, y, ui) ≡ 0 and (7)

that there exist z̃j ∈ Co(0, x̂) such that Difi(x̂, y, ui) =
(

Ai(h̃
i(t))−Ai

)

x̂(t), where, similarly to hi(t), h̃i(t) can

be defined as h̃i(t)=(h̃i
11(t) . . . h̃i

1n(t) . . . h̃i
qin

(t)), h̃i
jk(t)=

∂fij

∂xk
(z̃j , y, ui). A common convex set H i

qi,n
for both h̃i(t)

and hi(t) can be easily found. The conditions of Lemma 1

need only the values of vertices in sets V i
qi,n

. Therefore, we

can suppose that z̃j(t) = zj(t) without loss of generality as

foregoing statement.

Next, we present solvability condition and a design method

for the observer-based reliable stabilization of system (1).

Theorem 1: For given constants λi positive for i∈Mp and

negative for i∈M̃p, suppose that there exist positive definite

matrices Pi and S, matrices Ri such that (12) and (13) hold,

then for actuator failures corresponding to any wi⊆Θi, the

observer-based reliable stabilization of system (1) is solved

under the observer-based output feedback controllers uσ =
Kσx̂ for any switching signal σ(t) with average dwell time

(5) and switching condition (S) satisfying

τa ≥ τ∗
a =

lnµ

2(λ∗ − λ)
, (20)

where the controller and observer gain matrices are Ki =
−BT

i Pi and Li =S−1RT
i . Moreover,

‖x̃(t)‖ ≤

√

λ2

λ1
e−λ(t−t0)‖x̃(t0)‖, ∀t > t0, (21)

where µ ≥ 1 satisfies

Pi ≤ µPj , ∀i, j ∈ M, (22)

λ1=min{min
i∈M

λ(Pi),λ(S)}, λ2=max{max
i∈M

λ̄(Pi),λ̄(S)}. (23)

Proof: According to (22) and the definition of piecewise

Lyapunov function candidate in (15), we can easily obtain

Vi ≤ µVj , ∀i, j ∈ M, (24)

λ1‖x̃(t)‖2 ≤ V (t), Vσ(t0)(t0) ≤ λ2‖x̃(t0)‖
2. (25)

For any given t> t0, let 0= t0 <t1 < · · ·<tk = tNσ(t0,t) be

the switching points of σ(t) over the interval (t0, t). Then,

from Lemma 1, we know that for any t∈ [tk, tk+1) (0≤k≤
Nσ(t0, t)), the piecewise Lyapunov function candidate (15)

satisfies

V (t) = Vσ(t)(t)≤
{

e−2λ−(t−tk)Vσ(tk)(tk), i ∈ Mp,

e2λ+(t−tk)Vσ(tk)(tk), i ∈ M̃p.

Since Vσ(tk)(tk) ≤ µVσ(t−
k

)(t
−
k ) is true from (24) at the

switching point tk, where t−k = limt→tk
t, we obtain by

induction that

V (t)≤e2λ+T+(tk,t)−2λ−T−(tk,t)Vσ(tk)(tk)

≤e2λ+T+(tk,t)−2λ−T−(tk,t)µVσ(t−
k

)(t
−
k )

≤ e2λ+T+(tk−1,t)−2λ−T−(tk−1,t)µVσ(tk−1)(tk−1)

≤· · ·≤e2λ+T+(t0,t)−2λ−T−(t0,t)µNσ(t0,t)Vσ(t0)(t0)

=e2λ+T+(t0,t)−2λ−T−(t0,t)+Nσ(t0,t) ln µVσ(t0)(t0).(26)

Combining (25) and (26) leads to

‖x̃(t)‖≤

√

λ2

λ1
eλ+T+(t0,t)−λ−T−(t0,t)+Nσ(t0,t)ln µ

2 ‖x̃(t0)‖.

(27)
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Therefore, when µ = 1, which is a trivial case,

‖x̃(t)‖≤

√

λ2

λ1
e−λ∗(t−t0)‖x̃(t0)‖≤

√

λ2

λ1
e−λ(t−t0)‖x̃(t0)‖,

which means the switched system is globally exponentially

stabilizable with actuator failures under switching law (S)

without considering the average dwell time.

Next, we consider the nontrivial case of µ > 1. It follows

from (20) with average dwell time (5) and the switching

condition (S) that

−λ∗(t − t0) +
lnµ

2
Nσ(t0, t) ≤ −λ(t − t0)

for any t ≥ t0. Thus (27) implies (21).

Remark 2: When µ = 1, we have τ∗
a = 0, which implies

that switching signals can be arbitrary and a common Lya-

punov function is formed. In this case, the observer-based

reliable stabilization problem of system (1) is solvable under

arbitrary switching.

IV. EXTENSION TO RELIABLE H∞ CONTROL

Consider the switched systems described by the equations

ẋ(t)=Aσx(t)+Bσuσ+Dσfσ(x(t), y(t), uσ)+W1σω(t),
y(t)=gσ(x(t), uσ)+W2σω(t),

z(t)=

[

Eσx(t)
uσ

]

,

(28)

where z ∈ ℜri are the controlled output, ω(t) ∈ ℜhi which

belongs to L2[0,∞) denotes the disturbance input, W1i, W2i

and Ei are constant matrices of appropriate dimensions. The

estimation error e(t)= x̂(t)−x(t) satisfies

ė(t)=Aσe(t)+Dσ(fσ(x̂, y, uσ)−fσ(x, y, uσ))

−Lσ(gσ(x̂,uσ)−gσ(x,uσ))+(LσW2σ−W1σ)ω(t).(29)

Then combining (3), (29) and uσ =Kσx̂(t) gives the closed-

loop system

˙̃x(t)=Ãσx̃(t)+B̃σω(t),

z(t)= C̃σx̃(t),
(30)

where

Ãi =

[

Ai(h
i(t))+BiKi −LiGi(ρ

i(t))
0 Ai(h

i(t))−LiGi(ρ
i(t))

]

,

B̃i =

[

LiW2i

LiW2i−W1i

]

, C̃i =

[

Ei −Ei

Ki 0

]

.

Now, the observer-based reliable H∞ control problem

for the switched system (28) is stated as follows: Given a

constant γ > 0, for actuator failures corresponding to any

wi ⊆ Θi, find observer-based output feedback controllers

ui = Kix̂ for all subsystems associated with a class of

switching signals such that

(i) System (30) is exponentially stable when ω(t) = 0.

(ii) System (30) has finite L2-gain γ from the disturbance

input ω(t) to the controlled output z(t), i.e.,
∫ T

t0
zT(t)z(t) dt ≤

γ2
∫ T

t0
ωT(t)ω(t) dt+υ(x(t0)) holds for all T > 0, where x(t0)

is the initial state, t0 = 0 is the initial time, υ(·) is some real-

valued function.

The following results are used to develop the main result.

Lemma 2: Given positive constant γ, positive constants λi

for i ∈ Mp and negative constants λi for i ∈ M̃p, if

(a) There exist matrices Pi >0 such that

Block-diag
{

Ψi(α
i
1),Ψi(α

i
2), . . . ,Ψi(α

i
2qin)

}

<0 (31)

hold for ∀ i=M, j =1, . . . , 2qin, αi
j ∈V i

qi,n
, where

Ψi(α
i
j)=A T

i (αi
j)Pi+PiAi(α

i
j)−PiBΘ̄i

BT
Θ̄i
Pi+PiLiL

T
i Pi

+2γ−2PiLiW2iW
T
2iL

T
i Pi+2ET

i Ei+2λiPi.

(b) There exists a matrix S >0 and matrices Ri such that

Block-diag
{

Γi(α
i
1, β

i
1), . . . ,Γi(α

i
2qin , βi

1),Γi(α
i
1, β

i
2),

. . . ,Γi(α
i
2qin , βi

2pin)
}

<0, (32)

hold for ∀ i = M, j = 1, . . . , 2qin, k = 1, . . . , 2pin, αi
j ∈

V i
qi,n

, βi
k∈W i

pi,n
, where

Γi(α
i
j , β

i
k)=





Ξi(α
i
j , β

i
k) G T

i (βi
k) RT

i W2i−SW1i

Gi(β
i
k) −I 0

WT
2iRi−WT

1iS 0 − 1
2γ2I





Ξi(α
i
j , β

i
k)=A T

i (αi
j)S−G T

i (β
i
k)Ri+SAi(α

i
j)−RT

i Gi(β
i
k)

+2ET
i Ei+2λiS.

Then, there exist feedback controllers ui =Kix̂ such that

Vi(t) ≤ e−2λi(t−t0)Vi(t0)−

∫ t

t0

e−2λi(t−τ)Γ(τ) dτ (33)

hold along the trajectory of system (30) for actuator failures

corresponding to any wi ⊆Θi, where Γ(τ) = zT (τ)z(τ)−
γ2ωT (τ)ω(τ), the controller and observer gain matrices are

Ki =−BT
i Pi and Li = S−1RT

i , i ∈ M .

Proof: The derivative of Vi = x̃TP̃ix̃ in (15) along the

trajectory of the corresponding subsystem of (30) satisfies

V̇i+zT z−γ2ωT ω

≤ x̂T
(

A
T
i (hi)Pi+PiAi(h

i)−PiBΘ̄i
BT

Θ̄i
Pi+PiLiL

T
i Pi

+2γ−2PiLiW2iW
T
2iL

T
i Pi+2ET

i Ei+2λiPi

)

x̂

+eT
(

A
T
i (hi)S−G

T
i (ρi)Ri+SAi(h

i)−RT
i Gi(ρ

i)

+2γ−2(RT
i W2i−SW1i)(W

T
2iRi−WT

1iS)

+G
T
i (ρi)Gi(ρ

i)+2ET
i Ei+2λiS

)

e. (34)

From a similar proof in Lemma 1, (31) and (32) implies that

V̇i+2λiVi+zT z−γ2ωT ω < 0. (35)

The differential inequality theory and (35) gives (33).

Sufficient condition guaranteeing the solvability of the

observer-based reliable H∞ control problem of (28) is pro-

posed via Lemma 2 in the following theorem.

Theorem 2: For given positive constant γ, positive con-

stants λi for i ∈ Mp and negative constants λi for i ∈ M̃p,

suppose that there exist positive definite matrices Pi and S,

matrices Ri such that (31) and (32) hold, then for actuator

failures corresponding to any wi ⊆ Θi, the observer-based

reliable H∞ control problem of system (28) is solved under

the observer-based output feedback controllers uσ =Kσx̂ for

any switching signal σ(t) with average dwell time (5) and

switching condition (S) satisfying (20), where µ ≥ 1 satisfies

1075



(22) and (23), the controller and observer gain matrices are

Ki =−BT
i Pi and Li =S−1RT

i , i∈M .

Proof: When ω(t) = 0, (12) and (13) imply (31)

and (32) and thus exponential stabilizability follows from

Theorem 1.

Next, we show that the closed-loop system has finite L2-

gain. It can be easily seen from Lemma 2 that for any

t ∈ [tk, tk+1) (0 ≤ k ≤ Nσ(t0, t)), the piecewise Lyapunov

function candidate (15) satisfies

V (t)=Vσ(t)(t)

≤
{ e−2λ−(t−tk)Vσ(tk)(tk)−

∫ t

tk
e−2λ−(t−τ)Γ(τ) dτ, i∈Mp,

e2λ+(t−tk)Vσ(tk)(tk)−
∫ t

tk
e2λ+(t−τ)Γ(τ) dτ, i∈M̃p.

Since Vσ(tk)(tk) ≤ µVσ(t−
k

)(t
−
k ) is true from (24) at the

switching point tk, we obtain by induction that

V (t)≤ e2λ+T+(tk,t)−2λ−T−(tk,t)Vσ(tk)(tk)

−

∫ t

tk

e2λ+T+(τ,t)−2λ−T−(τ,t)Γ(τ) dτ

≤ e2λ+T+(tk,t)−2λ−T−(tk,t)µVσ(t−
k

)(t
−
k )

−

∫ t

tk

e2λ+T+(τ,t)−2λ−T−(τ,t)Γ(τ) dτ

≤ e2λ+T+(tk−1,t)−2λ−T−(tk−1,t)µVσ(tk−1)(tk−1)

−e2λ+T+(tk,t)−2λ−T−(tk,t)µ

·

∫ tk

tk−1

e2λ+T+(τ,t)−2λ−T−(τ,t)Γ(τ) dτ

−

∫ t

tk

e2λ+T+(τ,t)−2λ−T−(τ,t)Γ(τ) dτ

≤· · ·≤e2λ+T+(t0,t)−2λ−T−(t0,t)µNσ(t0,t)Vσ(t0)(t0)

−

∫ t

t0

µNσ(τ,t)e2λ+T+(τ,t)−2λ−T−(τ,t)Γ(τ) dτ

= e2λ+T+(t0,t)−2λ−T−(t0,t)+Nσ(t0,t) ln µVσ(t0)(t0)

−

∫ t

t0

e2λ+T+(τ,t)−2λ−T−(τ,t)+Nσ(τ,t) ln µΓ(τ) dτ.(36)

For the trivial case of µ = 1, (36) gives that V (t) ≤
e−2λ∗(t−t0)Vσ(t0)(t0)−

∫ t

t0
e−2λ∗(t−τ)Γ(τ) dτ, which implies

∫ t

t0

e−2λ∗(t−τ)zT(τ)z(τ) dτ ≤e−2λ∗(t−t0)Vσ(t0)(t0)

+γ2

∫ t

t0

e−2λ∗(t−τ)ωT(τ)ω(τ) dτ.

Integrating both sides of this inequality from t = 0 to ∞
results in

∫ ∞

t0
zT(τ)z(τ) dτ≤γ2

∫ ∞

t0
ωT(τ)ω(τ) dτ +Vσ(t0)(t0)

for ∀ω(t) ∈ L2[0,∞), which means that the closed-loop

system (30) has finite L2-gain under switching law (S)

without considering the average dwell time.

For the case µ>1, combining the average dwell time (5) and

switching condition (S) satisfying (20), applying (36) leads

to V (t) ≤ e−2λ(t−t0)Vσ(t0)(t0)−
∫ t

t0
e−2λ(t−τ)Γ(τ) dτ , which

implies

∫ t

t0

e−2λ(t−τ)zT(τ)z(τ) dτ ≤e−2λ(t−t0)Vσ(t0)(t0)

+γ2

∫ t

t0

e−2λ(t−τ)ωT(τ)ω(τ) dτ.

Integrating both sides of this inequality from t = 0 to ∞
yields that system (30) has finite L2-gain under average dwell

time (5) and switching condition (S) satisfying (20).

V. EXAMPLE

Consider the switched system (28) with M ={1, 2} and

A1 =





−1 −2 0
0 1 −1
−1 1 −0.9



, A2 =





−2 0 −1
1 −1 0
1 −1 −0.8



,

B1 =





−0.8 −2
1.3 1
1.5 1



, B2 =





−2 1
1 −1
−1 2



,Θ1={2},Θ2={1},

BΘ̄1
=





−0.8 0
1.3 0
1.5 0



, BΘ̄2
=





0 1
0 −1
0 2



, D1 =





1 0
1 1
2 1



,

D2 =





−0.4
−0.3
−0.4



,W11 =





−0.2
−0.2
−0.3



,W12 =





−0.4
0.2
−0.2



,W21 =

[

1
1

]

,

W22 =
[

1 1.8
]T

, E1 =
[

1 1 −1
]

, E2 =
[

−0.2 1 −1
]

,

f1 =

[

0.4sinx1

0.2sinx3

]

, f2 = 0.6sinx2,

g1 =

[

x1− 0.5e−tx2+x3

−x1+x2+x3

]

, g2 =

[

x1+x3

−x2+x3

]

.

Then we have the sets of vertices V 1
2,3 = {α1

1, α
1
2, α

1
3,

α1
4},V

2
1,3={α2

1, α
2
2},W

1
2,3={β1

1 , β1
2},W

2
2,3={β2

1}, where

α1
1 =

[

0.4 0 0 0 0 0.2
]

, α1
2 =

[

0.4 0 0 0 0 −0.2
]

,

α1
3 =

[

−0.4 0 0 0 0 0.2
]

, α1
4 =

[

−0.4 0 0 0 0 −0.2
]

,

α2
1 =

[

0 0.6 0
]

, α2
2 =

[

0 −0.6 0
]

,

β1
1 =

[

1 −0.5 1 −1 1 1
]

, β1
2 =

[

1 0 1 −1 1 1
]

,

β2
1 =

[

1 0 1 0 −1 1
]

.

Take λ1 = λ− = −1.4, λ2 = λ+ = 0.1 and the disturbance

attenuation level is given by γ = 1. Solving (31) and (32),

we get the following positive definite matrices

P1 =





0.5778 −0.3386 0.1550
−0.3386 0.9049 0.0660
0.1550 0.0660 0.5014



,

P2 =





0.6845 0.1515 −0.0112
0.1515 0.9529 0.4324
−0.0112 0.4324 0.6802



,

S =





9.6739 −3.2100 3.0320
−3.2100 34.6600 −15.2359
3.0320 −15.2359 17.1998



.
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Fig. 1. The state response of the system (28) and system (29).
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Fig. 2. The switching signal.

Then, we can obtain that µ = supi,j∈M
λ̄(Pi)

λ(Pj)
= 5.0998.

Choosing λ = 0.1, λ∗ = 0.8,

T−(0, t)

T+(0, t)
≥ 1.5, τ > τ∗

a ≥ 1.1637

hold under the average dwell time scheme with (6) and (20).

The observer-based reliable H∞ control problem of system

(28) is solved under this switching law, where gain matrices

K1 =

[

0.6700 −1.5463 −0.7139
1.3393 −1.6482 −0.2574

]

,

K2 =

[

1.2063 −0.2176 0.2254
−0.5106 −0.0633 −0.9168

]

,

L1 =

[

−0.1364 −0.5063 −1.2737
−0.0495 0.3205 0.9840

]T

,

L2 =

[

0.1059 0.6255 0.2088
−0.2816 −0.2367 −0.2280

]T

are given by applying the conditions of Theorem 2. Fig.1

shows the state and estimation error trajectories of the closed-

loop system with the initial state x(0) =
[

4 −1 3
]T

, x̂(0) =
[

1 1 2
]T

. The corresponding switching law is given by Fig.2.

VI. CONCLUSION

The observer-based reliable stabilization control problem

has been solved for switched Lipschitz nonlinear systems

consisting of stabilizable and unstabilizable subsystems with

actuators failure. Attention is particularly concentrated on

actuators suffering “destabilizing failures”. In terms of aver-

age dwell time approach, we have design hybrid observer-

based output feedback controllers and a class of switching

signals under which the switched system is exponentially

stabilizable for all admissible actuator failures. Moreover, as

an extension, sufficient condition has been also presented to

solve the observer-based reliable H∞ control problem for

switched Lipschitz nonlinear systems.
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