
Output Agreement in high-dimensional multi-agent systems

Guangming Xie, Long Wang and Yingmin Jia

Abstract— In this paper, the output agreement problem for
networks of dynamic agents based on high-order state-space
descriptions is formulated and investigated. The agent dynamics
is described by a time-invariant linear system with matrices
A, B and C. The agreement problem, concerning the calculation
of an agreed value based on the agent outputs, is proposed
for such a class of networks. A linear state feedback control
protocol for such networks is established for solving such an
agreement problem. The control protocol includes two parts: a
local state feedback controller and the interactions among the
finite neighbors. A sufficient condition for the existence of such
a control protocol is given. The corresponding design algorithm
is presented, as well. Some numerical simulations are presented,
which are consistent with our theoretical results.

I. INTRODUCTION

In recent years, decentralized control of communicating-

agent systems has emerged as a challenging new research

area. It has attracted multi-disciplinary researchers in a wide

range including physics, biophysics, neurobiology, systems

biology, apply mathematics, mechanics, computer science

and control theory. The applications of multi-agent systems

are diverse, ranging from cooperative control of unmanned

air vehicles, formation control of mobile robots, control

of communication networks, design of sensor-network, to

flocking of social insects, swarm-based computing, etc. A

common characteristics of the relevant analytical techniques

is that they are deeply connected with decentralized, or

networked control theory.

Agreement and consensus protocol design is one of the

important problems encountered in decentralized control of

communicating-agent systems. It has been paid attention

for a long time by computer scientists, particularly in the

field of automata theory and distributed computation [1].

Agreement upon certain quantities of interest is required in

many applications such as multivehicle systems, multirobot

systems, groups of agents and so on.

In the past decade, quite a tremendous amount of interest-

ing results have been addressed for agreement and consensus

problems in different formulations due to different type of

agent dynamics and different type of tasks of interest. In [2],

the problem of cooperation among a collection of vehicles

performing a shared task using intervehicle communication
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to coordinate their actions was considered. The agents in

the group were with linear dynamics. Tools from algebraic

graph theory were used to prove the formation stability. In

[3], a dynamic graph structure was provided as a convenient

framework for modeling distributed dynamic systems where

the topology of the interaction among its elements evolves in

time. Some promising directions were highlighted as well.

Following the pioneering work in [4], there are many

researchers have worked in analysis of swarms [5]-

[9],[13]-[24]. In [5], the stability analysis for swarms with

continuous-time model in n-dimensional space was ad-

dressed. Following this direction, stability analysis of social

foraging swarms that move in an n-dimensional space ac-

cording to an attractant/repellent or a nutrient profile was

addressed in [6]. The corresponding results in the case of

noisy environment was given in [7].

Differently from the above disciplinary, in [8] and [9], a

model of coordinated dynamical swarms with physical size

and asynchronous communication was introduced and analy-

sis of stability properties of such swarms were presented with

a fixed communication topology. A potential application of

these theoretical results is in the field of the leader-follower

formation control of multi-robot systems [10]-[12].

In [13], a simple discrete-time model of finite autonomous

agents all moving in the plane with same speed but with

different heading was proposed. Moreover, the concept of

Neighbors of agents was introduced. Some simulation results

to demonstrate the nearest neighbor rule were obtained.

Based on this model, theoretical explanations were first given

in [14] for the simulation results in [13]. Some sufficient

conditions for coordination of the system of agents in the

point of view of statistical mechanics. Another qualitative

analysis for this model under certain simplifying assumption

was given in [15].

In [16], a systematical framework of consensus problem

in networks of dynamic agents with fixed/switching topol-

ogy and communication time-delays was addressed. Under

the assumption that the dynamic of the agent is a simple

scalar continuous-time integrator ẋ = u, three consensus

problems were discussed. They are directed networks with

fixed topology, directed networks with switching topology

and undirected networks with communication time-delays

and fixed topology. Moreover, a disagreement function was

introduced for disagreement dynamics of a directed network

with switching topology. The undirected networks case was

discussed by the same authors in [17]. Some other interesting

results can be seen in [18]-[24] and the references therein.

In this paper, we follow the work in [16][17] and consider

consensus problem for a more general class of networks. In
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our network model, the dynamic of the agents is given by a

time-invariant linear system (A,B, C) with single input and

single output. Such a dynamic is more general and complex

than a scalar integrator in [16][17] and can be used to model

more processes in reality. The main contribution in this paper

is to pose and address output agreement problems for such

networks with fixed topology.

An outline of this paper is as follows. In Section II, we

recall the algebraic graph theory. In Section III, the output

agreement problem is formulated. The control protocol and

the whole network dynamics are given in Section IV. In

Section V, the existence of the protocol and the design

algorithm are discussed. Some simulation results are given in

Section VI. Finally, Section VII concluded the whole paper.

II. ALGEBRAIC GRAPH THEORY

Let G = (V, E ,A) be a undirected graph with the set of

vertices V = {v1, v2, · · · , vM} , the set of edges E ⊆ V×V ,

and a weighted adjacency matrix A = [aij ] with nonnegative

adjacency elements aij . The node indexes of G belong to a

finite index set I = {1, 2, · · · ,M}. An edge of G is denoted

by eij = (vi, vj). The adjacency elements associated with

the edges are positive, i.e., eij ∈ E ⇐⇒ aij > 0. Moreover,

we assume aii = 0 for all i ∈ I. Since the graph considered

is undirected, it means once eij is an edge of G, eji is an

edge of G as well. As a result, the adjacency matrix A is a

symmetric nonnegative matrix.

The set of neighbors of node vi is denoted by Ni = {vj ∈
V : (vi, vj) ∈ E}. A cluster is any subset J ⊆ V of the

nodes of the graph. The set of neighbors of a cluster NJ is

defined by

NJ =
⋃

vi∈J

Ni. (1)

The degree of node vi is the sum
∑

j 6=i aij , denoted by

deg(vi). The degree matrix is an M × M matrix define as

∆ = [∆ij ] where

∆ij =

{

deg(vi), i = j;
0, i 6= j.

The Laplacian of graph G is defined by

L = ∆ − A (2)

An important fact of L is that all the row sums of L are zero

and thus 1M = [1, 1, · · · , 1]T ∈ R
M is an eigenvector of L

associated with the eigenvalue λ = 0.

A path between each distinct vertices i and j is

meant a sequence of distinct edges of G of the form

(vi, vk1
), (vk1

, vk2
), · · · , (vkl

, vj). A graph is called con-

nected if there exist a path between any two distinct vertices

of the graph.

Lemma 1: [25] The graph G is connected if and only if

rank(L) = M − 1.

By Lemma 1, for a connected graph, there is only one zero

eigenvalue of L, all the other ones are positive and real.

III. OUTPUT AGREEMENT PROBLEMS ON NETWORK

Given a graph G, let xi ∈ R
n, yi ∈ R denote the state

vector and the output of node vi, respectively. Suppose each

node of the graph G is a dynamic agent given by

ẋi(t) = Axi + Bui, (3)

yi(t) = Cxi, i = 1, · · · ,M.

where xi ∈ R
n is the state of the agent i, ui ∈ R is the

single control input of the agent i, and yi ∈ R is the single

output of the agent i. A,B, C are constant matrices with

proper dimensions. We refer to (G, A, B, C, x, y) with x =
(xT

1 , xT
2 , · · · , xT

M )T and y = (y1, y2, · · · , yM )T as a network

with state x ∈ R
nM , output y ∈ R

M , the linear constant

dynamics (A,B, C) and the topology G.

We assume the pair (A,B) is controllable. Without loss

of generality, we assume that (A,B, C) is in controllable

canonical form, i.e.,

A =











0 1
...

. . .

0 1
−α0 −α1 · · · −αn−1











, B =











0
...

0
1











and

C = [c0, c1, · · · , cn−1].

We say a state feedback

ui = ki(xi, xj1 , xj2 , · · · , xjli
) (4)

is a protocol with topology G if the cluster Ji =
{vj1 , vj2 , · · · , vjli

} of nodes with indexes j1, j2, · · · , jli ∈ I
satisfies the property Ji ⊆ Ni. In addition, if |Ji| < M for

all i ∈ I, (4) is called a distributed protocol.

We say the protocol (4) asymptotically solves the output

agreement problem if there exists a scalar yf ∈ R such that

the closed-loop network with the protocol (4) satisfies that

limt→∞ yi(t) = yf , i = 1, · · · ,M .

In this paper, we are interested in finding under what

conditions there exists a protocol (4) asymptotically solves

the output agreement problem and the design algorithm of

such a protocol.

IV. CONTROL PROTOCOL AND NETWORK DYNAMICS

In this section, we present the control protocol that solve

the aforementioned output agreement problem. We will use

a linear protocol with fixed topology and no communication

time-delay:

ui = ui1 + ui2 (5)

where

ui1 = Kselfxi (6)

is the feedback from the agent i itself and

ui2 =
∑

j∈Ni

aijKnghb(xj − xi) (7)

is the feedback from the neighbors, where the constant

matrices Kself ∈ R
1×n and Knghb ∈ R

1×n need to be

designed.
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By applying the above protocol (5), the agent i’s dynamics

is formed as follows:

ẋi(t) = (A + BKself )xi + BKnghb

∑

j∈Ni

aij(xj − xi)

yi(t) = Cxi. (8)

Then the whole network dynamics is summarized as follows:

ẋ(t) = Φx(t)
y(t) = Γx(t)

(9)

where

Φ = IM ⊗ (A + BKself ) − L ⊗ BKnghb, (10)

and

Γ = IM ⊗ C (11)

with L the aforementioned Laplacian associate with the

graph G.

Then finding a control protocol to solve the output agree-

ment problem of the network (G, A, B, C, x, y) is formulized

as to find suitable matrices Kself and Knghb such that the

system (9) satisfies that limt→∞ y = 1Myf .

V. PROTOCOL EXISTENT CONDITION AND DESIGN

Here we present a sufficient condition for existence of

protocol (5) that asymptotically solves the output agreement

problem of the network (G, A, B, C, x, y).

Lemma 2: [26] Given a polynomial f(s) =
∑n

i=0
βis

i ∈
R[s], n ≥ 3, f(s) is Hurwitz stable if

βiβi+1 > 3βi+2βi−1, i = 1, 2, · · · , n − 2. (12)

Theorem 1: If the topology G is connected, then there

exist state feedback gains Kself , Knghb such the protocol

(5) asymptotically solves the output agreement problem of

the network (G, A, B, C, x, y).

Proof: First, we select γi, i = 0, · · · , n such that

γiγi+1 > 3γi+2γi−1, i = 1, 2, · · · , n − 2. (13)

with γn = 1. By Lemma 2, the polynomial g(s) =
∑n

i=0
γis

i is Hurwitz stable. Then we take

K0 = [α0 − γ0, α1 − γ1, · · · , αn−1 − γn−1] (14)

It follows that the matrix

A + BK0 =











0 1
...

. . .

0 1
−γ0 −γ1 · · · −γn−1











is Hurwitz stable.

Next, let

Kself = K0[0, e2, · · · , en] + α0e
T
1 , (15)

where ei is the ith column vector of In, i = 1, 2, · · · , n. It

follows that

A + BKself =











0 1
...

. . .

0 1
0 −γ1 · · · −γn−1











Denote the eigenvalues of L are 0 = λ1 < λ2 ≤ · · · ≤
λM . Let

Knghb = λ−1

M γ0e
T
1 (16)

Then we have

A + BKself − λiBKnghb

= A + B(K0[0, e2, · · · , en] + α0e
T
1 )

−λiBλ−1

M γ0e
T
1

= A + B(α0 −
λi

λM

γ0)e
T
1

+BK0[0, e2, · · · , en]

=











0 1
...

. . .

0 1

− λi

λM

γ0 −γ1 · · · −γn−1











Then the characteristic polynomial of the matrix A +
BKself − λiBKnghb is

gi(s) =
n

∑

i=1

γis
i +

λi

λM

γ0, i = 1, 2, · · · ,M. (17)

For matrix A + BKself , its characteristic polynomial is

g1(s) =
n

∑

i=1

γis
i = sg′1(s)

where g′1(s) =
∑n

i=1
γis

i−1. By (13), it is to see that g1(s)
is Hurwitz stable. It follows that matrix A+BKself has only

one zero eigenvalue and all the others are with negative real

part.

For matrix A + BKself − λiBKnghb, i = 2, · · · ,M , it is

easy to see that

γ1γ2 > 3γ0γ3 > 3
λi

λM

γ0γ3

compounding with (13), it is to see that gi(s) is Hurwitz

stable, i = 2, · · · ,M . It follows that matrix A + BKself −
λiBKnghb is Hurwitz stable, i = 2, · · · ,M .

Thirdly, there exists a nonsingular matrix W such that

W−1LW = D = diag{λ1, λ2, · · · , λM}

It follows that

W−1 ⊗ InΦW ⊗ In = J = diag{J1, J2, · · · , JM} (18)

where

Ji = A + BKself − λiBKnghb, i = 1, 2, · · · ,M. (19)
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It is obvious that limt→∞ exp(Jit) = 0, i = 2, · · · ,M . As

to J1 = A + BKself , we have

lim
t→∞

exp(Jit) = e1w
T
l . (20)

where

wl =
1

γ1

[γ1, · · · , γn−1, 1]T (21)

is the left eigenvector of J1 associated with the eigenvalue

zero. Furthermore, wT
l e1 = 1. Thus, we have

lim
t→∞

exp(Φt) =
1

M
1M ⊗ e1(1M ⊗ wl)

T . (22)

It follows that

lim
t→∞

y(t) = IM ⊗ C lim
t→∞

exp(Φt)x(0)

= IM ⊗ C
1

M
1M ⊗ e1(1M ⊗ wl)

T x(0)

= 1M ⊗ yf (23)

where

yf =
1

M

M
∑

i=1

Ce1w
T
l xi(0) = c0[1,

γ2

γ1

, · · · ,
γn

γ1

]
1

M

M
∑

i=1

xi(0)

(24)

According to Theorem 1, we present the following proto-

col design algorithm.

Algorithm 1: For the network (G, A, B, C, x, y) with (3),

assuming G is connected, then we may design state feedback

gains Kself , Knghb to construct a control protocol (5) that

asymptotically solves the output agreement problem by the

following steps:

1) according to (12), determine γi, i = 0, 1, · · · , n − 1;

2) according to (14), determine K0;

3) take Kself = K0[0, e2, · · · , en] + α0e
T
1 ;

4) determine the maximum eigenvalue of L;

5) take Knghb = λ−1

M γ0e
T
1 .

Remark 1: In fact, if we select sufficient small µ substitute

for λ−1

M , then Knghb = µγ0e
T
1 is acceptable as well.

VI. SIMULATION

In this section, we present two examples to illustrate our

obtained results.

Example 1: Consider a network (G, A, B, C, x, y). The

graph G is shown in Fig.1 and the adjacency matrix are

limited to 0, 1 matrices. Moreover, let n = 3 and

A =





0 1 0
0 0 1
3 2 1



 , C = [1, 0, 0].

First, we select γ0 = 1, γ1 = 2 and γ2 = 2. Then we get

K0 = [−2, −4, −5]. It follows that Kself = [−1, −4, −5].
Next, we get

L =

















2 −1 0 −1 0 0
−1 2 −1 0 0 0

0 −1 2 0 −1 0
−1 0 0 3 −1 −1

0 0 −1 −1 3 −1
0 0 0 −1 −1 2

















the maximum eigenvalue of L is 4.4142. Then we let

Knghb = [0.2, 0, 0]. Fig. 2 shows the simulation results for

the control protocol (5) for the network with random set of

initial conditions. it is shown that the protocol asymptotically

solves the output agreement problem for the network in

Example 1.

Fig. 1. Undirected graph G with M = 6 nodes for Example 1.
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Fig. 2. Output of the network in Example 1.

Example 2: Consider a network (G, A, B, C, x, y). The

graph G is shown in Fig.3 and the adjacency matrix are

limited to 0, 1 matrices. Moreover, let n = 5 and

A =













0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0













, C = [1, 1, 1, 1, 1].

First, we select γ0 = 20, γ1 = 30, γ2 = 50, γ3 = 20 and

γ4 = 10. Then we get K0 = [−20, −30, −50, −20, −10].
It follows that Kself = [0, −30, −50, −20, −10]. Next, we
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Fig. 3. Undirected graph G with M = 10 nodes.

get

L=

































2 −1 −1 0 0 0 0 0 0 0
0 2 0 0 0 −1 0 0 0 0

−1 0 2 −1 −1 0 0 0 0 0
0 0 −1 2 0 0 −1 0 0 0
0 0 −1 0 2 0 0 0 −1 0
0 −1 0 0 0 1 0 0 0 0
0 0 0 −1 0 0 3 −1 0 −1
0 0 0 0 0 0 −1 1 0 0
0 0 0 0 −1 0 0 0 1 0
0 0 0 0 0 0 −1 0 0 1

































the maximum eigenvalue of L is 4.4142. Then we let

Knghb = [0.2, 0, 0]. Fig. 4 and Fig. 5 show the simulation

results for the control protocol (5) for the network with

random set of initial conditions. By simple calculation, we

get

y(10000) =

































179.8784
179.8779
179.8790
179.8798
179.8789
179.8776
179.8805
179.8808
179.8788
179.8808

































These facts show that the protocol asymptotically solves the

output agreement problem for the network in Example 2.

VII. CONCLUSION

In this paper, the output agreement problem for networks

of high-dimensional dynamic agents has been investigated. A

sufficient condition for the existence of such a control proto-

col and the design algorithm have been obtained. The future

work includes output agreement problem in the switching

topology and communication time-delay case. The authors

are focusing all there attention on these open problems.
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Fig. 4. Output of the network in Example 2 for t ∈[0, 30].

REFERENCES

[1] Lynch NA, Distributed Algorithms. San Mateo, CA: Morgan Kauf-
mann, 1997.

[2] Fax A, Murray RM. Information flow and cooperative cotnrol of
vehicle formations. IEEE Trans. Automat. Contr. 2004; 49(9):1465–
1476.

[3] Mesbahi M. On a dynamic extension of the theory of graphs. In
Proceedings of the American Control Conference 2002,Anchorage,
AK, United States, 1234–1239.

[4] Reynolds CW. Flocks, herds, and schools: a distributed behavioral
model. In Computer Graphics(ACM SIGGRAPH’87) 1987, 21, 25–
34.

[5] Gazi V, Passino KM. Stability Analysis of Swarms. IEEE Trans.

Automat. Contr. 2003; 48(4):692–697.

[6] Gazi V, Passino KM. Stability Analysis of Social Foraging Swarms.
IEEE Trans. System, Man and Cybernetics-B 2004; 34(1):539–557.

[7] Liu YF, Passino KM. Stable Social Foraging Swarms in a Noisy
Environment. IEEE Trans. Automat. Contr. 2004; 49(1):30–44.

[8] Liu Y, Passino KM, Polycarpou MM. Stability Analysis of M-
Dimensional Asynchronous Swarms With a fixed Communication
Topology. IEEE Trans. Automat. Contr. 2003; 48(1):76–95.

[9] Liu Y, Passino KM, Polycarpou MM. Stability Analysis of One-
Dimensional Asynchronous Swarms. IEEE Trans. Automat.Contr.

2003; 48(10):1848–1854.

[10] Mesbahi M, Hadegh Fy. formation flying of multiple spacecraft via
graphs, matrix ineuqalities and switching. AIAA J. guid., Control,

Dyna. 2000; 24(2): 369–377.

[11] Desai JP, Ostrowski JP, Kumar V. Modeling and control of formations
of nonholonomic mobile robots, IEEE Trans. Robot. Automat. 2001;
17(12):905–908.

2247



50 100 150 200 250 300 350 400

100

150

200

250

300

350

400

450

500

550

600

y
1

y
2

y
3

y
4

y
5

y
6

y
7

y
8

y
9

y
10

y
i
(t)

t/s

Fig. 5. Output of the network in Example 2 for t ∈[50, 400].

[12] Lawton JRT, Beard RW, Yong BJ. Adecentralized apprach to formation
maneuvers. IEEE Trans. Robot. Automat. 2003; 19(12):933–941.

[13] Vicsek T, Czirok A, Jacob EB, Cohen I, Schochet O. Novel type of
phase transitions in a system of self-driven particles. Phys. Rev. Lett.

1995; 75(6): 1226–1229.

[14] Jadbabaie A, Lin J, Morse AS. Coordination of groups of mobile
autonomous agents using nearest neighbor rules. IEEE Trans. Automat.

Contr. 2003; 48(6):988–1001.

[15] Savkin AV. Coordinate collective motion of groups of autonomous
mobile robots: analysis of vicsek’s model. IEEE Trans. Automat.

Contr. 2004; 49(6):981–983.

[16] Olfati-Saber R, Murray RM. Consensus Problems in Networks of
Agents with Switching Topology and Time-delays. IEEE Trans. Au-

tomat. Contr. 2004; 49(9):1520–1533.

[17] Olfati-Saber R, Murray RM. Consensus Protocols for networks of
dynamic agents. In Proc. Amer. Control Conf. 2003, 951–956.

[18] Tanner HG, Jadbabaie A, Pappas GJ. Stable Flocking of Mobile
Agents, Part I: Fixed Topology. In Proceedings of the IEEE Conference

on Decision and Control 2003, 2, 2010–2015.

[19] Tanner HG, Jadbabaie A, Pappas GJ. Stable Flocking of Mobile
Agents, Part II: Dynamic Topology. In Proceedings of the IEEE

Conference on Decision and Control 2003, 2, 2016–2021.

[20] Hong Shi, Long Wang, Tianguang Chu, Swarming behavior of multi-
agent systems Proc. of the 23rd Chinese Control Conference, August,
2004,1027-1031.

[21] Hong Shi, Long Wang, Tianguang Chu, Weicun Zhang, Coordination
of a group of mobile autonomous agents, International Conference on

Advances in intelligent Systems—Theory and Applications, November,
2004.

[22] Long Wang, Hong Shi, Tianguang Chu, Tongwen Chen, Lin Zhang

Aggregation of forging swarms, Lecture Notes in Artificial Intelli-

gence, 2004, 3339, 766–777.
[23] Bo Liu, Tianguang Chu, Long Wang, Zhanfeng Wang, Swarm Dy-

namics of A Group of Mobile Autonomous Agents, Chin. Phys. Lett.,

2005 vol.22, no. 1, 254-257.
[24] Bo Liu, Tianguang Chu, Long Wang, Collective Motion in A Group

of Mobile Autonomous Agents, IEEE International Conference on

Advance in Intelligent Systems-Theory and Applications, Nov., 2004.
[25] Biggs N. Algebraic Graph Theory. Cambridge, U.K.: Cambridge Univ.

Press, 1974.
[26] X. Xie, “A new criterion of linear system stability,” Special Issue on

Basic Theory of Transaction of Northeast Institute of Technology of

China, 1(1963),26-30. (in Chinese)

2248


