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Abstract— This paper deals with necessary and sufficient
conditions to transform a class of switched systems to a
particular form dedicated to observer design with and without
zeno phenomena. Meanwhile, sufficient observability conditions
for switched system with or without zeno phenomena are given.
In the last section, some observer structures are proposed upon
two academical examples.

Index Terms— Zeno phenomena, switched system, observ-
ability.

I. INTRODUCTION

ZEno phenomenon is well known in physical domain,

for example the bouncing ball case leading to many

theoretical developments and simulations [2],[20]. In systems

theory, the first order sliding mode [23] and high order

sliding mode [14] [24] have been powerfully used in control

design, as well as in observer design for many years. In

control design problems, the main property of sliding mode is

convergence of the system behavior in finite time under some

matching condition [11] (respectively some observability

condition [27] in observer design problems). Moreover, this

property corresponds to a particular type of Zeno phenomena

(i.e. chattering zeno [2] for the first order sliding mode).

Based on this correspondence, this paper presents observ-

ability conditions for hybrid system with zeno phenomena

by considering sliding mode and normal form approaches.

These lead to two normal forms: one directly inspired on

the observer matching condition and the other one on the

Filippov theorem [16] and geometrical results [17]. For a

sake of simplicity, we don’t consider a switch on the output

function and reset function at switching time.

Obviously, both observability forms presented in this paper

can make sense only if there exist at least one observer

for estimating the states when there exists zeno phenomena.

Consequently, it is necessary to give some samples of build-

ing observers for each observability form presented in this

paper. This paper is organized as follows: Section II gives

the two proposed observability forms. Then conditions for

the existence of diffeomorphism which transforms the system

into one of the two normal forms are proposed in section III.

Afterwards, sufficient observability conditions are presented
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in section IV. In section V, conditions for the existence of

diffeomorphism which transforms the system into one of the

two normal forms for the linear hybrid system are proposed.

In the last part, some observers are built for the two normal

forms at the end of this paper.

II. PROBLEM STATEMENT

Let us consider the following class of switched system:

ẋ = fq(x), q ∈ {1, . . . , N} (1)

y = h(x) (2)

where x(t) ∈ U ⊂ ℜn is the state, y(t) ∈ ℜ is the

measured output and functions fq : U → ℜn, q ∈ Q and

h : U → ℜ are smooth for each q. q is the discrete state

which may be driven by a switching function σ, where

σ : ℜ → Q = {1, . . . , N}.

In order to deal with observability of systems (1), we will

assume within this paper the following:

Assumption 1: For each q ∈ Q the pair (y, fq) is regularly

weakly locally observable 1. Thus, rank{dLj
fq

h, j = 0 :
n − 1} = n.

Hereafter we give two normal forms, each of them corre-

sponds to a particular hybrid observability form and different

assumptions on the discrete state are requested in order to

consider state observation with zeno phenomena.

A. First observability form

The first proposed normal form gives the following form:
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(3)

y = h̃(ξ) = ξn (4)

where q ∈ Q is the discrete state.

Remark 1:

1−) It is clear from the form (3)-(4) that the observation of

the state ξ is independent with respect to the discrete state

q.

2−) In the form (3)-(4) the function f̃q(ξ) may be considered

as a perturbation, consequently it is not surprising that the

necessary and sufficient conditions to transform the original

1At the classical locally weakly observability [19], it is added the
regularity of the first n − 1 derivatives.
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system in this form are similar to the observability matching

condition [27].

B. Second observability form

The second case considered in the next section is to

exhibit sufficient and necessary conditions for the existence

of diffeomorphism z = φ(x) such that the system (1)-(2) is

transformed into the following form:

ż = α0(z) + γq(y), q ∈ Q (5)

y = zn (6)

Remark 2: The local weakly observability property of

system (5-6) doesn’t depend on the term of γq(y). Thus,

it is equivalent to the observability of the pair (α0(z), zn).

III. MAIN RESULTS

In this section, the structural conditions is analyzed in

order to transform by diffeomorphism system (1)-(2) into

one of both cases previously introduced. Here the difference

between two functions is considered:

f∆κ,ν
(x) = fκ(x) − fν(x), κ, ν ∈ Q

And this function will be used in the analysis of both case.

A. Condition for the existence of a diffeomorphism in the

first case

Hereafter, sufficient and necessary condition are given for

the existence of diffeomorphism ξ = ψ(x) such that system

(1)-(2) is transformed into the form (3)-(4). Moreover, the

proof of the next proposition is a constructive one.

Proposition 1: Under assumption 1, there exist a diffeo-

morphism ξ = ψ(x) which transforms the system (1)-(2)

into the form (3)-(4) if and only if the following conditions

are fulfilled:

Lf∆κ,ν
Lj−1

fκ
h = 0 ∀κ, ν ∈ Q and ∀j ∈ {1, . . . n − 1} (7)

Proof: Necessity: the form (3)-(4) satisfy assumption

1 and condition (7).

Sufficiency: setting zn = ψn = h, condition (7) gives

(Lfκ
h = Lfν

h) and assumption 1 implies that dh, dLfκ
h

are linearly independent, consequently it is possible to

define zn−1 = Lfκ
h = ψn−1. Finally by induction the

diffeomorphism is defined as follow zn−i = Li
fκ

h for

i ∈ {1, . . . n − 1}.

Remark 3: If f∆κ,ν
is not trivial then assumption 1 and

condition (7) imply that Lf∆κ,ν
Ln−1

fκ
h 6= 0. Note that, this

condition is closed to the notion of relative index [26] and

observability matching condition [27]. Moreover, under this

condition and for a switch σ without Zeno we can estimate

the discrete state q. (For more details see [6][15]).

Remark 4: From the observability concept introduced by

M. Fliess and S. Diop [13] in the theoretical frames of differ-

ential algebra, proposition 1 is equivalent to the existence of

a common function F (F is independent to q.), for all sub-

systems, which verifies the following algebraic equation:

x = F (y, ..., y(n−1))

where y(j) denotes the jth derivative of y.

B. Condition for the existence of a diffeomorphism in the

second case

Hereafter, we will exhibit sufficient and necessary condi-

tions for the existence of the diffeomorphism for the second

case φ, which transforms the system (1)-(2) into the system

(5)-(6).

Theorem 1: Under assumption 1, sufficient and necessary

conditions for the existence of diffeomorphism φ(x) such

that the system (1)-(2) is transformed into system (5)-(6)

are:

There exist a family of independent vector fields {τ1, ...τn}
such that:

a)− dh · τn = 1

b)− dh · τi = 0, ∀i ∈ {1, ..., n − 1}

c)− [τi, τj ] = 0, ∀(i, j) ∈ {1, ..., n} × {1, ..., n}

d)− [τi, f∆κ,ν
] = 0, ∀i ∈ {1, ..., n − 1},∀κ, ν ∈ Q

Proof:

1) Sufficiency: As the family {τi}1≤i≤n is a basis of the

tangent fibre bundle TU of U and thanks to condition c)
there exists a change of coordinates z = φ(x) such that the

differential function of φ satisfies:

φ∗(τi) =
∂

∂zi

for all i ∈ {1, . . . , n}. (8)

Now we will calculate f∆κ,ν
in the z coordinates, from d)

and the linearity of φ∗ we have for i ∈ {1, . . . , n − 1}:

∂

∂zi

(φ∗(f∆κ,ν
)) = [φ∗(τi), φ∗(f∆)] = 0, (9)

which implies that:

φ∗(f∆κ,ν
) =

n
∑

i=1

ϕi(zn)
∂

∂zi

Conditions a) and b) mean that zn = y. Therefore there exist

functions ϕκ,ν
i (y)1≤i≤n on U such that:

f∆κ,ν
=

n
∑

i=1

ϕκ,ν
i (y)τi. (10)

2) Conditions a), b), c) and d) are necessary. In fact, assume

that:

f∆κ,ν
(x) =

n
∑

i=1

ϕκ,ν
i (y)

∂

∂xi

and y = xn. (11)

then the seek base is τi = ∂
∂xi

for i ∈ {1, . . . , n}.

Remark 5: A class of dynamical systems which fulfill the

conditions of theorem 1 are the dynamical systems, lineariz-

able by the same diffeomorphism and output injection, which

are characterized by the theorem of Krener and Isidori [17].

Here after we will give an example of dynamical system

which satisfies the theorem 1, however, it doesn’t satisfy the

theorem of Krener and Isidori [17]. This means that the class

which satisfies the theorem 1 is larger than the class which

satisfies the theorem of Krener and Isidori, this is obviously

due to the fact that we avoid a linear condition for α0.

Example 1: Consider this dynamical example,
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(

ẋ1

ẋ2

)

=

(

−x1(x2 − x1)
x1(x1 − x2 − 1)

)

+

(

(x2 − x1)
2

0

)

y = x2 − x1 (12)
(

ẋ1

ẋ2

)

=

(

−x1(x2 − x1)
x1(x1 − x2 − 1)

)

+

(

2(x2 − x1)
2

0

)

y = x2 − x1

Now after assemble calculations, the vector fields τ are given

by τ1 =

(

1
1

)

and τ2 =

(

0
1

)

.

From system (12), the difference between the associated

two dynamical functions can be obtained as f∆(x1, x2) =
(

−(x2 − x1)
2

0

)

.2 By some calculation, the condition a)

and b) can be easily verified. And the condition c) is obvious

since the vector fields τ1, τ2 are with constant values. For

condition d), [τ1, f∆] = Lτ1
f∆ = 0.

Through the following diffeomorphism
(

ξ1

ξ2

)

= φ(x) =

(

x1

x2 − x1

)

The switched system (12) can be transformed as
(

ξ̇1

ξ̇2

)

=

(

−ξ1ξ2

−ξ1

)

+

(

ξ2
2

−ξ2
2

)

y = ξ2
(

ξ̇1

ξ̇2

)

=

(

−ξ1ξ2

−ξ1

)

+

(

2ξ2
2

−2ξ2
2

)

y = ξ2

Remark 6: A necessary condition for the existence of

diffeomorphism φ(x) such that the system (1)-(2) is trans-

formed into system (5)-(6) is:

Rank

(

∂f∆

∂x
∂h
∂x

)

= Rank(
∂h

∂x
) = 1,

on U .

Remark 7: It is important to mention that the previous

theorem gives a necessary and sufficient conditions for

transforming the system (1)-(2) into the system (5)-(6) but it

is necessary to introduce also some extra conditions on the

knowledge of the state q (or equivalently σ) in order to be

able to design an observer.

IV. SUFFICIENT OBSERVABILITY CONDITIONS

A. Case One

For system of the form (3)-(4) algebraic estimator [3], [21]

or step by step sliding mode observer [4], [15] work well in

the continuous state estimation, because in the first equation

of (3), ξ̇1 is never considered.

More precisely, the output derivative is considered only until

n−1 in algebraic solution and the last step is a sliding mode

observer of one in the step by step sliding mode observer, i.e.

it is requested that ż1 is bounded and the bound is known.

2When the switched system is only composed of two subsystems, then
f∆1,2

can be abbreviate to f∆.

From these and proposition 1, it is possible to set the

following corollary:

Corollary 1: Under assumption 1, a sufficient condition

for the observability of the continuous state of system (5)-

(6) with zeno phenomena is:

Lf∆κ,ν
Lj−1

fκ
h = 0 ∀κ, ν ∈ Q and ∀j = {1, . . . , n − 1}

B. Case two

In the form (5)-(6), the discrete state q is not considered

as a perturbation, consequently, the following assumption is

requested:

Assumption 2: The discrete state q is known.

Obviously, this assumption is practically impossible to

be guarantied in the case of zeno phenomena, such as for

the Chattering Zeno (i.e. after some time the dwell time is

exactly equal to zero) or for the Genuinely Zeno (i.e. the

dwell time is never equal to zero)[2]. So assumption 2 is

replaced by the following one:

Assumption 3:

a- The discrete state q is Henstock-Kurzweil-Pettits inte-

grable3[18][8][28] or NV-Integrable[12] and its averages is

measured via a low pass filter of sufficiently large bandwidth

on time interval [0, α]
b- The system (1)-(2) is affine with respect to the discrete

state q.

The second condition of the assumption above and the con-

ditions of theorem 1 imply that there exists a diffeomorphism

such that system (1)-(2) can be transformed into:

ż = α0(z) + γ(y)q (13)

y = h̃(z) = zn (14)

So practically, it is only possible to obtain the filtered discrete

state qf (instead of the real discrete state q).

Now, let us consider the system (5)-(6) reduced to the

common dynamics:

ż = α0(z) (15)

y = h̃(z) = zn (16)

and assuming:

Assumption 4: For the system (15)-(16), there exist an

observer such that the continuous state observation error (i.e.

the difference between the continuous state ant its estimate)

is exponentially stable.

Remark 8: Under some specific assumptions as Lipschitz

condition, persistent excitation,.. it is possible to use classical

high gain observer [5] or adaptive observer [7] For these

observer classes, the exponential stability of the continuous

state observation error is guarantied.

From the previous assumption and theorem 1, it is possible

to set the following proposition:

Proposition 2:

• − A) Assumptions 1, 2, 4 and conditions of the

theorem 1 are sufficient conditions for the continuous state

3see also Denjoy-Khinchine integrable.
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observability4 of system (1)-(2) with zeno phenomena.

• − B) Assumptions 1, 3, 4 and conditions of theorem 1

are sufficient conditions for the practical5 continuous state

observability of the system (1)-(2) with zeno phenomena.

Proof: Proof of the part A of the proposition: there

exists an observer of the form:

˙̂z = β(ẑ, y, ŷ) (17)

ŷ = ẑn (18)

which ensures the exponential stability of the continuous

state observation error e = z − ẑ. Consequently, there exists

a Lyapunov function V (e) with respect to (15),(16) and

(17),(18) such that:

V̇ =
∂V

∂e
(α0(z) − β(ẑ, y, ŷ)) < −KV (19)

with K > 0.

Modifying (17),(18) as follow:

˙̂z = β(ẑ, y, ŷ) + γq(y) (20)

ŷ = zn (21)

The state observation error for system (5)-(6) and observer

(20)-(21) is exponentially stable, because the previous Lya-

punov function in this case gives:

V̇ =
∂V

∂e
(α0(z) − β(ẑ, y, ŷ) + γq(y) − γq(y)) < −KV

Proof of the part B: the observation error becomes:

ė = α0(z) − β(ẑ, y, ŷ) + γ(y)(q − qf ) (22)

From condition a) of the assumption 3, it can be obtained

that

ṗ = γ(y)(q − qf ) (23)

which is Cauchy problem in the sense of Henstock-Kurzweil-

Pettis integrals. Using the same method as Filippov in [16]

page 17, it is possible to set ǫ = e−p and it can be obtained

that

ǫ̇ = α0(z) − β(ẑ, y, ŷ) (24)

which admit a local solution in the framework of

Carathodory for t ∈ [0,Γ] ⊂ [0, α]. Moreover, the assump-

tion 4 and the observer (17)-(18) ensure that there exist a

Lyapunov function V (e) for (15)(16), which verifies (19).

Consequently, derivation of V (ǫ) with respect to (24), gives

V̇ (ǫ) =
∂V

∂ǫ
(α0(z) − β(ẑ, y, ŷ)) (25)

As ǫ = e − p, it implies that ∂V
∂ǫ

|ǫ = ∂V
∂e

|ǫ and from the

assumption 4, it is possible to rewrite the equation (25) as

follows

V̇ (ǫ) =
∂V

∂e
|e(α0(z) − β(ẑ, y, ŷ))

−
1

2

∂2V

∂e2
|e[O(p) ⊗ (α0(z) − β(ẑ, y, ŷ))]

4The observation error can be assign in any measurable vicinity of zero
5The observation error must be as small as it can be but not zero.

with limp→0 O(p) = 0. And (19) gives

V̇ (ǫ) ≤ −KV (ǫ)

+

∣

∣

∣

∣

1

2

∂2V

∂e2
|e[O(p) ⊗ (α0(z) − β(ẑ, y, ŷ))]

∣

∣

∣

∣

(26)

As for all ǫ > 0, there exists a filter and t1 ≥ 0 such that

∀t > t1, we have ‖p‖ = sup0≤t≤Γ

∣

∣

∣

∫ t

t1
γ(y)(q − qf )

∣

∣

∣ < ε.

Consequently, it is possible, for each Vd > 0 to set ε << Vd

2
and the inequality (26) becomes

V̇ (ǫ) ≤ −KV + |O(ε)|

So, one can conclude that for e /∈ EVd
:= {e/V (e) < Vd},

such that

V̇ (ǫ) ≤ −
K

2
V (ǫ)

Because, ε << Vd

2 guaranties that |O(ε)| < Vd

2 .

V. LINEAR VIEWPOINT

For linear case, system (1)-(2) would be written as

ẋ = Aqx, q ∈ {1, . . . , N} (27)

y = Cx (28)

where Aq is a n × n matrix and C is an n × 1 vector.

A. Condition for the first case

The sufficient and necessary condition for the existence

of linear diffeomorphism ξ = Φx such that system (27)(28)

can be transformed into the form (3)-(4) is given by,

Proposition 3: Under assumption 1, there exists a linear

diffeomorphism ξ = Φx which transforms the system (27)-

(28) into the form (3)-(4) if and only if the following

condition is fulfilled:

• CAj
κ = CAj

ν , where j = 1, ..., n − 1, κ, ν ∈ Q

Proof: Necessity:

System (3)-(4) shows that for each i ∈ {1, ..., n − 1}, it is

satisfied

y(i)
κ = y(i)

ν (29)

this means that the i-th derivative is independent from the

discrete state q, i.e. the necessity of the condition is verified.

Sufficiency:

Construct a diffeomorphism as

ξk = CAn−k
q

where k ∈ {1, ..., n − 1} and q = κ or q = ν.

Then, we can easily verify the sufficiency of condition.
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B. Condition for the second case

The sufficient and necessary condition for the existence

of linear diffeomorphism z = Ψx such that system (27)-(28)

can be transformed into the form (5)-(6) is given as,

Proposition 4: Under assumption 1, a sufficient and nec-

essary condition for the existence of linear diffeomorphism

z = Ψx such that the system (27)-(28) is transformed into

system (5)-(6) is that there exist a family of independent

vectors {τ1, ..., τn} such that:

a) C · τn = 1;

b) C · τi = 0, with i ∈ 1, ..., n − 1;

c) (Aκ−Aν)·τi = 0, with i ∈ 1, ..., n − 1, and ∀κ, ν ∈ Q.

Proof: a) Sufficiency:

Because the vectors {τ1, ..., τn} are independent, there ex-

ists a diffeomorphism which is z = Ψx, where Ψ−1 =
col{τ1, ..., τn}.

So, consider the following system

ẋ =
Aκ + Aν

2
x + Hq

Aκ − Aν

2
x

where Hq =

{

−1 for q = κ
1 for q = ν

.

And rewrite the first derivative of z with the system above

ż = Ψẋ

= Ψ
Aκ + Aν

2
Ψ−1z + HqΨ

Aκ − Aν

2
Ψ−1z

From condition (a)− (b), we obtain that y = Cx = zn. And

from condition (c), HqΨ
Aκ−Aν

2 Ψ−1z = Bqzn = Bqy.

b) Necessity:

Suppose there exists a diffeomorphism z = Ψx, then

ż = Ψẋ

= Ψ
Aκ + Aν

2
Ψ−1z + HqΨ

Aκ − Aν

2
Ψ−1z

In fact col{τ1, ..., τn} = Ψ−1, then the condition (a) − (c)
can be easily verified.

VI. SIMULATIONS

The objective of this section is to highlight the efficiencies

of these observability conditions. Moreover, some observers

for each system with zeno phenomena are given. To make

the simulations more general, three observer structures are

adapted, ALIEN observer [21][3][22][9], the second or-

der sliding mode observer[23][15][24], and the high-gain

observer[5].

A. Example for the first observability form

Let us consider the very simple academical system in the

form (3)-(4)

ż1 = fq(z1, z2), ż2 = z1 (30)

y = z2 (31)

with fq = −z1 − 2z2 + q and q = sign(w) where w = N is

a white noise. This form of q theoretically leads to the Zeno

phenomenon. For this system, we apply the ALIEN observer

and the second order sliding mode observer to estimate z1,
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(Right)Corresponding Error.
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Fig. 2. (Left)Result of ALIEN Observer with noise;
(Right)Corresponding Error.

one state of system (30)-(31). ALIEN algorithm is numerical

differential algebraic approach, proposed by M. Fliess et al.

in [3], and roughly speaking, the main fundamental principle

of this method is the derivative of Laplace transform with

respect to s starting from Taylor expansion in the time

domain of the original signal. In this paper, we use the

individual estimation algorithm [3].

Meanwhile, the second order sliding mode observers are

built for the continuous states[23] [15] [24]. Fig 1, 3 are

the results of ideal condition without any noise in the

measurement, and Fig 2, 4 are the results of observers with

noisy measurements, which makes the simulation a little

more realistic, and the power of the noise are assigned to

Enoise = 0.01. The left figures of Fig 1,2,3,4 are the results

of observer and the right are the difference between observer

and original value of the state. Obviously, the state z1 can be

observed from these observer structures, and from the error

plot, defined as eerro = |ẑ1 − z1|, the performance of the

observer structures can be considered satisfied.

B. Example for second observability form

Let us consider another very simple academical system in

the form (5)-(6)

ż1 = −z2, ż2 = z1 + (−z3
2 + q) (32)

y = z2 (33)
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Fig. 3. (Left)Result of second order sliding mode observer without noise;
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with q = 1.5 + 0.5sign(w) and w = N + e−t, where N is

a white noise. This form of q theoretically leads to infinite

commutation in finite time.

In this case, due to assumption 4, high-gain observer is

adapted.

For this system (32)-(33), the high-gain observer is de-

signed as follows

˙̂z = A0ẑ + φ(ẑ) − Λ(λ)−1K0(C0ẑ − y) (34)

where A0 = (0,−1; 1, 0), C0 = (0, 1) and φ((ẑ)) =
(0,−ẑ3

2 + qf )T . Here, we choose λ = 10, K0 = (0, 100)T

and Λ(λ)−1 = diag(1, λ). The results are shown in Fig 5

without noise in the measurement, and Fig 6 with noise in

the measurement. Obviously in both cases the observers work

well.
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Fig. 6. (Left)Result of High-Gain Observer with noise;
(Right)Corresponding Error.

Above all, we can make a conclusion that it is possible

to observe a hybrid system under specific conditions even if

zeno phenomenon occurs. Obviously this work considers a

very primary case and many other forms and cases should

be considered. One of the most difficult problem for us is to

observe hybrid systems with jumps under Zeno phenomenon

(i.e. the case of bouncing ball).
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