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Abstract— This paper is concerned with the problems of
positive real analysis and control synthesis for discrete-time
systems. New linear matrix inequality (LMI) characterizations
of positive realness are derived, which enable one to check the
positive realness by using parameter-dependent Lyapunov func-
tion. The relationship between the proposed characterizations
and the existing ones are clarified, which shows that our new
results are of less conservatism for characterizing the positive
realness of discrete-time systems with polytopic uncertainty. In
addition, sufficient conditions for static output feedback positive
real controller design are given in terms of solutions to a set
of linear matrix inequalities. Numerical examples are included
for illustration.

I. INTRODUCTION

An important concept in the analysis of control system is
positive realness, which is an essential property exhibited
in many real-world systems such as linear circuits [6], [5]
[15] [3] [21] [23]. Positive realness has found application
in the analysis of the properties of immittance or hybrid
matrices of various classes of networks, inverse problem of
linear optimal control, stability of Lure’s systems and so
on. Recently, positive realness has also been generalized to
time-delay systems [9] [11], descriptor systems [11] [26],
and other systems. The problem of positive real control is
to design a controller which render the resulting closed-loop
system is stable with its transfer function being positive real
[3] [14] [25]. The motivation for studying the positive real
control problem stems from robust and nonlinear control [8].

The most pertinent work to this paper is [3], where Zhou
et al proposed a characterization of positive realness for
discrete-time systems via the projection lemma. As a
consequence, the product between the Lyapunov matrix and
the system matrices are decoupled. This method directly
leads to less conservatism results for characterizing the
positive realness and designing state feedback positive real
controller for uncertain systems. In fact, this paper stems
from the following motivations. First, we want to know
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whether there exist other positive realness characterizations
of linear discrete-time systems, and if so, what are the
relationships between them and the results reported at [3].
Secondly, in many practical problems, only output of the
system is available to be used for constructing a positive
real control law [24] [16], however, the relevant results are
rare.

As a development of the results stated above, this paper
considers the positive real analysis and synthesis problems
for linear discrete-time systems with/without polytopic
uncertainties. The main contributions include: I) New
characterizations of positive realness of linear discrete-time
systems are proposed. II) The relationships between the
proposed characterizations and the existing results are
clarified, which show that our new results are of less
conservatism for characterizing the positive realness of
discrete-time systems with polytopic uncertainty. III)
Instead of state feedback, static output feedback positive
real controller design methods are developed. Numerical
examples are also given to illustrate the validation and
effectiveness of the proposed methods.

The rest of this paper is organized as follows. The
problem formulations and preliminaries are given in Section
2. Section 3 is dedicated to derive the new positive
realness characterizations and static output feedback
positive controller designs for linear discrete-time systems.
Numerical examples are included in Section 4 for illustration.

II. PRELIMINARIES

Consider a nominal linear time-invariant discrete-time
system described by:

Σ0 : x(k + 1) = Ax(k) + B1ω(k) + B2u(k)
z(k) = C1x(k) + D11ω(k) + D12u(k)
y(k) = C2x(t)

(1)
and an uncertain linear discrete-time system described by

Σ∆ : x(k + 1) = A x(k) + B1ω(k) + B2u(k)
z(k) = C1x(k) + D11ω(k) + D12u(k)
y(k) = C2x(t)

(2)
where x(k) ∈ Rn is the state, y(k) ∈ Rq is the measured
output, z(k) ∈ Rp is the regulated output, w(k) ∈ Rp is the
exogenous input, and u(k) is the control input The matrices
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A ,B1,B2,C1,D12,C2 of uncertain system Σ∆ (2) belong
to the following uncertainty polytope:

P =

{[
A B1 B2

C1 D11 D12

C2 D21

]
=

N∑

i=1

αi

[
Ai B1i B2i

C1i D11i D12i

C2i

]}

(3)

where αi > 0,
N∑

i=1

αi = 1. The nominal and uncertain

unforced discrete-time systems of (1) and (2) are given by

Σ∗0 : x(k + 1) = Ax(k) + Bw(k)
z(k) = Cx(k) + Dw(k)

(4)

and
Σ∗∆ : x(k + 1) = A x(k) + Bw(k)

z(k) = C x(k) + Dw(k)
(5)

respectively.

Throughout this paper, we shall adopt the following concept
of positive realness.

Definition 1. (Lee and Chen [10])
Let G(z) be a square real rational transfer matrix in z.
(a). System Σ0 is said to be positive real (PR) if its
transfer function G(z) is analytic in ‖z‖ > 1 and satisfies
G(z) + G∗(z) ≥ 0 for ‖z‖ > 1.
(b). System Σ0 is said to be strictly positive real (SPR) if its
transfer function G(z) is analytic in ‖z‖ ≥ 1 and satisfies
G(z) + G∗(z) > 0 for ‖z‖ ≥ 1.

Next, some existing results about positive realness of
nominal unforced system (4) and uncertain unforced system
(5) are presented.

Lemma 1.(Haddad and Bernstein [6]). The following state-
ments are equivalent:
(a) The unforced nominal system Σ∗0 (4) is stable with SPR.
(b) There exist matrices P = PT > 0 such that

[
AT PA− P AT PB − CT

BT PA− C BT PB − (D + DT )

]
< 0 (6)

Lemma 2.(Zhou et al [3]). The following statements are
equivalent:
(a) The unforced nominal system Σ∗0 (4) is stable with SPR.
(b) There exist matrices P such that



−P PAT PCT

AP −P −B
CP −BT −(D + DT )


 < 0 (7)

Lemma 3.(Zhou et al [3]). The following statements are
equivalent:
(a) The unforced nominal system Σ∗0 (4) Σ∗0 is stable with
SPR.

(b) There exist matrices P and G such that



−G+GT

2 ∗ ∗ ∗
AG −P ∗ ∗
CG −BT −He(D)) ∗

GT +2G−2P
2 −GT AT −GT CT −He(G)


 < 0

(8)
Lemma 4.(Zhou et al [3]). The unforced uncertain system
Σ∗∆ (5) is robustly stable with SPR if there exist matrices Pi

and G such that for all i = 1, ..., n,



−G+GT

2 ∗ ∗ ∗
AiG −Pi ∗ ∗
CiG −BT

i −He(Di)) ∗
GT +2G−2Pi

2 −GT AT
i −GT CT

i −He(G)


 < 0

(9)
Remark 1. The conditions of Lemma 3 is exactly the same
with the conditions of theorem 2 (Zhou [3]) provided that
the linear fractional uncertainties are vanished, see [3] for
details.

The objective of this paper is to develop new characteri-
zations of positive realness for the unforced systems (4)
and (5), and give relationships between the new derived
characterizations and the above ones. Moreover, we also
interest to design a static output feedback controller

u(k) = Ky(k) (10)

for the systems (1) and (2) such that the resulting closed-loop
systems (11) and (12):

Σc
0 : x(k + 1) = Ax(k) + B1ω(k) + B2u(k)

z(k) = (C1 + D12KC2)x(k) + D11ω(k)
(11)

and

Σc
∆ : x(k + 1) = A x(k) + B1ω(k) + B2u(k)

z(k) = (C1 + D12KC2)x(k) + D11ω(k)
(12)

are (robust) stable with SPR.

We end this section by giving three lemmas which will be
used in the later development.

Lemma 5. (Finsler’ Lemma) Letting that ξ ∈ RN ,
P = PT ∈ RN×N , and H ∈ RM×N such that
rank(H) = R < N , then the following statements
are equivalent:
(a) ξTPξ < 0, for all ξ 6= 0, Hξ = 0;
(b)∃M ∈ RN×M such that P + He (MH) < 0.

Lemma 7. (Geromel and Korogui [2]). If the symmetric
matrices Vij ∈ Rn×n are such that

Vij + Vji ≥ 0, 1 ≤ j < i ≤ N
N∑

i=1

(Vij + Vji) ≤ 0, j = 1, ..., N
(13)
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then the following inequlity
N∑

i=1

N∑

j=1

αiαjVij ≤ 0 ∀α ∈ Λ (14)

holds, where Λ is the simplex Λ :=
{

αi ≥ 0,
N∑

i=1

αi = 1
}

III. MAIN RESULTS

A. New characterizations of positive realness

In this subsection, several new characterizations of positive
realness of the unforced systems (4) and (5) are presented.
First, lets focus on the unforced nominal system (4)

Theorem 1. The unforced nominal system Σ∗0 (4) is side to
be stable with SPR if there exist matrices P = PT > 0, G
and F such that


P −G−GT GT AT − F GT CT

AG− FT AF + FT AT − P FT CT −B
CG CF −BT −D −DT


 < 0

(15)
Proof. Only basic lines of the proof are sketched here for
the reasons of space.

Defining the following matrices and vector

P =




P 0 0 0
0 −P 0 0
0 0 0 −I
0 0 −I 0


 M =




GT 0
FT 0
0 0
0 −I




H =
[ −I AT 0 CT

0 BT −I DT

]

ξ(k) =
[

x̃(k + 1)T x̃(k)T z̃(k)T ω̃(k)T
]T

Applying the Finsler’s lemma and combining the duality
property, Theorem 1 can be obtained
Remark 2.

a) Let us look into the above three matrices P,M,H, the
matrix P represents the desired performance (i.e. positive
realness), the matrix H is composed by system matrices,
and M is a multiplier which decoupling the system matrices
and the Lyapunov matrix P , and we call the matrices G,F
in M auxiliary variables throughout of this paper.

c) Introducing auxiliary variables for system analysis or
synthesis is known as the parameter dependent Lyapunov
function (PDLF) method. In [1], Oliveira et al derived a
relaxed LMI stability condition for discrete-time system
by introducing one auxiliary variable (i.e. G). In [20],
Peaucelle et al proposed further less conservative robust
stability conditions for continuous-time and discrete-time
systems by introducing two auxiliary matrix variables (i.e.
G and F). The PDLF method has been extended and
applied on many system analysis and design problems. For
example, in [22], Duan et al given an improved robust filter
design by proposing a proper structure of the auxiliary

variables. Then, a new characterization was given for SPR
of continuous-time systems and used to consider robust
convergence of a new class of nonlinear systems in [23].
The characterization of SPR given by Theorem 1 can be
viewed as discrete-time counterpart of the characterization
of SPR given by Lemma 1 of [23]. Here, the two auxiliary
variables G and F were introduced just by employing the
Finsler lemma.

Similar with Theorem 1, the following results are presented
without proof.

Corollary 1. The following statements are equivalent:
(a) The unforced nominal system Σ∗0 (4) is stable with SPR.
(b) There exist matrices P and G such that


P −G−GT GT AT GT CT

AG −P −B
CG −BT −D −DT


 < 0 (16)

Theorem 2. The unforced uncertain system Σ∗∆ (5) is
robustly stable with SPR if there exist matrices Pi = PT

i > 0,
G and F such that for all i = 1, ..., n,


Pi −G−GT GT AT
i − F GT CT

AiG− FT AiF + FT AT
i − Pi FT CT

i −Bi

CiG CiF −BT
i −Di −DT

i


 < 0

(17)
Corollary 2. The unforced uncertain system Σ∗∆ (5) is
robustly stable with SPR if there exist matrices Pi, G and F
such that for all i = 1, ..., n,


Pi −G−GT GT AT

i GT CT
i

AiG −Pi −Bi

CiG −BT
i −Di −DT

i


 < 0 (18)

B. Relationships between the Characterizations
In this subsection, we are dedicated to understand the
relationships between the characterizations presented in the
above subsection.

There are five characterizations (i.e. Lemma 1, Lemma 2,
Lemma 3, Theorem 1, Corollary 1) of positive realness for
the unforced nominal system (4) given above. Obviously,
those conditions are equivalent to each other as each one is
a sufficient and necessary condition

Now, lets turn attention to the three characterizations (i.e.
Lemma 4, Theorem 2, Corollary 2) of positive realness
for the unforced uncertain system (5). The following result
will play an important role in going into the relationships
between the characterizations

Lemma 8.For any given matrices A,B, C, D with appropri-
ate dimension, if there exist matrices P and G such that




−G+GT

2 ∗ ∗ ∗
AG −P ∗ ∗
CG −BT −He(D) ∗

GT +2G−2P
2 −GT AT −GT CT −He(G)


 < 0

(19)
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then there exist matrices P and G such that the following
inequality holds




P −G−GT GT AT GT CT

AG −P −B
CG −BT −D −DT


 < 0 (20)

Proof. The proof are omitted here for the reasons of space.
One can find the proof in [28], the journal version of this
paper.

Now, we will clarify the relationships between the robust
SPR characterizations (i.e. Lemma 4, Theorem 2, Corollary
2) .

Theorem 3. Consider the uncertain system (5), the following
statements hold.
(a): If the SPR condition in Corollary 2 is feasible, then the
SPR condition in Theorem 2 is feasible.
(b): If the SPR condition in Lemma 4 is feasible, then the SPR
conditions in Theorem 2 and Corollary 2 are all feasible.
Proof.
(a). It is immediate by letting the auxiliary variable F = 0
in the LMI condition (17).
(b). It is immediate from Lemma 8.

Remark 3. Theorem 3 shows that the robust SPR condition
given in Theorem 1 is not more conservative than that in
Corollary 2 and Lemma 4, moreover, the robust SPR condi-
tion given in Corollary 2 is not more conservative than that
in Lemma 4. Noticing that there is one auxiliary variable G
employed in Corollary 2, which is same as the case of Lemma
4, then one can conclude that the Corollary 2 provides a less
conservative characterization without adding computational
complexity. In addition, it should be pointed out that the
LMI condition (20) can be reduced to the standard one (7)
by letting (P,G)=(P,P), while the LMI condition (19) does
not have this property .

C. Positive real control

Without loss of generality, assume that the output matrix C2

of the nominal system is of full row rank, then there exist
nonsingular transformation matrix T such that

C2T =
[

I 0
]

(21)

Remark 4. For any given C2, the corresponding T generally
are not unique. A special T can be obtained by following
formula,

T =
[

CT
2 (C2C

T
2 )−1 C⊥2

]
(22)

Theorem 4. If there exist a scalar λ, symmetric positive
matrix P , and matrices G,Y with the following structure

G =
[

G11 0
G21 G22

]
L =

[
Y1 0

]
(23)

satisfying the following LMI:



P − TG−GT TT ∗ ∗
ATG + B2Y −P ∗

C1TG + D12Y −BT
1 −D11 −DT

11


 < 0 (24)

or satisfying the following LMI:



P − TGTT − TGT TT ∗ ∗
ATGTT + B2Y TT −P ∗

C1TGTT + D12Y TT −BT
1 −D11 −DT

11


 < 0

(25)
then the static output feedback controller (10) with K =
Y1G

−1
11 renders the the closed-loop system (11) SPR.

Proof. From the structure of G,Y and (3), (10), we can
obtain

Y =
[

KG11 0
]

=
[

K 0
] [

G11 0
G21 G22

]

= K
[

I 0
]
T−1TG = KC2TG

(26)

Substituting Y for KC2TG in (24) and (25), then (24) and
(25) can be rewritten as

2
4

P −He(TG) ∗ ∗
(A + B2KC2)TG −P ∗
(C1 + D12KC2)TG −BT

1 −He(D11)

3
5 < 0 (27)

and
2
4

P −He(TGT T ) ∗ ∗
(A + B2KC2)TGT T −P ∗
(C1 + D12KC2)TGT T −BT

1 −He(D11)

3
5 < 0 (28)

respectively, which are equivalent to
2
64

P 0 0 0
0 −P 0 0
0 0 0 −I
0 0 −I 0

3
75

+ He

0
BB@

2
64

GT T T 0
0 0
0 0
0 −I

3
75

2
64
−I 0
Acl B1

0 −I
Ccl D11

3
75

T
1
CCA < 0

(29)

and
2
64

P 0 0 0
0 −P 0 0
0 0 0 −I
0 0 −I 0

3
75

+ He

0
BB@

2
64

TGT T T 0
0 0
0 0
0 −I

3
75

2
64
−I 0
Acl B1

0 −I
Ccl D11

3
75

T
1
CCA < 0

(30)

respectively, where Acl = A+B2KC2, Ccl = C1+D12KC2.
From Finsler’s Lemma and combining the proof of Theorem
1, we can obtain that the closed-loop system (11) is stable
with SPR. Moreover, form (24) and (25), we can deduce that
the matrix G is positive-definite (not necessarily symmetric)
which implies that the matrix G, and implicitly G11 is
invertible. Then G11K = Y1 admits the solution of the
controller gain K = G−1

11 Y1. Thus, the proof is complete. ¤

Remark 5.
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a): Theorem 4 presents sufficient conditions for designing
static output feedback positive real controllers for discrete-
time system (1). The conditions (24) and (25) are paral-
lelled with each other instead of equivalent, then there may
exist some cases that the condition (24) is feasible while
the condition (25) is infeasible and vise versa, using the
two conditions (24) and (25) together will increasing the
possibility of solvability for a given static output feedback
positive real control problem.
b): Noticing that there is only one auxiliary variable G
involved in the conditions (24) and (24), then the full advan-
tage of the new proposed positive realness characterization
(i.e. Theorem 1) may not be utilized since there are two
auxiliary variables G,F in the condition (15). A possible
way to further reduce the conservatism of Theorem 4 is
letting the multiplier M as follows:

M =




GT TT 0
FT TT 0

0 0
0 −I


 F =

[
λG11 0
F21 F22

]
(31)

where λ is scalar. However, for adding the auxiliary
variable F (explicitly F21 and F22), one should rely on the
scalar variable λ to render the problem convex and use line
searches to obtain the final result.

For the uncertain system (2), the following theorem presents
a robust static output feedback positive real controller design
method.

Theorem 5. If there exist symmetric positive matrices
Pij , Vij , and matrices Gij , Y with the following structure

Gij =
[

G11 0
G21

ij G22
ij

]
Y =

[
Y1 0

]

Vij =




V 11
ij ∗ ∗

V 21
ij V 22

ij ∗
V 31

ij V 32
ij V 33

ij




(32)

satisfying the following LMIs:



Θij11 ∗ ∗ ∗
Θij21 Θij22 ∗ ∗
Θij31 Θij32 Θij33 ∗
Θij41 Θij42 Θij43 Θij44


 < 0, 1 ≤ i ≤ j ≤ N

(33)
Vij + Vji ≥ 0, 1 ≤ j < i ≤ N
N∑

i=1

(Vij + Vji) ≤ 0, j = 1, ..., N
(34)

where

Θij11 = −TT
i GT

i − TiGi

Θij21 = AiTiGi + B2iY
Θij31 = C1iTiGi + D12i

Θij41 = Pj

Θij22 = −Pi + V 11
ij Θij33 = −D11i −DT

11i + V 22
ij

Θij32 = −BT
i + V 21

ij Θij43 = V 32
ij

Θij42 = V 32
ij Θij44 = −Pj + V 33

ij

where the transformation matrices Ti, i = 1, ..., N are
selected similar with (21)i.e.

Ti =
[

CT
2i(C2iC

T
2i)
−1 C⊥2i

]

then the static output feedback controller (10) with
K = Y1G

−1
11 renders the the closed-loop system (12) robust

SPR.

Proof. The proof can be accessed in [28] and omitted here.

IV. NUMERICAL EXAMPLES

Example 1. (Positive realness)
Consider an uncertain system Σ1

∆ described by (2) and (3)
with the following parameter matrices:

Σ1
∆ :





[
A1

1 B1
1

C1
1 D1

1

]
=



−0.5776 −0.1874 −0.3287
0.4297 0.3855 0.0970
0.8456 −0.6702 0.4613




[
A1

2 B1
2

C1
2 D1

2

]
=



−0.1174 0.6299 0.7434
0.1815 −0.7937 −0.5528
0.2592 0.8012 0.3409




We are interested in investigating whether this uncertain sys-
tem Σ1

∆ is of positive realness. Solving the LMI conditions
given by Theorem 2, Corollary 2, and Lemma 4, we obtain
the following results about feasibility. See Table 1.

Methods Feasibility
Theorem 2 feasible
Corollary 2 feasible
Lemma 4 [3] infeasible

TABLE I
FEASIBILITIES OF CHARACTERIZATIONS OF POSITIVE REALNESS FOR

THE SYSTEM Σ1
∆

Consider another uncertain system Σ2
∆ described by (2) and

(3) with the following parameter matrices:

Σ2
∆ :





[
A2

1 B2
1

C2
1 D2

1

]
=




0.0245 −0.2248 −0.2061
−0.4988 0.2404 −0.0829
−0.2931 0.3310 0.0976




[
A2

2 B2
2

C2
2 D2

2

]
=



−0.1241 −0.1916 0.1142
0.4887 0.4778 −0.2963
−0.1084 −0.1096 0.0204




Correspondingly, we obtain the following feasibility
distribution results. See Table 2. The numerical results here

Methods Feasibility
Theorem 2 feasible
Corollary 2 infeasible
Lemma 4 [3] infeasible

TABLE II
FEASIBILITIES OF CHARACTERIZATIONS OF POSITIVE REALNESS FOR

THE SYSTEM Σ2
∆

show that the condition of Theorem 2 is the least conservative
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one within the three robust SPR characterizations (Theorem
2, Corollary 2, Lemma 4 [3]), and the condition of Lemma
4 [3] is the most conservative one. Then, the correctness of
Theorem 3 is validated.

Example 2. (Positive real control)
Consider an uncertain system (2) with the vertices given by
follows:
[

A1 B11 B21
C11D111D121
C21

]
=




0.2398 0.2299 0.2177 −0.1367
−0.0485−0.1184 0.2948 0.2393
0.3783 0.2178 0.0630 0.3881
−0.3718−0.1114




[
A2 B12 B22
C12D112D122
C22

]
=




0.1629 0.3667 −0.1834 0.3397
−0.3112 0.3290 −0.3048−0.3581
−0.3859 0.3529 0.3843 0.0454
−0.3750−0.1124




When this system is open-loop (i.e. u(k) = 0), the test for
positive realness is failed even using the characterization of
Theorem 1. Therefore, it is emergent to design a static output
feedback controller (10) to render the closed-loop system
is robust SPR. By applying Theorem 5 without the slack
variables Vij , one cannot find a feasible solution. At the same
time, the design problem can be solved by applying Theorem
5 with the slack variables Vij , and a positive real controller
can be obtained as:

u(k) = 2.5424y(k)

The computation results show that the design method given
by Theorem 5 is less conservative than the one given by
Theorem 5 without the slack variables Vij .

V. CONCLUSIONS

Characterizations of positive realness as well as syn-
thesis of static feedback positive real controller for linear
discrete-time systems are investigated in this paper. The main
contributions include: I) New characterizations of positive
realness have been proposed. II) The relationships between
the proposed characterizations and the existing results have
been clarified, which show that our new results are of
less conservatism for characterizing the positive realness of
discrete-time systems with polytopic uncertainty. III) Static
output feedback positive real controller design methods have
also been developed. Numerical examples are also given to
illustrate the validation and effectiveness of the results.
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