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Abstract— In this paper, adaptive control is studied for a class
of discrete-time nonlinear systems in strict-feedback form. The
systems are with unknown control gains and are proceeded by
hysteresis. Prandtl-Ishlinskii (PI) model is used to describe the
hysteresis. The control design is based on the predicted future
states and discrete Nussbaum gain is employed in the parameter
update law to deal with the unknown control directions. All the
closed-loop signals are guaranteed to be bounded and the output
tracking error is made to be within a neighborhood around
zero ultimately. The effectiveness of the proposed control law
is demonstrated in the simulation.

I. INTRODUCTION

Recently, adaptive control of discrete-time nonlinear sys-

tems in the lower triangular form have attracted much

research interest. In [1], backstepping in discrete-time was

developed for a class of parametric-strict-feedback systems

based on the proposed coordinate transformation. This result

was further explored in [2] using parameter projection for

robustness. A novel parameter estimation for parameter-

strict-feedback systems was proposed in [3], in which the

estimation law guaranteed the convergence of estimates to

the real values in finite steps when the system was in the

absence of any disturbance or uncertainties. However, it has

been pointed out in [4] that these results on parameter-strict-

feedback systems are not directly applicable to more general

strict-feedback systems with unknown control gains. When

the signs of control gains are unknown, the adaptive control

of the strict-feedback systems becomes difficult since the

direction along which the control operates cannot be deter-

mined. Combining future state/output prediction method with

discrete Nussbaum gain to deal with unknown control direc-

tion, adaptive control has been designed for strict-feedback

systems with unknown control gains [4], [5]. It is worth to

mention that, lower triangular systems with unknown system

functions have also been intensively studied using adaptive

neural network control in [6], [7], [8], [9], where prediction

function based system transformation have been utilized to

avoid noncausal problem in control design. Using neural

network approximation approach, adaptive single-input and

single-output (SISO) parameter-strict-feedback systems with

unknown system functions was studied in [6], where the

system transformation was carried out before applying back-

This work was partially supported by A*STAR SERC Singapore under
Grant No. 052 101 0097.

The authors are with the Social Robotics Lab, Interactive Digi-
tal Media Institute and the Department of Electrical and Computer
Engineering, National University of Singapore, Singapore 117576. (E-
mail: samge@nus.edu.sg, cgyang82@gmail.com, dslwm@yahoo.com.cn,
eleleeth@nus.edu.sg).

stepping design. This method was further developed in [7],

[8] for multi-input and multi-output (MIMO) systems.

On the other hand, control design for system with hystere-

sis input has received much attention in the adaptive control

literature, because hysteresis phenomenon occurs in a wide

range of physical systems and devices. But it is not a easy

task to control systems with input of hysteresis nonlinearities

[10], [11]. The existence of hysteresis in input can result in

undesirable inaccuracies or oscillations, which damages the

closed-loop control system’s performance and can even lead

to instability [10]. To control systems with hysteresis, an

inverse operator was constructed to eliminate the effects of

the hysteresis in [10]. In addition, various models have been

proposed to describe the hysteresis, such as Preisach model

[12], Prandtl-Ishlinskii (PI) model [13], and Krasnosel’skii-

Pokrovskii model [14]. In recent years, PI model has been

extensively used to study in the adaptive control literature

[11], [13], [15], [16], in which the control directions are

assumed to be known. One recent attempt to control system

in continuous-time with unknown control directions using PI

model has been made in [17]. However, due to some inherent

difficulties in discrete-time models many controls designed

for continuous-time systems may be not suitable for discrete-

time systems, and in most cases, adaptive control design for

discrete-time systems is much more difficult.

In this paper, we are going to study adaptive control of

a class of discrete-time parameter-strict-feedback nonlinear

systems with unknown control directions and proceeded by

hysteresis. PI model is used to described hysteresis and

discrete Nussbaum gain is exploited to deal with unknown

control gains.

The main contributions of the paper lie in:

(i) Adaptive control is developed for a class of strict-

feedback systems with unknown control gains and pro-

ceeded by hysteresis.

(ii) To tackle the difficulty caused by hysteresis input,

Prandtl-Ishlinskii (PI) model is exploited in the adaptive

control design.

(iii) Combined with deadzone method, discrete Nussbaum

gain is utilized in the presence of external disturbance

and hysteresis.

Throughout this paper, the following notations are used.

• ‖ ·‖ denotes the Euclidean norm of vectors and induced

norm of matrices.

• (̂ ) and (̃ ) denote the estimate of parameters and

estimation error, respectively.

• N+ denotes the set of all nonnegative integers.
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II. PROBLEM FORMULATION AND PRELIMINARIES

A. System Representation

Consider a class of strict-feedback nonlinear discrete-time

systems in the following form:


































ξ1(k + 1) = ΘT
1 Φ1(ξ̄1(k)) + g1ξ2(k)

ξ2(k + 1) = ΘT
2 Φ2(ξ̄2(k)) + g2ξ3(k)

...

ξn(k + 1) = ΘT
nΦn(ξ̄n(k)) + gnu(k) + d(k)

u(k) = H[v](k)
y(k) = ξ1(k)

(1)

where ξ̄i(k) = [ξ1(k), ξ2(k), . . . , ξi(k)]T are system states,

Θi ∈ Rpi and gi ∈ R, i = 1, 2, . . . , n, are unknown system

parameters (pi’s are positive integers), Φi(ξ̄i(k)) : Ri → Rpi

are known vector-valued functions. The control objective is

to make the output y(k) track a bounded reference trajectory

yd(k) and to guarantee the boundedness of all the closed-

loop signals.

The hysteresis is denoted by the operator u(k) = H[v](k),
where v(k) is the input and u(k) is the output of the

hysteresis, which is represented by discrete-time Prandtl-

Ishlinskii (PI) model as follows [16]:

u(k) =

∫ ∞

0

p(r)Er[v](k)dr

Er(0) = er(v(0) − u(−1))

Er(k) = er[v(k) − v(ki) + Er[v](ki)]

er(v) = min(r,max(−r, v)) (2)

where p(r) is an unknown density function satisfying p(r) ≥
0 with

∫ ∞

0
rp(r)dr < ∞, and Er(·) is called as stop

operator. When the value r is large enough, the density

function p(r) will vanishes, i.e., there exists a constant

R such that p(r) = 0, ∀r > R, and thus the integral
∫ ∞

0
p(r)Er[v](k)dr is replaced by

∫ R

0
p(r)Er[v](k)dr in the

sequel.
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Fig. 1. Hysteresis curve give by the PI model in (2)

Figure 1 illustrates the input (v) and output (u) relationship

of the PI model in (2). The density function used is p(r) =
e−0.07(r−1)2 with R = 10. The input is chosen as v(k) =
12.0 sin( π

60k) with k = 1, 2, . . . , 360.

Assumption 2.1: The system functions Φi(ξ̄i(k)) are Lip-

schitz functions, i.e., ‖Φi(ε1) − Φi(ε2)‖ ≤ Li‖ε1 − ε2‖,

∀ε1, ε2 ∈ Ri, 1 ≤ i ≤ n and Li are the Lipschitz coeffi-

cients. The control gains gi 6= 0. In addition, the external

disturbance is bounded by a constant d̄, i.e., |d0(k)| ≤ d̄.

B. Useful Definitions and Lemmas

Definition 2.1: [18] Let x1(k) and x2(k) be two discrete-

time scalar or vector signals, ∀k ∈ N+.

• We denote x1(k) = O[x2(k)], if there exist posi-

tive constants m1, m2 and k0 such that ‖x1(k)‖ ≤
m1 maxk′≤k ‖x2(k

′)‖ + m2, ∀k > k0.

• We denote x1(k) = o[x2(k)], if there exists a

discrete-time function α(k) satisfying limk→∞ α(k) →
0 and a constant k0 such that ‖x1(k)‖ ≤
α(k)maxk′≤k ‖x2(k

′)‖, ∀k > k0.

• We denote x1(k) ∼ x2(k) if they satisfy x1(k) =
O[x2(k)] and x2(k) = O[x1(k)].

Lemma 2.1: [9] Under Assumptions 2.1, the states and

input of system (1) satisfy

ξ̄i(k) = O[y(k + i − 1)], i = 1, 2, . . . , n − 1

u(k) = O[y(k + n)] (3)

Definition 2.2: [19] Consider a discrete nonlinear func-

tion N(x(k)) defined on a sequence x(k) with xs(k) =
supk′≤k{x(k′)}. N(x(k)) is a discrete Nussbaum gain if

and only if it satisfies the following two properties:

(i) If xs(k) increases without bound, then

sup
xs(k)≥δ0

SN (x(k))

xs(k)
= +∞, inf

xs(k)≥δ0

SN (x(k))

xs(k)
= −∞

(ii) If xs(k) ≤ δ1, then |SN (x(k))| ≤ δ2 with some positive

constants δ1 and δ2.

where SN (x(k)) is defined with ∆x(k) = x(k + 1) − x(k)
as follows:

SN (x(k)) =
k

∑

k′=0

N(x(k′))∆x(k′) (4)

In this paper, for adaptive control of system (1), the discrete

Nussbaum gain N(x(k)) proposed in [20] is exploited, which

requires the sequence x(k) to satisfy

x(k) ≥ 0, ∀k, |∆x(k)| = |x(k + 1) − x(k)| ≤ δ0 (5)

Lemma 2.2: [4] Let V (k) be a positive definite function

defined ∀k, N(x(k)) be a discrete Nussbaum gain, and θ be

a nonzero constant. If the following inequality holds, ∀k

V (k) ≤

k
∑

k′=k1

(c1 + θN(x(k′)))∆x(k′) + c2x(k) + c3 (6)

where c1, c2 and c3 are some constants, k1 is a positive inte-

ger, then V (k), x(k) and
∑k

k′=k1
(c1 +θN(x(k′)))∆x(k′)+

c2x(k) + c3 must be bounded, ∀k.

587



C. Future States Prediction

Future states prediction proposed in [4] is employed

here to facilitate the control design. Define
¯̂
Θi(k) =

[Θ̂T
i (k), ĝi(k)]T ∈ Rpj+1 and

¯̃Θi(k) = [Θ̃T
i (k), g̃i(k)]T ,

where Θ̂i(k) and ĝi(k) denote the estimate of Θi and gi

at the k-th, respectively, and Θ̃i(k) = Θ̂i(k) − Θi and

g̃i(k) = ĝi(k) − gi are estimate errors.

Then, the prediction laws of the one-step ahead future

states ξi(k + 1), are given as

ξ̂i(k + 1|k) =
¯̂
Θ

T

i (k − n + 2)Ψi(k), i = 1, 2, . . . , n − 1

where Ψi(k) = [ΦT
i (ξ̄i(k)), ξi+1(k)]T ∈ Rpi+1.

The j-step ahead future states ξi(k+j), j = 2, 3, . . . , n−1,

are predicted as

ξ̂i(k + j|k) =
¯̂
Θ

T

i (k − n + j + 1)Ψ̂i(k + j − 1|k) (7)

for i = 1, 2, . . . , n − j, where

Ψ̂i(k + j) = [ΦT
i (

¯̂
ξi(k + j − 1|k)), ξ̂i+1(k + j − 1|k)]T

¯̂
ξi(k + j − 1|k) = [ξ̂1(k + j − 1|k), . . . , ξ̂i(k + j − 1|k)]T .

The parameter estimates are obtained by

¯̂
Θi(k + 1) =

¯̂
Θi(k − n + 2) −

ξ̃i(k + 1|k)Ψi(k)

1 + ΨT
i (k)Ψi(k)

(8)

for i = 1, 2, . . . , n − 1.

Remark 2.1: The parameter update law (8) is presented

at the (k + 1)-th step when ξ̄n(k + 1) are all available.

The control input u(k) is designed at the k-th step and only

depends on Θ̂i(j), j ≤ k.

Lemma 2.3: [4] The parameter estimates
¯̂
Θi(k) (i =

1, 2, . . . , n − 1) in (8) are bounded and the estimate errors

satisfy
¯̃
ξi(k + n − i|k) = o[O[y(k + n − 1)]] where

¯̃
ξi(k + n − i|k) =

¯̂
ξi(k + n − i|k) − ξ̄i(k + n − i)

¯̂
ξi(k +n− i|k) = [ξ̂1(k +n−1|k), . . . , ξ̂i(k +n− i|k)] (9)

III. ADAPTIVE CONTROL DESIGN

A. System Transformation

Let us rewrite system (1) as


















ξ1(k + n) = ΘT
1 Φ1(ξ̄1(k + n − 1)) + g1ξ2(k + n − 1)
...

ξn(k + 1) = ΘT
nΦn(ξ̄n(k)) + gnu(k) + d(k)

y(k) = ξ1(k)

and then we combine the n equations above together by

iterative substitution and consider hysteresis behavior (2),

thus we obtain

y(k + n) = ΘT
f Φ(k + n − 1)

+g

∫ R

0

p(r)Er[v](k)dr + d0(k) (10)

where

Θf = [ΘT
f1, . . . ,Θ

T
fn]T ∈ Rp, Θf1

= Θ1

Θfi
= Θi

i−1
∏

j=1

gj , i = 2, 3, . . . , n, g =
n

∏

j=1

g
j

g =
n

∏

j=1

gj , do(k) =
g

gn

d(k) (11)

Φ(k + n − 1) = [ΦT
1 (ξ̄1(k + n − 1)),

ΦT
2 (ξ̄2(k + n − 2)), . . . ,ΦT

n (ξ̄n(k))]T ∈ Rp

B. Control and Parameter Estimation

Using the predicted future states, the future states depen-

dent function Φ(k + n − 1) in (11) can be estimated as

Φ̂(k + n − 1|k) = [ΦT
1 (ξ̂1(k + n − 1|k)) . . . ,ΦT

n (ξ̄n(k))]T

where
¯̂
ξi(k+n− i|k), i = 1, 2, . . . , n−1, are defined in (9).

Denote Θ̂fg(k) and ĝI(k) as the estimates of g−1Θf and

g−1, respectively. Using the predicted function Φ̂(k + n −
1|k), let us define

u′(k) = −Θ̂T
fg(k)Φ̂(k + n − 1|k) + ĝI(k)yd(k + n) (12)

Let [υmin, υmax] be the practical input range to the

hysteresis operator, which is a strict subset of [−R, R], and

the saturation output of
∫ R

0
p̂(r, k)Er[v

∗](k)dr be û′
sat(k),

in which these notations are borrowed from [16]. v∗(k) is

derived as follows [16]. If u′(k) < −û′
sat(k), then v∗(k) =

υmin; if u′(k) > û′
sat(k), then v∗(k) = υmax; otherwise,

following the algorithm proposed in [16] (Section C), it can

be obtained a v∗(k) such that

µ(k) =

∫ R

0

p̂(r, k)Er[v
∗](k)dr − u′(k)

|µ(k)| ≤ µ̄ (13)

where µ̄ is an assigned admissible error, p̂(r, k) is the

estimate of p(r) defined in (17) and it is nonnegative.

In this paper, the adaptive control input is considered as

v(k) = v∗(k) (14)

Substituting the adaptive control (14) into the n-step

predictor (10) and subtracting yd(k +n) on both hand sides,

it follows that the error dynamics is given by

e(k + n) = y(k + n) − yd(k + n)

= −gΘ̃T
fg(k)Φ(k + n − 1) + gg̃I(k)yd(k + n)

−g

∫ R

0

p̃(r, k)Er[v
∗](k)dr

−gβ(k + n − 1) + gµ(k) + d0(k) (15)

where Θ̃fg(k), p̃(r, k), µ(k) and β(k) are defined as

Θ̃fg(k) = Θ̂fg(k) − Θfg

p̃(r, k) = p̂(r, k) − p(r) (16)

µ(k) =

∫ R

0

p̂(r, k)Er[v
∗](k)dr − u′(k)

588



β(k + n − 1) = Θ̂T
fg(k)[Φ̂(k + n − 1|k) − Φ(k + n − 1)]

The parameters estimates in the control law are updated by

the following adaptation law

ǫ(k) =
γe(k) + N(x(k))ψ(k)β(k − 1)

G(k)

Θ̂fg(k) = Θ̂fg(k − n) + γ
a(k)N(x(k))

D(k)
Φ(k − 1)ǫ(k)

ĝI(k) = ĝI(k − n) − γ
a(k)N(x(k))

D(k)
yd(k)ǫ(k)

p̂′(r, k) = p̂(r, k − n)

+γ
a(k)N(x(k))

D(k)
Er[v

∗](k − n)ǫ(k)

p̂(r, k) = |p̂′(r, k)| (17)

∆ψ(k) = ψ(k + 1) − ψ(k)

=
−a(k)N(x(k))β(k − 1)ǫ(k)

D(k)

∆z(k) = z(k + 1) − z(k) =
a(k)G(k)ǫ2(k)

D(k)

x(k) = z(k) +
ψ2(k)

2
G(k) = 1 + |N(x(k))|

D(k) = (1 + |ψ(k)|)(1 + |N(x(k))|3)

×(1 + ‖Φ(k − 1)‖2 + y2
d(k) + β2(k − 1)

+ ǫ2(k) +

∫ R

0

E2
r [v∗](k − n)dr)

a(k) =

{

1 if |ǫ(k)| > λ

0 others

where z(0) = ψ(0) = 0 and ǫ(k) is introduced as an

augmented error and γ > 0 is the tuning rate to be specified

by the designer. It should be mentioned that the requirement

on sequence x(k) in the definition of discrete Nussbaum gain

in (5) is satisfied by the sequence x(k) defined in (17).

Remark 3.1: It can be shown later that using the discrete

Nussbaum gain, there is no need to know the sign of control

gain g in (10) and it can be guaranteed that the estimate

p̂(r, k) is nonnegative, such that the algorithm solving for

v∗(k) from (13) proposed in [16] can be applied.

Lemma 3.1: Consider the parameters p̂(r, k) and p̂′(r, k)

in (17), we have
∫ R

0
p̃′2(r, k)dr ≥

∫ R

0
p̃2(r, k)dr, where

p̃′(r, k) = p̂′(r, k) − p(r) and p̃(r, k) = p̂(r, k) − p(r).

Proof: According to (17), we can see that |p̃′(r, k)| =
|p̃(r, k)| when p̂′(r, k) ≥ 0. Now, considering the case that

p̂′(k) < 0 and noting that p(r) > 0 defined in (2), thus we

have

|p̃(r, k)| = | − p̂′(r, k) − p(k)|

≤ −p̂′(r, k) + p(r) = |p̃′(r, k)|

In summary, we always have |p̃′(r, k)| ≥ |p̃(r, k)|, which

implies
∫ R

0
p̃′2(r, k)dr ≥

∫ R

0
p̃2(r, k)dr. This completes the

proof.

C. Stability Analysis

Theorem 3.1: Consider the adaptive closed-loop system

consisting of system (1) under Assumption 2.1, states pre-

diction laws defined in (7) with parameter estimation law

(8), control law (14) and parameter adaptation law (17). If

there exists an integer k1 > 0 such that |u′(k)| ≤ û′
sat(k),

∀k > k1, then all the signals in the closed-loop system

are bounded and G(k) = 1 + |N(x(k))| will converge to

a constant. Denote C = limk→∞ G(k), then the tracking

error satisfies limk→∞ sup |e(k)| < Cλ
γ

, where γ and λ are

the tuning factor and the threshold value specified by the

designer.

Proof: In the proof, it is supposed that |u′(k)| ≤
û′

sat(k) [16]. Substituting the error dynamics (15) into the

augmented error ǫ(k), it can be obtained that

γΘ̃T
fg(k − n)Φ(k − 1) − γg̃I(k − n)yd(k)

+γ

∫ R

0

p̃(r, k − n)Er[v
∗](k − n)dr

= −
1

g
G(k)ǫ(k) − γβ(k − 1) + γµ(k − n)

+γ
1

g
d0(k − n) +

1

g
N(x(k))ψ(k)β(k − 1) (18)

Choose a positive definite function V (k) as

V (k) =
n

∑

j=1

‖Θ̃fg(k − n + j)‖2 +
n

∑

j=1

g̃2
I (k − n + j)

+
n

∑

j=1

∫ R

0

p̃2(r, k − n + j)dr (19)

From the adaptation law (17), it is clear that

a(k)N(x(k))(µ(k − n) +
1

g
do(k − n))ǫ(k)

≤ a(k)db|N(x(k))|ǫ2(k)

∆x(k) = ∆z(k) + ψ(k)∆ψ(k) +
[∆ψ(k)]2

2
(20)

0 ≤ ∆z(k) < 1, 0 ≤ ∆ψ(k) < 1

|N(x(k))|[∆ψ(k)]2 ≤ ∆z(k)

a(k)N(x(k))ǫ2(k)

D(k)
≤ ∆z(k)

where db = 1
λ
( d̄
|gn| + µ̄). Considering (17), (18), (20), and

using Lemma 3.1, it can be obtained that the difference

equation of V (k) is given by

∆V (k) = V (k) − V (k − 1)

= Θ̃T
fg(k)Θ̃fg(k) − Θ̃T

fg(k − n)Θ̃fg(k − n)

+g̃2
I (k) − g̃2

I (k − n)

+

∫ R

0

p̃′2(r, k)dr −

∫ R

0

p̃2(r, k − n)dr

= γ2a2(k)
N2(x(k))ǫ2(k)

D2(k)

×(‖Φ(k − 1)‖2 + y2
d(k) +

∫ R

0

E2
r [v∗](k − n)dr)
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+2γa(k)N(x(k))
Θ̃T

fg(k − n)Φ(k − 1)

D(k)
ǫ(k)

−2γa(k)N(x(k))
g̃I(k − n)yd(k)

D(k)
ǫ(k)

+2γa(k)N(x(k))

∫ R

0
p̃(r, k − n)Er[v

∗](k − n)dr

D(k)
ǫ(k)

≤ γ2 a(k)G(k)ǫ2(k)

D(k)
+ 2γ

a(k)db|N(x(k))|ǫ2(k)

D(k)

−
2

g
a(k)N(x(k))

G(k)ǫ2(k)

D(k)

−2γ
a(k)N(x(k))β(k − 1)ǫ(k)

D(k)

+
2

g
a(k)N(x(k))

N(x(k))ψ(k)β(k − 1)ǫ(k)

D(k)

≤ (γ2 + 2γdb)∆z(k) + 2γ∆ψ(k) −
2

g
N(x(k))(∆z(k)

+ψ(k)∆ψ(k) +
[∆ψ(k)]2

2
) +

1

|g|
|N(x(k))|[∆ψ(k)]2

≤ c1∆z(k) + 2γ∆ψ(k) −
2

g
N(x(k))∆x(k) (21)

where c1 = γ2 + 2γdb.

Noting that x(k) = z(k) + ψ2(k)
2 and taking summation

on both hand sides of (21) results in

V (k) ≤ −
2

g

k
∑

k′=0

N(x(k′))∆x(k′) + c1z(k) + 2γψ(k) + c2

≤ −
2

g

k
∑

k′=0

N(x(k′))∆x(k′) + c1x(k) + c3 (22)

where c2 = V (−1) and c3 = c2 + 2γ2

c1

are some finite

constants.

Applying Lemma 2.2 to (22) gives the boundedness of

V (k) and x(k) and N(x(k)) thus the boundedness of

Θ̂fg(k), ĝI(k),
∫ R

0
p̃(r, k)dr, and G(k). Considering that

z(k) is an nondecreasing sequence satisfying 0 ≤ z(k) ≤
x(k), thus the boundedness of x(k) means that z(k) and

ψ(k) are bounded. The boundedness of z(k) further implies

lim
k→∞

∆z(k) = lim
k→∞

a(k)G(k)ǫ2(k)

D(k)
= 0 (23)

Noting that e(k) = y(k)−yd(k), we have y(k) = O[e(k)]
because the reference signal yd(k) is bounded. Using the

Lipschitz condition of function Φi(·), i = 1, 2, . . . , n and

Lemma 2.1, it follows Φ(k− 1) = O[e(k)], where Φ(k− 1)
is defined in (11). According to the definition of β(k) in

(16), the boundedness of Θ̂fg(k), and Lemma 2.3, it is clear

that β(k) = o[O[e(k − 1)]]. Then, from the boundedness

of N(x(k)), ψ(k), and G(k), it can be seen that ǫ(k) ∼
e(k). Therefore, we can conclude that D(k) in (17) satisfies

D(k) = O[ǫ2(k)].
According to the definition of a(k) in (17), the following

two cases need to be considered:

• For a(k) = 0, it is clear from the definition of a(k) that

|ǫ(k)| ≤ λ, which means that limk→∞ sup{ǫ(k)} ≤ λ.

• For a(k) = 1, it is clear from the definition of a(k) that

|ǫ(k)| > λ. Noting that D(k) = O[a2(k)ǫ2(k)], thus

applying the Key Technical Lemma [21] to (23) gives

limk→∞ a(k)ǫ(k) = 0. Let us define a time interval as

Z1 = {k|a(k) = 1} and suppose that Z1 is an infinite

set. Then, we have

lim
k→∞,k∈Z1

ǫ(k) = lim
k→∞,k∈Z1

a(k)ǫ(k) = 0 (24)

which conflicts with |ǫ(k)| ≥ λ, for a(k) = 1. There-

fore, Z1 must be a finite set and then, we have

lim
k→∞

a(k) = 0, lim
k→∞

sup{|ǫ(k)|} ≤ λ (25)

According to the discussions for the above two cases, we

have limk→∞ a(k) = 0 and limk→∞ sup{|ǫ(k)|} ≤ λ,

which implies N(x(k)) will converge to a constant ulti-

mately and thus let denote limk→∞ G(k) = C. Noting that

β(k) = o[O[e(k − 1)]] gives limβ(k) = 0 and using the

boundedness of N(x(k)) and ψ(k), thus it can be derived

from the definition of ǫ(k) in (17) that

lim
k→∞

sup{|ǫ(k)|} = lim
k→∞

sup{|
γe(k)

G(k)
|} ≤ λ

which gives

lim
k→∞

sup{|e(k)|} ≤
Cλ

γ

This implies the boundedness of y(k). From Lemma 2.1, it is

clear that the boundedness of u(k) and ξi(k), i = 1, 2 . . . , n

is guaranteed. This completes the proof of the boundedness

of all the signals in the closed-loop system and the tracking

error satisfying limk→∞ sup |e(k)| < Cλ
γ

.

IV. SIMULATION RESULTS

The following second order nonlinear plant is used for

simulation.


































ξ1(k + 1) = 0.2ξ1(k) cos(ξ1(k)) + 0.1ξ1(k) sin(ξ1(k))
+3ξ2(k)

ξ2(k + 1) = 0.3ξ2(k) ξ1(k)
1+ξ2

1
(k)

− 0.6
ξ3

2
(k)

2+ξ2

2
(k)

− 0.12u(k)

+d0(k)
y(k) = ξ1(k)

u(k) =
∫ R

0
p(r)Er[v](k)dr

where d0(k) = 0.2 cos(0.05k) cos(ξ1(k)). Select the density

function p(r) = e−0.07(r−1)2 and R = 10. The control

objective is to make the output y(k) track the desired

reference trajectory yd(k) = 1.5 sin(π
5 kT ) + 1.5 cos( π

10kT ),
T = 0.05. The initial system states are ξ̄2(0) = [1, 1]T . The

tuning factor and the threshold value are chosen as γ = 4
and λ = 0.1. The simulation results are showed in Figs. 2-4.

Fig. 2 depicts the output y(k) and the reference signal yd(k).
Figure 3 illustrates the boundedness of the control input u(k),
the estimated parameters ĝI(k), Θ̂fg(k), and p̂(r, k). Fig. 4

demonstrates the discrete Nussbaum gain N(x(k)) and the

sequences x(k) and β(k). As illustrated in Fig. 4, to detect
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the control direction, the discrete Nussbaum gain adapts by

searching alternately in the two directions: when the control

gain g is negative, the sign of N(x(k)) changes from positive

to negative and remains so for good; when the control gain

is positive, the sign of N(x(k)) keeps positive without any

switch.
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Fig. 2. Reference signal and system output
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Fig. 3. Control signal and estimated parameters, r = 1 for p̂(r, t)

0 500 1000 1500 2000 2500 3000
−10

−8

−6

−4

−2

0

2

4

6

8

10

x(k)

N(x)

β(k)

Fig. 4. Nussbaum gain N(x(k)) and its argument x(k) and β(k)

V. CONCLUSION

This paper has developed adaptive control for a class

of strict-feedback discrete-time nonlinear systems with un-

known control gains and hysteresis input. Based on the future

states prediction, adaptive control has been designed with

the discrete Nassbaum gain employed to tackle the unknown

control directions problem. Under the proposed adaptive

control law, all the signals in the closed-loop system are

globally bounded and the output tracking error is made to

be within a neighborhood around zero ultimately.
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