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Abstract— This work develops an algorithm for estimating
the lateral lane index of road vehicles on multi-lane roadways by
correlating vehicle attitude measurements to terrain maps of the
individual lanes of travel. To localize a vehicle, a Bayesian belief
algorithm and a particle filter algorithm are described and
applied off-line using data collected from two lanes along a local
highway. Results demonstrate that terrain-based algorithms are
capable of measuring lane index. Because these measurements
are immune to lighting conditions, this solution is a good
complement to existing lane-detection camera systems.

I. INTRODUCTION

In order to enable several safety and efficiency features
of vehicle travel and automated highways, accurate vehicle
position is required. The Global Positioning System (GPS)
is the primary means of vehicle localization today; however,
it has several shortcomings including slow update rates,
satellite signal loss, multipath errors, and is vulnerable to
noise and malicious hacking; thus, GPS is not a good stand-
alone solution for vehicle localization.

Alternative methods, including GPS fused with wheel
odometry [1] or inertial measurements have been used to
continue vehicle global positioning during satellite signal
loss, however these methods require initialization from GPS,
and suffer from wheel-slip errors or sensor drift that can
accumulate without bound until corrected when the satellite
signal is restored. Vision [2] and LIDAR (Light Detection
And Ranging) [3] feature matching can be used indepen-
dently of GPS; however, they are both financially and com-
putationally expensive. Beacon networks [4] can be used to
triangulate vehicle position, but the infrastructure to do so
does not exist and would be very expensive to develop.

Vision algorithms have been used for global terrain-based
vehicle localization [5], but vision processing is more com-
monly used for determining relative lateral position along the
highway. Many GPS-free vision-based approaches exist for
lane detection [6] and lane indexing [7] and are advantageous
in that they do not require an external infrastructure or
previously recorded map data; however, vision systems do
not perform well in situations with varying or low lighting
conditions [8].

Terrain-based localization is another alternate to GPS as
a global reference method and consists of matching in-
vehicle sensor measurements to an on-board terrain map. The
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method of correlating height measurements in aircraft [9],
missile [10], and even underwater systems [11] has been used
extensively and was the primary localization method before
GPS was available. These results suggest that a vehicle
can be globally localized by correlating in-vehicle attitude
measurements with a terrain profile map assuming that the
terrain along the vehicles path has been previously mapped
and is available on-board the vehicle. This is the method
employed herein.

This paper investigates the use of vehicle attitude mea-
surements as a means of rapid detection of lane position,
develops an algorithm to achieve this detection, and presents
experimental results from a highway implementation. This
paper is outlined as follows: Section 2 discusses the feasibil-
ity of our terrain-based approach to discriminate lane index.
Section 3 describes the method of collecting the terrain data
for off-line simulation. Section 4 uses a simple Bayesian
belief algorithm to estimate lane index. Section 5 describes
and implements a particle filter algorithm and presents results
for lane indexing along a multi-lane highway. Conclusions
summarize the main results and future opportunities of this
study.

II. LATERAL TERRAIN-BASED LOCALIZATION

Previous work [12] has shown the preliminary feasibility
analysis of the terrain-based method and demonstrated the
ability to localize a vehicle longitudinally along the Thomas
D. Larson Transportation Institute (LTI) Test Track to within
10 cm, the accuracy of the terrain map. Further study [13] has
shown the ability to localize a vehicle longitudinally along an
interstate roadway terrain map over 60 km in length to meter
resolution. While these results are promising, they did not
include lateral position, or even the simpler task of detecting
lane index. Hence, this study was initiated.

Our approach to lateral positioning uses a terrain-based
method of matching the vehicle attitude changes to a pre-
viously recorded and lane-correlated dataset. Roadway vari-
ations that can easily be measured from within the vehicle
include the roads lateral profile, or superelevation, and the
road grade, or slope of the road fore/aft. Estimates of these
two road features are obtainable from in-vehicle roll and
pitch measurements, respectively.

As previously discussed, GPS suffers from several sources
of error which make lateral positioning using GPS unreliable.
An example of these errors is shown in Figure 1, which
shows the GPS/INS-mapped position of the vehicle as it was
traveling down the lanes of a highway. The GPS/INS system
was a defense-grade Novatel Span system factory integrated
with a Honeywell Ring Laser Gyro IMU (HG1700), a
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Fig. 1. Example of the difficulty of lane detection with GPS when the
measured lane positions cross.

very high performance (and cost prohibitive) sensing system
compared to commercial grade sensors. The errors in the
orientation angles are 0.013, 0.013 and 0.04 degrees (one
sigma) for the roll, pitch and the yaw angles respectively.
With several satellites in view but without differential cor-
rection the accuracy of GPS is on the order of one meter,
during low satellite visibility this accuracy will degenerate
further. One can observe the effects of this resolution limit
in practice: the resulting lane positions cross each other and
there are signal discontinuity effects in the right-hand lane
where the vehicle position seems to jump. Such errors are
avoidable if differential GPS (DGPS) is available, but such
capability cannot be assumed due to subscription costs of
DGPS, and limited availability of such correction signals
worldwide.

III. DESCRIPTION OF EXPERIMENT

In order to test the feasibility of terrain-based lateral vehi-
cle positioning, a 1999 Jeep Grand Cherokee was equipped
with a wheel odometry sensor and the NovAtel SPAN GPS-
IMU system, as shown in Figure 2. We drove the vehicle
along one lane of highway 322 in State College, PA without
changing lanes for several kilometers while recording the
odometry, vehicle position, and vehicle attitude. We then
repeated the route along the second lane of the highway,
and then a third time but with lane changes about every
kilometer. During the lane changing maneuvers, the lateral
position, or lane index, was also recorded as truth and used
to denote the right-hand lane as lane 1 and the left-hand lane
as lane 2. Thus the true lateral vehicle position is equal to
1 or 2 while in the corresponding lane. A value of 1.5 is
chosen to denote when the vehicle is moving between lanes
in either direction. The true position measured from DGPS
was also recorded.

The resulting terrain maps for each lane were decimated at
0.5 meters and filtered at 0.1 cycles/meter [12]. An overhead

Fig. 2. Side view of the test vehicle shown with the wheel odometer and
GPS antenna.

view of the map, as well as the pitch and roll measurements
for each lane and the lane-changing data set is shown in
Figure 3. The vehicle responses for each lane as well as the
response during the lane change maneuver are shown. The
dark shaded region depicts when the vehicle was in lane
2, the left-hand lane, during the lane-changing route. The
lightly shaded region shows when the vehicle is in transition
between lanes, and the unshaded region is when the vehicle
is in lane 1, or the right-hand lane.

From Figure 3 it is evident that there is very little variation
in the vehicle’s pitch response between the lanes. While this
may have an adverse affect in differentiating the lane position
of the vehicle, it does show that longitudinal positioning may
be possible along any lane using only the pitch response map
from a single lane.

IV. LANE INDEXING USING A BAYESIAN BELIEF
ALGORITHM

In order to demonstrate a simple terrain-based lane index
estimator, a Bayesian belief algorithm is used first to estimate
lateral position. Because lane indexing is a discrete represen-
tation of the vehicle’s lateral position, a Bayesian algorithm
is a very simple approach to estimating the lane index.
The Bayesian belief algorithm is essentially a method of
estimating lane position from the likelihood that the vehicle
is located within each lane. Under some general assumptions
about the vehicle’s likelihood of changing lanes, the belief
is calculated by comparing the attitude measurements with
the terrain map.

The lateral vehicle localization problem is simplified by
assuming the vehicles longitudinal position along the road-
way is known; this assumption is not restrictive: previous
work ([12], [13]) have already demonstrated accurate lon-
gitudinal vehicle positioning. This assumption allows the
lateral and longitudinal estimation problems to be decoupled
by first estimating the longitudinal vehicle position until
the vehicle is localized sufficiently, then the lateral vehicle
position can be estimated.
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Fig. 3. Overhead view of the terrain data, as well as the measured pitch
and roll maps of each lane and during the lane-changing maneuver.

The Bayesian approach is initialized by setting the belief
of the vehicle’s lane position to be equal for each lane:
Bel(y1,0) = 0.5 and Bel(y2,0) = 0.5 where Bel(yi,k) is
the likelihood that the vehicle is located in lane index i at
time k. The belief of the vehicle’s lane position is updated
every dX = 5 meters of vehicle travel, as measured by a
wheel odometer, by repeating the following steps:

First, knowing that the vehicle is between lanes about only
10% of the route, as calculated from post-processing the
actual lane-maneuver data, the probabilities of the motion

model are estimated to be:

P (y1,k|uk−1, y1,k−1) = 0.9 (1)
P (y2,k|uk−1, y2,k−1) = 0.9 (2)
P (y1,k|uk−1, y2,k−1) = 0.1 (3)
P (y2,k|uk−1, y1,k−1) = 0.1 (4)

where P (y2,k|uk−1, y1,k−1) is the probability that a vehicle
positioned in lane 1 at time k− 1 will be in lane 2 after dX
meters of travel. Because these probabilities were calculated
in post-processing from actual lane-maneuver data, the like-
lihood of changing lanes in normal, everyday driving may
differ significantly.

It is beyond the scope of this study to determine “good”
values for the lane-change probability, but there are several
methods of estimating these numbers. For example, the
likelihood can be based upon the vehicle’s proximity to an
exit, or the time since the last lane maneuver. Regardless of
the method, the objective of this research is to demonstrate
the feasibility of terrain-based localization using a Bayesian
belief algorithm. Thus, these estimates are held constant,
unlike the methods mentioned above which might update
these probabilities at every iteration.

Subsequently, the belief of each state yi,k is updated
according to the motion model by:

Bel(y∗i,k) =
2∑

j=1

P (yi,k|uk−1, yj,k−1) · Bel(yj,k−1) (5)

which, with only two lanes of travel, is expanded to

Bel(y∗1,k) = P (y1,k|uk−1, y1,k−1) · Bel(y1,k−1) (6)
+ P (y1,k|uk−1, y2,k−1) · Bel(y2,k−1)

Bel(y∗2,k) = P (y2,k|uk−1, y1,k−1) · Bel(y1,k−1) (7)
+ P (y2,k|uk−1, y2,k−1) · Bel(y2,k−1)

Second, the belief of each state y∗i,k is updated using
one of two measurement models. The first uses only pitch
measurements:

Bel(ŷi,k) = Bel(y∗i,k) · exp

(
− (θa − θy)2

2 · Rp

)
(8)

the second uses only roll measurements:

Bel(ŷi,k) = Bel(y∗i,k) · exp

(
− (φa − φy)2

2 · Rr

)
(9)

where Rp and Rr are the measurement noise variances in
pitch and roll, θa and φa are the measured pitch and roll of
the vehicle, and θy and φy are the pitch and roll of lane y
according to the estimated position along the terrain map.

Third, the beliefs are normalized according to:

Bel(yi,k) =
Bel(ŷi,k)

∑2
j=1 Bel(ŷj,k)

(10)

Fourth, the estimated lane position is then assumed to be
the lane with the highest belief. The error of the lateral
position estimate is calculated as the absolute difference
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Fig. 4. Lane index estimate error from the Bayesian belief algorithm using
only pitch (a) and only roll measurements (b).

TABLE I
BAYESIAN BELIEF RESULTS USING ONLY THE PITCH MEASUREMENT.

Predicted Position

Measured Lane 1 Lane 2 Error

Lane 1 402 36 8.2%
Mid-Lane 115 78 100%
Lane 2 25 597 4.0%

between the estimated lateral position and the actual vehicle
position of 1, 1.5, or 2 as discussed previously. Because we
restrict the continuous lateral position to ordinal positions of
either lanes 1, 1.5, or 2, while updating the belief of only
lanes 1 and 2, some errors in this algorithm are expected,
particularly during lane change events.

The Bayesian algorithm is implemented with Rp = Rr =
0.1 deg2, is iterated every dX = 5 meters of travel, and
uses only the pitch measurements (Eq. (8)) to correlate lane
position. The resulting lateral estimate errors are shown in
Figure 4a where it is evident that the Bayesian algorithm
was capable of estimating the lane index for the majority of
the route regardless of the little difference between the pitch
maps of each lane.

The algorithm is repeated while using only the roll mea-
surements to estimate lane index, Eq. (9), as shown in
Figure 4b, demonstrating that the Bayesian algorithm was
not as accurate when using the roll measurements as when
correlating pitch. The results are also summarized in Tables
I and II, demonstrating that the Bayesian algorithm exhibited
only 8% error when using the pitch measurement.

From Figure 4 it is evident that regardless of which
weighting function was used, the Bayesian approach is a
simple, and fairly accurate, method of estimating lane index.

TABLE II
BAYESIAN BELIEF RESULTS USING ONLY THE ROLL MEASUREMENT.

Predicted Position

Measured Lane 1 Lane 2 Error

Lane 1 373 65 14.8%
Mid-Lane 89 104 100%
Lane 2 49 573 7.9%

Although the algorithm required an assumed probability of
lane change maneuvers, Eq. (1), these values can be derived
from a variety of methods.

V. LANE INDEXING USING A PARTICLE FILTER

In contrast to the Bayesian belief algorithm, a particle filter
algorithm can be a more robust approach to estimate lateral
position and detect lane-change maneuvers from in-vehicle
attitude measurements instead of using a pre-estimated prob-
ability. In this section, the particle filter algorithm is extended
from the algorithm used in [12] to include a lateral position
estimate and, as discussed previously, is simplified by assum-
ing the vehicle’s longitudinal position along the roadway is
already known.

A. Detecting Lane-Change Maneuvers

As opposed to using an estimated likelihood of a lane
change maneuver, as was used in the Bayesian Belief algo-
rithm, it is assumed that the vehicle’s yaw angle is available
and measured in order to detect a lane change. This can
be accomplished through a variety of sensors and methods;
for example, using a digital compass or integrating steering
input to estimate vehicle yaw angle. The latter method, as
well as several others, were attempted in order to detect
a lane-change maneuver using the steering input using the
present data set, but the “play” in the steering column of the
instrumented vehicle was too large to acquire an adequate
yaw measurement. Instead of using the steering input, the
yaw angle is collected using the GPS/IMU system already
used to measure pitch and roll. The measured yaw angle
of each lane is compared with the yaw angle of the lane-
changing maneuver as shown in Figure 5. This method
may be somewhat restrictive because GPS/IMU systems
are not widespread, hence yaw angle measurements are not
readily available in most production vehicles. Nonetheless,
this method is still useful as lane index is generally not clear
even with an accurate GPS/IMU system, as shown in Figure
1.

The variations in the yaw angle of the lane-changing
maneuver from the yaw angle of the individual lanes can be
seen in Figure 5, indicating a possible metric for determining
a lane change. Subtracting the yaw measurements of the
mapped lanes from the measured yaw angle during the lane-
changing maneuver is shown in Figure 6. It can be seen that
using the difference in yaw can be used to estimate when
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Fig. 5. In-vehicle yaw measurement of each lane and lane change
maneuver.
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Fig. 6. The difference in yaw angle between the lane-changing maneuver
and the mapped yaw angle of the true lane position.

a lane-change maneuver occurs. This ability of measuring a
change in lane position can be used as additional information
in the particle filter algorithm to shift the particles laterally
between the parallel terrain maps of each travel lane.

B. Lane Indexing Particle Filter Algorithm

The lateral particle filter algorithm is modified from that
described in [12] in order to include the lateral position
estimate. The algorithm is initialized laterally (Y 0

p ) by
dividing N number of particle positions evenly between
the two lanes of travel. The particles are then initialized
longitudinally (X0

p ) about the estimated longitudinal position
using a Gaussian distribution with a standard deviation of
one meter. This assumes that the vehicle has been localized
longitudinally with a standard error of one meter with a
likelihood of existing in either lane. The particle filter is
then implemented by iterating the following:

First, the longitudinal position estimates or particles, de-

noted by Xp, at iteration k, are updated from the previous
estimate using:

Xk
p = Xk−1

p + dX + w (11)

where dX is the longitudinal vehicle travel as measured by
wheel odometry, and w is Gaussian white process noise of
variance Qx. The lateral position estimates, denoted by Yp,
are updated by

Y k
p = Y k−1

p + K · (ψa − ψp) + wy (12)

where ψa is the actual yaw angle of the vehicle, ψp is
the predicted yaw angle, K is a gain, and wy is Gaussian
white process noise of variance Qy added to increase ran-
domness and prevent degeneracy. The predicted yaw angle
ψp is calculated every iteration from the yaw map at the
current estimated lane position. After the particle positions
are updated, the particle’s lateral positions are rounded to
the closest lane. Thus, the particles are free to roam in
the longitudinal direction of the roadway according to the
measured odometry, but restricted in the lateral direction to
exist only along the mapped lanes; hence, large errors are
expected to occur when the vehicle traverses between lanes.

Second, the weights of the position particles are updated
by measuring the in-vehicle pitch and roll and comparing
it to the particle’s pitch and roll using a particle weighting
function. The first weighting function uses only the pitch
measurement to weight the particles:

qk
i = exp

(
−0.5 · R−1

p ·
(
θk

a − θk
p,i

)2
)

(13)

the second uses only the roll measurement:

qk
i = exp

(
−0.5 · R−1

r ·
(
φk

a − φk
p,i

)2
)

(14)

where Rp and Rr are the measurement noise variances in
pitch and roll, θa and φa are the measured pitch and roll
of the vehicle, θp,i and φp,i are the ith particle’s pitch and
roll corresponding to its position along the terrain map. A
normalizing factor η equal to the sum of the particle weights
is then multiplied to qk

i after the weights are calculated.
Third, the particles are re-sampled to remove particles

with little weight and duplicate particles with high weight
according to:

c = cumsum
(
qk

)

u1 = rand(1) · N−1

i = 1
for j = 1...N

uj = u1 + (j − 1) · N−1

while uj > ci

i = i + 1
end
Xk

p,j = Xk
p,i

Y k
p,j = Y k

p,i

end

(15)

where rand(1) is an evenly distributed random number in
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Fig. 7. Lane index estimate error from the PF algorithm using only pitch
(a) and only roll measurements (b).

[0, 1] and cumsum is the cumulative sum.
Fourth, at every iteration the vehicle’s position is estimated

as the mean position of the particle estimates. The error of
the lateral position estimate is calculated as the absolute
difference between the estimated lateral position and the
measured vehicle lane index of 1, 1.5, or 2 as discussed
previously.

C. Lane Indexing Results
Using the terrain data shown in Figure 3, the lane indexing

particle filter algorithm is implemented using dX = 5
meters, Rp = Rr = 0.1 deg2, Qx = (0.01 · dX)2 m2, Qy =
0.01 and K = −0.5. Because the algorithm displayed such
accurate results, the number of particles could be reduced to
only N = 10 particles, through trial-and-error to determine
the minimal amount needed for accurate positioning. This is
in contrast to findings in [12] where N = 1000 particles/mile
was calculated to be necessary for accurate longitudinal
positioning.

The results of the algorithm using N = 10 particles are
shown in Figure 7 where the lane index is estimated using the
pitch or roll measurement weighting functions, Eqs. (13) and
(14), respectively. The results demonstrate a nearly perfect
lane estimate for using either pitch or roll measurements.
This method clearly indicates the capability of determining
lane index along a multi-lane roadway, given the roll, pitch,
and orientation or yaw maps of each lane.

The results also indicate that the particle filter algorithm
was more accurate than the Bayesian belief algorithm and did
not require an estimated probability of the vehicle performing
a lane-change event. However, the particle filter algorithm
required an additional sensor in order to detect lane change
maneuvers.

VI. CONCLUSIONS

A terrain-based approach to lateral vehicle positioning
along a multi-lane highway has been presented. The particle

filter algorithm was shown to be an accurate method of
estimating the lane position while in lane and, in contrast
with vision systems, the terrain-based approach provides
an accurate means of lane indexing that is independent
of lighting conditions or lane markers. A Bayesian belief
algorithm was also demonstrated to be a simple means of
estimating lane index.

This work is ongoing, but additional items of study are
obvious, including a method of accurately estimate lateral
position within each lane. The vehicle’s exact lateral position
relative to a lane was not measurable with high accuracy in
this study, due to the limitations of GPS as noted earlier
and lack of access to lane detection camera systems. An
interesting follow up to this study would be to measure
relative lane position using lane marker detection to discern
the true lateral accuracy of this lane estimation method,
and to determine whether a significant portion of the error
observed in lane index estimation is instead error in lane
keeping by the driver.

Additionally, consideration of lower-grade vehicle sensors
and testing across multiple vehicles are also important con-
siderations that deserve further attention.
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