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Abstract— This paper addresses the problem of modeling,
control, and simulation of a mechanical system actuated by
an agonist-antagonist musculotendon subsystem. Contraction
dynamics is given by case I of Zajac’s model. Saturated semi–
positive PD-type controllers with switching as neural excitation
inputs are proposed. Linear approaches of nonlinear systems,
root locus, switched systems control and SOSTOOLS are used
to determine the stability for the obtained closed-loop system.
To corroborate the obtained theoretical results numerical sim-
ulations have been performed with help of Matlab.

I. INTRODUCTION

To achieve the motion of body segments, such as a leg

or a human arm, a set of forces acting on them need to

be known. These forces are produced by skeletal muscles,

whose actions are individually controlled by central nervous

system through neural excitation [18].

Several mathematical models that try to define the muscle

contraction properties can be found in the literature. Two

very important references in this topic are the models pro-

posed by Hill [6] and Huxley [7] (see [3]). In this paper

we have used the biomechanical model proposed by Zajac

in 1989 [18] to model the contraction dynamics. This is a

Hill-type dynamical model that describes how muscle and

tendon work together to produce and transmit the force to the

body segments, and is commonly refered as musculotendon

(MT) model. The Zajac’s model with some adaptations has

been successfully used in other works to model the dynamic

equations of mechanical systems (see [5], [10], [11]).

A muscle-skeletal system (MSS) is composed of mechani-

cal structure (skeleton bones) and MT actuators. Such system

can be studied from the control theory point of view by

defining inputs and outputs, so that by manipulating the

input, the output is forced to a desired one.

In a MSS the number of muscles (inputs) is greater than

the number of degrees of freedom. The simplest represen-

tation of a MSS consists of two MT actuators that interact

against a common load in agonist-antagonist relationship (see

[4], [10], [17], [16]).

The position and the velocity are the outputs of a MSS,

and the input is the neural excitation u(t) of each muscle

involved in the motion. The control problem is to design

the input u(t), such that the mechanical system tends to

a constant desired position as time increases. The Zajac’s

model considers that the neural excitation is presented in the

set u(t) ∈ [0, 1].
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A few works have presented a solution for the stabilization

problem of mechanical systems actuated by MT actuators

taking into account the saturated semi–positive constraint of

the neural excitation u(t) ∈ [0, 1]. For example, in [11] an

optimal control theory approach was suggested. However,

unless a problem has special structure (such as the linear,

unconstrained models that produce the classic LQ regulator),

the evaluation and online implementation of an optimal

feedback control presents a difficult challenge.

To the best of the authors’ knowledge, the idea that

the saturated semi–positive signal u(t) ∈ [0, 1] can be

designed using a switched control systems approach is new.

Specifically, in this paper, the saturated semi–positive control

inputs are generated by a commutation control law, which

converts the closed-loop system in a switched system, that

belongs to the class called hybrid systems. Since many of the

systems encountered in practice are of hybrid nature, in the

last years, this kind of systems have been an interdisciplinary

and very active area of research [9]. Hybrid systems theory

facilitates the study of complex systems by decompositions

of them into simpler systems and by allowing the use of

well-known control tools as Lyapunov theory.

The stability of a switched system under arbitrary swit-

ching can be achieved by finding a single Lyapunov function

whose derivative along solutions of all subsystems satisfies

the inequalities of Lyapunov’s direct method. Such function

is called common Lyapunov function (CLF) [1], [9], [14].

Due to the high order and nonlinearity of the systems studied

here, it is extremely difficult to find a CLF in a generalized

way. To find a numerical solution, we use SOSTOOLS,

which is a free MATLAB toolbox for formulating and

solving sums of squares (SOS) optimization programs [13],

[14], [15].

The main contributions of the study presented in this paper

are:

• An explanation from the point of view of the automatic

control to the modeling and control of mechanical

systems where MT actuators (using Zajac’s model in

its iriginal form) take part.

• Such a purpose can be achieved by designing neural

excitation controllers using classic control tools and

switched systems theory.

• In this way, we obtain an alternative approach to design

saturated semi–positive neural excitation control inputs.

This paper is organized as follows: Section II provides a

brief description of the Zajacs’s model. In Section III we

present the obtained results related to the saturated control
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of a second order system operated by two MT actuators.

Finally, concluding remarks are drawn in in Section IV.

II. ZAJAC’S MODEL (1989)

In this model, the input u(t) is the net neural input to the

muscle, and the output F T (t) is the tendon force (see Figure

1).

Fig. 1. Block diagram that shows the interaction of tendon and muscle
with a mechanical system.

The force F T (t) developed by the actuator depends on

the velocity V MT (t) and the length LMT (t), which are

determined from the position of the body segments (mecha-

nical system). At the same time, the dynamics of the body

segments depends on the force F T (t) developed by the MT

actuator. The dynamics of the MT actuator is composed

of activation dynamics and MT contraction dynamics (see

Figure 1). In the original work, Zajac presents the obtained

model in normalized quantities with the optimal muscle

length LM
0

, the maximum shortening velocity Vm and the

maximum active force F M
0 produced by the muscle in an

isometric contraction.

A. Activation dynamics

The activation in the MT model is a variable that affects

only the muscle and is given by the following equation:

da(t)

dt
+

[

1

τact

[β + [1 − β] u(t)]

]

a(t) =
1

τact

u(t), (1)

where

• a(t) is the muscle activation, with constraint

0 ≤ a(t) ≤ 1,

where the value a(t) = 1 indicates that the muscle is

fully activated, and a(t) = 0 fully deactivated,

• u(t) is the neural excitation, which denotes the control

input, with constraint

0 ≤ u(t) ≤ 1,

• τact is the time constant when muscle is fully excited

(u(t) = 1),

• τdact is the time constant when muscle is deactivated

(u(t) = 0),

• and

β ≡
τact

τdact

,

where (0 < β < 1).

Equation (1) can be written in its normalized form as:

da(τ)

dτ
+

[

1

τ̃act

[β + [1 − β]u(τ)]

]

a(τ) =
1

τ̃act

u(τ), (2)

where

τ̃act =
τact

τc

,

where τc =
LM

0

Vm

, is the time scaling factor.

B. Musculotendon contraction dynamics

The essential part of the Zajac’s model is the force dyna-

mics, also named MT contraction dynamics. MT contraction

represents the integrated dynamical process of muscle and

tendon working together [18].

By assuming for simplicity that the line of action of the

muscle fibers is parallel to the line of action of the tendon,

the MT contraction dynamics is written in its normalized

form as:

dF̃T

dτ
= k̃T

[

Ṽ MT − Ṽ M (L̃M , F̃T , a(τ))
]

, (3)

where

• F̃T = F T

F M

0

= F̃M , is the normalized tendon force,

equals the normalized muscle force,

• τ = ( 1

τc

)t, is the normalized time,

• k̃T = kT (
LM

0

F M

0

) is the normalized tendon stiffness,

• Ṽ MT = V MT ( 1

Vm

), is the normalized MT velocity,

• Ṽ M = f(L̃M , F̃T , a(τ)), is the normalized muscle

velocity for a given fiber length, muscle force and acti-

vation level (called Force-Velocity-Length relationship

(FVL) of a Hill-type model).

C. Case I: Flat region of the Force-Length curve

The case I presented in [18] is the model of the contraction

dynamics (3) when the muscle operates at the flat region of

its Force-Length curve. Thus, the linear relationship FVL is

given by:

−Ṽ M = a(τ) − F̃M , (4)

where a(τ) is defined in (2).

The case I of the MT contraction dynamics is obtained

by replacement of (4) in (3):

dF̃T

dτ
+ k̃T F̃T = k̃T [Ṽ MT + a(τ)]. (5)

Equation (5) is normalized with LM
0 , F M

0 and Vm. To

work with absolute quantities, in this paper, this equation

is rewritten as follows:

dFT

dt
= −

30Vm

LT
s

FT +
30FM

0

LT
s

V MT +
30FM

0
Vm

LT
s

a(t), (6)

where F T is the MT actuator force, a(t) is the activation

level defined in (1). The linear approximation for k̃T , in-

cluded in (6), has been defined in [18] as follows:

k̃T = 30
LM

0

LT
s

,

where LT
s is the tendon slack length.

In the remainder of this work, (1) and (6) are used to

determine the level of muscle activation and to determine

the force F T , respectively.
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III. CONTROL OF A SECOND ORDER SYSTEM OPERATED

BY TWO MUSCULOTENDON ACTUATORS

This section provides a solution to the problem of position

control of a mechanical system moved in the horizontal plane

by two MT actuators in an agonist-antagonist relationship by

using controllers to satisfy the condition of saturation of the

Zajac’s model:

u(t) ∈ [0, 1]. (7)

The stability analysis is carried out using switched systems

stability theory and classic tools as linear approaches of

nonlinear systems and root locus. The system studied is

presented in Figure 2.

In the agonist-antagonist relationship, the net force that

acts on the load is given by F T
1
− FT

2
(see [4]).

The dynamics of the mechanical system is given by:

Mẍ1 + Fvẋ1 = FT
1
− FT

2
, (8)

where M [Kg] is the mass, Fv

[

Kg m
s

]

is the viscosity,

x1 = LMT
1

[m] is the length of actuator 1, ẋ1 = V MT
1

is

the velocity of actuator 1, F T
1 [N ] is the force developed by

actuator 1 and F T
2

[N ] is the force developed by actuator 2.

Let us notice from Figure 2 that the control inputs are

defined by the neural excitation inputs u1(t) and u2(t). The

total length of the system is given by L = constant [m] and

x′

1 = LMT
2 [m] is the length of actuator 2.

The control problem can be written in terms of limit:

lim
t→∞

x̃1 = 0, (9)

where x̃1 = xd − x1 is the position error of the mass, 0 <

xd < L is a desired position respect to the origin of actuator

1, and x1 is the actual position of the mass.

A. State variables of the open-loop control system

This case study considers that L = constant, i.e., one

muscle lengthens as the agonist while the other contracts as

the antagonist. In this way, we can obtain the relationship

between lengths (LMT
1

and LMT
2

) and velocities (V MT
1

and

V MT
2 ) as follows. The length of actuator 2 is given by:

x′

1 = L − x1. (10)

The desired position of the mass respect to the origin of

actuator 2 is:

x′

d = L − xd. (11)

Using (10) and (11), we obtain the following relationships:

x̃′

1
= x′

d−x′

1
= [L−xd]−[L−x1] = −xd+x1 = −x̃1, (12)

where x̃′

1
is the error position of the mass respect to the

actuator 2.

ẋ′

1
= −ẋ1, (13)

where ẋ′

1
= V MT

2
is the velocity of actuator 2. Let us notice

from (13) that the shortening velocities V MT
1

and V MT
2

have

opposite signs.

Fig. 2. Agonist-antagonist musculotendon pair acting on a common mass-
damper system.

By using (1), (6), (8), (12) and (13), the open-loop system

can be written as:

d

dt

















x̃1

x2

x3

x4

x5

x6

















=





















−x2

1

M
[x3 − x4 − Fvx2]

30F M

01

LT

s1

x2 +
30F M

01
Vm1

LT

s1

x5 −
30Vm1

LT

s1

x3

−
30F M

02

LT

s2

x2 +
30F M

02
Vm2

LT

s2

x6 −
30Vm2

LT

s2

x4
[

c31 − c21x5

]

u1(t) − c11x5
[

c32 − c22x6

]

u2(t) − c12x6





















, (14)

where

x2(t) = ẋ1(t), βp =
τactp

τdactp

,

x3(t) = FT
1

(t), c1p =
1

tactp

βp,

x4(t) = FT
2 (t), c2p =

1

tactp

(1 − βp),

x5(t) = a1(t), c3p =
1

tactp

,

x6(t) = a2(t),

with p = 1, 2. Note that the dynamics of the mass (8) is

synthesized in state variables x̃1(t) and x2(t), while the

dynamics of the musculotendon actuator 1 and 2 is described

by x3(t)–x5(t) and x4(t)–x6(t), respectively.

B. Switching law for the controllers u1(t) and u2(t)

In this section we explain how our solution satisfies the

condition (7) and accomplishes the control objective (9).

Let us recall the well-known proportional-derivative (PD)

controller:

PD = kpx̃1 − kvx2, (15)

where x̃1 is the error position of the mass, x2 is the velocity

and kp, kv > 0.

In order to satisfy the constraint (7) in u1(t) and u2(t),
the PD controller (15) can be used in the switching control

law:

u1(t) =

{

tanh(µ1PD) if PD ≥ 0,

0 if PD < 0,
(16)
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where u1(t) ∈ [0, 1] is the input for the actuator 1, and

µ1 > 0, and

u2(t) =

{

0 if PD ≥ 0,

− tanh(µ2PD) if PD < 0,
(17)

where u2(t) ∈ [0, 1] is the input for the actuator 1, and

µ2 > 0.

The switching between the control inputs depends on the

sign of the PD controller (15), which in turn depends on

the state variables x̃1 and x2. Thus, (16) and (17) define a

switched control law, which accomplishes the constraint (7),

for the system (14).

C. Feedback control system

With the control inputs (16) and (17) the open-loop system

(14) turns into two feedback subsystems f1(x) and f2(x),
which commute by the following switching law:

ẋ = f(x) =

{

f1(x) if PD ≥ 0,

f2(x) if PD < 0.
(18)

System (18) operates in the subsystem f1(x) for nonnegative

values of PD (with u1(t) ∈ [0, 1] and u2(t) = 0), and

operates in the subsystem f2(x) for negative values of PD

(with u1(t) = 0 and u2(t) ∈ [0, 1]). Figure 3 shows a block

diagram of the system (18).

Fig. 3. Block diagram that represents the feedback control system (18).

Despite the complex analysis tools to analyze switched

systems, we look to analyze the roll of basic concepts of

control systems, like linear approaches of nonlinear systems,

and root locus.

D. Definition of hybrid and switched systems

Systems that have dynamics that are described by a set of

continuous time differential equations in conjunction with a

discrete event process are usually referred to as switched or

hybrid systems. Such systems are of the following form:

ẋ = fi(x), i ∈ I = {1, ..., N}, (19)

where x ∈ IRn is the continuous state, i is the discrete state,

fi(x) is the vector field describing the dynamics of the i-

th mode/subsystem, and I is the index set. The difference

between switched and hybrid systems is that in the former

only one i ∈ I is possible for each x ∈ IRn, and in the later

multiple i are possible for some x ∈ IRn. Without loss of

generality, we assume that the state space origin x = 0 ∈ IRn

is an equilibrium point [14].

This study focuses on switched systems, where switch-

ing events can be classified into state-dependent or time-

dependent (see [9]).

Given the control inputs u1(t) and u2(t), the obtained

feedback system (18) is a state-dependent switched system,

where switching depends on the state variables x̃1 and x2.

It is noteworthy that the system (18) has the form of (19),

with i ∈ I = {1, 2}, i.e., the system consist of two operating

regions: region 1 if PD ≥ 0, and region 2 if PD < 0.

E. Stability analysis

According to switched systems theory, local stability of

system (19) under arbitrary switching can be studied using

the following theorems:

Theorem 1: [Theorem 1 in [14]] Suppose that for the set

of vector fields {fi(x)} there exists a polynomial V (x) such

that V (0) = 0 and

V (x) > 0 ∀x �= 0, (20)

∂V

∂x
fi(x) < 0 ∀x �= 0, i ∈ I, (21)

then the origin of the state space of the system (19) is

globally asymptotically stable under arbitrary switchig.

△

Theorem 2: [Theorem 1 in [1]] If the differential equa-

tions corresponding to the linearization of system (19) are

(asymptotically) stable in x0 and have the same quadratic

Lyapunov function, then the system (19) is (asymptotically)

stable in x0.

△

According to the previous Theorems, the state space origin

x = 0 ∈ IR6 of the nonlinear system (18) is a locally

(asymptotically) stable equilibrium point if the linearized

system is (asymptotically) stable.

The problem is to find a CLF V (x) that satisfies the

conditions (20) and (21) for the linearized system (18).

The state space origin x = 0 ∈ IR6 is a common

equilibrium point of the subsystems f1(x) and f2(x). By

linearizing the system (18) around x = 0 ∈ IR6, we obtain

the following switched system:

ẋ =

{

A1x if PD ≥ 0,

A2x if PD < 0,
(22)

where PD is given in (15),

A1 =



















0 −1 0 0 0 0

0 −

1

M
Fv

1

M
−

1

M
0 0

0
30F M

01

LT

s1

−

30Vm1

LT

s1

0
30F M

01
Vm1

LT

s1

0

0 −

30F M

02

LT

s2

0 −

30Vm2

LT

s2

0
30F M

02
Vm2

LT

s2

c31µ1kp −c31µ1kv 0 0 −c11 0

0 0 0 0 0 −c12



















,
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A2 =



















0 −1 0 0 0 0

0 −

1

M
Fv

1

M
−

1

M
0 0

0
30F M

01

LT
s1

−

30Vm1

LT
s1

0
30F M

01
Vm1

LT
s1

0

0 −

30F M

02

LT
s2

0 −

30Vm2

LT
s2

0
30F M

02
Vm2

LT
s2

0 0 0 0 −c11 0

−c32µ2kp c32µ2kv 0 0 0 −c12



















.

A numeric CLF is obtained with the purpose of proving

that the system (22) is asymptotically stable.

1) Numerical case study: First, let us notice that a

necessary condition for (asymptotic) stability under arbi-

trary switching is that all of the individual subsystems are

(asymptotically) stable [8]. Thus, using the root locus of the

characteristic equation of each subsystem

ẋ = Aix, i = 1, 2,

we have computed numerical values of µ1, µ2, kp y kv such

that Ai, i = 1, 2, is Hurwitz.

The roots of a characteristic equation are obtained by

solving

det
[

λI6 − Ai

]

= 0. (23)

The linear subsystem ẋ = Aix is asymptotically stable if:

ℜ(λj{Ai}) < 0 ∀j = {1, 2, ..., 6}, i ∈ I = {1, 2}. (24)

To prove the effectiveness of the proposed control law, a

numerical case is presented. For such purpose, identical

actuators are considered. The numerical parameters LM
0 , LT

s

and F M
0

of the Brachioradialis muscle presented in [2] are

used. The values for τc, τact and τdact are taken from [18]:

LM
0p = 0.2703

[

cm
]

, τc = 0.1
[

s
]

,

FM
0p = 101.58

[

N
]

, τactp = 0.015
[

s
]

,

LT
sp = 0.0604

[

cm
]

, τdactp = 0.050
[

s
]

,

where p = 1, 2. Mass M and viscosity Fv are proposed as:

M = 3.8
[

Kg
]

,

Fv = 1
[

Kg m
s

]

.

With the root locus of the individual characteristic equations

in (23), we propose the parameters µ1, µ2, kp y kv for the

control inputs u1(t) and u2(t):

µ1 = 1, kp = 0.003,

µ2 = 1, kv = 0.23.

The proposed parameters µ1, µ2, kp and kv, allow us to

satisfy the local stability condition (24). Small values of the

mass and the viscosity can be controlled by actuators with

small values of the parameter F M
0 .

2) Using SOSTOOLS to find a common Lyapunov func-

tion: Once obtained the stability conditions for the individual

subsystems ẋ = Aix (i = 1, 2) of (22), a CLF V (x) that

satisfies the inequalities (20) and (21) is constructed. Such a

function is obtained by using SOSTOOLS [15] and can be

written as follows:

V (x) =xT Px x ∈ IR6, P = PT > 0, P ∈ IR6×6. (25)

0 5 10 15 20
−0.01

0

0.01

0.02

0.03

0.04

0.05

t [s]

x̃
1

Fig. 4. Position error x̃1(t).

0 5 10 15 20
−1

0

1

2

3

4

5

6

7
x 10

−3

t [s]

u
1
(t

)

Fig. 5. Control input u1(t) to actuator 1.

In particular we have computed the CLF given in (26).

Function (26) leads to the conclusion that by Theorem 1,

the switched system (22) is asymptotically stable. Therefore,

according to Theorem 2, the state space origin x = 0 ∈ IR6

of the system (18) is locally asymptotically stable.

F. Simulation results

With the obtained local stability of the system (18), a

simulation using Matlab is presented. In this simulation the

system initial conditions are equal to zero, except for the

position error, which starts with a value of x̃1(0) = 0.05
[m]. With these initial conditions the system starts in the

region 1.

Figure 4 shows the position error x̃1(t). The saturated

control inputs u1(t) and u2(t) ∈ [0, 1] are shown in Figures

5 and 6, respectively. The graph to compare the function

V (x) evaluated along the systems (18) (dashed line) and

(22) (continuous line) is presented in Figure 7. In this Figure,

vertical lines indicate the switching between regions 1 and 2

for the systems (18) (dashed line) and (22) (continuous line).

It is worthwhile to notice that several sets of control

parameters µ1, µ2, kp and kv that rendered the closed–loop

system (14)-(17) locally asymptotically stable were found.

For each one of those sets of control parameters, a CLF was

obtained, while the necessary condition of Hurwitz matrices

A1 and A2 was also achieved.

For this numerical case study, the numerical value of the

control inputs u1(t) and u2(t) is small, as seen in Figures 5

and 6. However, if there is a large position error x̃1(t), then

large forces will be required in the musculotendon actuators,

which, at the same time, will imply the application of large
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V (x)=

















x̃1

x2

x3

x4

x5

x6

















T





















.20831 − .42654
2

− .85872×10
−4

2

.85872×10
−4

2
− .56896

2

.56896
2

− .42654
2

.46856 .18277×10
−3

2
− .18277×10

−3

2

1.229
2

− 1.229
2

− .85872×10
−4

2

.18277×10
−3

2
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Fig. 6. Control input u2(t) to actuator 2.
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neural excitation inputs u1(t) and u2(t). However, thanks

to the incorporation of the hyperbolic tangent function in

the switched controller (16)-(17), no matter how large is the

position error x̃1(t), the neural excitation inputs u1(t) and

u2(t) will be valuated into the set [0, 1].

IV. CONCLUSIONS

The switched systems stability theory, the root locus,

and SOSTOOLS can be used to design saturated semi–

positive neural excitation inputs u1(t), u2(t) which stabilize

a second order mechanical system actuated by two Zajac’s

musculotendon subsystems
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