
Discrete-Time Non-fragile Dynamic Output Feedback H∞ Controller
Design

Guang-Hong Yang and Wei-Wei Che

Abstract— The non-fragile dynamic output feedback H∞
controller design problem affected by finite word length (FWL)
for linear discrete-time systems is investigated. The controller
to be designed is assumed to be with additive gain variations,
which reflect the FWL effects in controller implementation. A
notion of structured vertex separator is proposed to approach
this problem, and exploited to develop sufficient conditions for
the non-fragile H∞ controller design via a two-step procedure.
The resulting designs guarantee the asymptotical stability
and the H∞ attenuation level of the closed-loop system. A
comparison between our proposed method and the existing
method for non-fragile H∞ controller design is provided, and
a numerical example is carried out to support the theoretical
findings.

I. INTRODUCTION

In the course of controller implementation based on different
design algorithms, it turns out that the controllers can be sensitive
with respect to errors in the controller coefficients ([1], [13]).
By means of several examples, it is demonstrated in the control
design formalism [8] that relatively small perturbations in controller
parameters could even destabilize the closed-loop system. This
brings a new issue at the stage of designing controllers: how to
design a controller for a given plant such that the controller is
insensitive to some amount of error with respect to its gains, i.e.,
the controller is non-fragile.

This issue has received some attention from the control sys-
tems community, and some relevant results have appeared in the
last decade to tackle the problem of designing controllers that
are capable of tolerating some level of controller gain variations
([1],[3], [6]). Recently, for additive norm-bounded controller gain
variations, results have been obtained for both state feedback [13]
and output feedback [14] by using the Riccati inequality approach.
Multiplicative controller gain variations were addressed in [15].

All the above mentioned works are concerned with the non-
fragile problem with the norm-bounded type of controller uncer-
tainty. However, this kind of uncertainty cannot describe the uncer-
tain information due to the FWL effects exactly. Correspondingly,
the interval type of parameter uncertainty [9] can describe the
uncertain information due to the FWL effects more exactly than the
former type. But up to present, there is no work on the non-fragile
controller design problem with taking interval gain uncertainty
into account. Moreover, similar to the case that the problem of
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designing a globally optimal full-order output-feedback controller
for polytopic uncertain systems is known to be a non-convex NP-
hard optimization problem [7], the problem of designing full-order
non-fragile dynamic output feedback H∞ controllers with interval
type of gain uncertainty is also a non-convex NP-hard one. On the
other hand, the vertices of the set of uncertain parameters grow
exponentially with the number of uncertain parameters, which may
result in numerical problem for systems with high dimensions.
These problems motivate the work in this paper.

To overcome the above mentioned difficulties, this paper is
concerned with the problem of non-fragile dynamic output feedback
H∞ controller design for linear discrete-time systems with FWL
consideration. The controller to be designed is assumed to be with
additive gain variations of the interval type, which are due to the
FWL effects when the controller is implemented. And a two-step
procedure is adopted to solve this non-convex problem. In Step 1,
we give a design method of an initial controller gain Ck. In Step
2, with the controller gain Ck designed in Step 1, an LMI-based
sufficient condition is given for the solvability of the non-fragile
H∞ control problem, which requires checking all of the vertices
of the set of uncertain parameters that grows exponentially with
the number of uncertain parameters. It will be very difficult to
apply the result to systems with high dimensions. To overcome
the difficulty, a notion of structured vertex separator is proposed to
approach the problem, and exploited to develop sufficient conditions
for the non-fragile H∞ controller design in terms of solutions to
a set of LMIs. The structured vertex separator-based method can
significantly reduce the number of the LMI constraints involved in
the design conditions. The designs guarantee that the closed-loop
system is asymptotically stable and the H∞ performance of the
system from the exogenous signals to the regulated output is less
than a prescribed level.

Notation: For a column-rank deficient matrix H , NH denotes
a matrix whose columns form a basis for the null space of H . I
denotes the identity matrix with an appropriate dimension. 0i×j

represents zero matrix of i rows and j columns. The symbol ∗
within a matrix represents the symmetric entries.

II. PROBLEM STATEMENT AND PRELIMINARIES

A. Problem Statement
Consider a linear time-invariant (LTI) discrete-time system as

x(k + 1) = Ax(k) + B1ω(k) + B2u(k)
z(k) = C1x(k) + D12u(k)
y(k) = C2x(k) + D21ω(k)

(1)

where x(k) ∈ Rn is the state, u(k) ∈ Rq is the control input,
ω(k) ∈ Rr is the disturbance input, y(k) ∈ Rp is the measured
output and z(k) ∈ Rm is the regulated output, respectively, and
A, B1, B2, C1, C2, D12 and D21 are known constant matrices of
appropriate dimensions.
To formulate the control problem, we consider a controller with
gain variations of the following form:

ξ(k + 1) = (Ak + ∆Ak)ξ(k) + (Bk + ∆Bk)y(k)
u(k) = (Ck + ∆Ck)ξ(k).

(2)

where ξ(k) ∈ Rn is the controller state, Ak, Bk, and Ck are
controller gain matrices of appropriate dimensions to be designed.
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∆Ak, ∆Bk and ∆Ck represent the additive gain variations of the
following interval type:

∆Ak = [δaij ]n×n, |δaij | ≤ δa, i, j = 1, · · · , n

∆Bk = [δbij ]n×p, |δbij | ≤ δa, i = 1, · · · , n, j = 1, · · · , p

∆Ck = [δcij ]q×n, |δcij | ≤ δa, i = 1, · · · q, j = 1, · · · , n. (3)

Let ek ∈ Rn, hk ∈ Rp and gk ∈ Rq , denote the column vectors in
which the kth element equals 1 and the others equal 0. Then the
gain variations of the form (3) can be described as :

∆Ak =

n∑
i=1

n∑
j=1

δaijeie
T
j , ∆Bk =

n∑
i=1

p∑
j=1

δbijeih
T
j ,

∆Ck =

q∑
i=1

n∑
j=1

δcijgie
T
j .

Applying controller (2) to system (1), this yields:

xe(k + 1) = Aexe(k) + Beω(k)
z(k) = Cexe(k)

(4)

where xe(k) = [x(k)T , ξ(k)t]T , and

Ae =

[
A B2(Ck + ∆Ck)

(Bk + ∆Bk)C2 Ak + ∆Ak

]
,

Be =

[
B1

(Bk + ∆Bk)D21

]
, Ce =

[
C1 D12(Ck + ∆Ck)

]
.

Denoting the transfer function from the disturbance ω to the
controlled output z, corresponding to the state-space model (4),
as Gzω(z) = Ce(zI −Ae)

−1Be.
This paper addresses the following problem:
Non-fragile H∞ control problem with controller gain varia-
tions: Given a positive constant γ, find a dynamic output feedback
controller of the form (2) with the gain variations (3) such that
the resulting closed-loop system (4) is asymptotically stable and
‖Gzω(z)‖ < γ.

B. Useful lemmas
Lemma 1: [12] Let matrices Q = QT , G, and a compact subset

of real matrices H be given. Then the following statements are
equivalent:
(i) for each H ∈ H

ξT Qξ < 0 for all ξ 6= 0 such that HGξ = 0;

(ii) there exists Θ = ΘT such that

Q + GT ΘG < 0,NT
HΘNH ≥ 0 for all H ∈ H.

Lemma 2: [2] Let Gazω(z) = Ca(zI −Aa)−1Ba, then Aa is
Shur stable and ‖Gazω(z)‖ < γ for some constant γ > 0 if and
only if there exists a symmetric matrix X > 0 , such that



−X 0 XAa XBa

∗ −I Ca 0
∗ ∗ −X 0
∗ ∗ ∗ −γ2I


 < 0 (5)

Denote
G0zω(z) = Ce0(zI −Ae0)

−1Be0, (6)

where

Ae0 =

[
A B2Ck

BkC2 Ak

]
, Be0 =

[
B1

BkD21

]
,

Ce0 =
[
C1 D12Ck

]
,

(7)

Then, we have the following lemma.
Lemma 3: Let γ > 0 be a given constant. Then the following

statements are equivalent:

(i) Ae0 is Shur stable, and ‖G0zω(z)‖ < γ;
(ii) there exists a symmetric positive matrix X > 0 such that

Λ1(X) =



−X 0 XAe0 XBe0

∗ −I Ce0 0
∗ ∗ −X 0
∗ ∗ ∗ −γ2I


 < 0 (8)

(iii) there exist a symmetric positive matrix X > 0 and a matrix G
such that


X −G−GT 0 GT Ae0 GT Be0

∗ −I Ce0 0
∗ ∗ −X 0
∗ ∗ ∗ −γ2I


 < 0 (9)

(iv) there exist matrices Aka, Bka and Cka, and a symmetric matrix
P > 0 with

P =

[
Y N
N −N

]
, (10)

such that

Λ2(P ) =



−P 0 PAea PBea

∗ −I Cea 0
∗ ∗ −P 0
∗ ∗ ∗ −γ2I


 < 0 (11)

where

Aea =

[
A 0

BkaC2 Aka

]
, Bea =

[
B1

BkaD21

]
,

Cea =
[
C1 D12Cka

]
.

(12)

and

Aka = T−1AkT, Bka = T−1Bk, Cka = CkT. (13)

(v) there exist a symmetric matrix X > 0 and a matrix G with
structure

G =

[
Y N
N −N

]
, (14)

such that


X −G−GT 0 GT Aea GT Bea

∗ −I Cea 0
∗ ∗ −X 0
∗ ∗ ∗ −γ2I


 < 0 (15)

holds, where Aea, Bea and Cea are defined by (12).
Proof: Due to the limit of the space, it is omitted here.

Lemma 4: [16] Let matrices Q, F1 and F2 be constant matrices
with appropriate dimensions. Then the following statements are
equivalent:
(i)

Q + F1∆F2 + (F1∆F2)
T < 0, for |δi| ≤ δa, i = 1, · · · , s,

where ∆ = diag[δ1, · · · , δs].
(ii)

Q + F1∆F2 + (F1∆F2)
T < 0, for ∆ ∈ ∆v,

where ∆v = {∆ : δi ∈ {−δa, δa}, i = 1, · · · , s}.
(iii) there exists a symmetric matrix Θ ∈ R2s×2s such that

[
Q F1

F T
1 0

]
+

[
F2 0
0 I

]T

Θ

[
F2 0
0 I

]
< 0, (16)

[
I
∆

]T

Θ

[
I
∆

]
≥ 0, for all ∆ ∈ ∆v. (17)

Lemma 5: ([11]) For any real matrices Y, M, F and E with
compatible dimensions and F T F ≤ δ2I, where δ > 0 is a scalar,
then

Y + MFE + (MFE)T < 0

holds if and only if there exists a scalar ε > 0, such that

Y +
1

ε
MMT + εδ2ET E < 0.
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III. NON-FRAGILE H∞ CONTROLLER DESIGN

In this section we will present a two-step procedure which can
be used for solving the non-fragile H∞ control problem, and a
comparison is made between the new proposed method and the
existing method.

A. Non-fragile H∞ controller designs with known gain Ck

In this subsection, we will give non-fragile H∞ controller design
methods under the assumption that the controller gain Ck is known,
where the gain Ck will be designed in the next subsection.
To facilitate the presentation, we denote

M0(∆Ak, ∆Bk, ∆Ck)

=




Ξ1 Ξ2 0 Ξ4 ST A ST B1

∗ Ξ3 0 Ξ5 Ξ6 Ξ7

∗ ∗ −I Ξ8 C1 0
∗ ∗ ∗ −P̄11 −P̄12 0
∗ ∗ ∗ ∗ −P̄22 0
∗ ∗ ∗ ∗ ∗ −γ2I




(18)

where

Ξ1 = P̄11 − S − ST , Ξ2 = P̄12 − S − ST ,
Ξ3 = P̄22 − S − ST + N + NT ,
Ξ4 = ST A + ST B2(Ck + ∆Ck)
Ξ5 = (S −N)T A + FBC2 + NT ∆BkC2 + FA

+NT ∆Ak + (S −N)T B2(Ck + ∆Ck),
Ξ6 = (S −N)T A + FBC2 + NT ∆BkC2,
Ξ7 = (S −N)T B1 + FBD21 + NT ∆BkD21,
Ξ8 = C1 + D12(Ck + ∆Ck).

(19)

Then the following theorem presents a sufficient condition for the
solvability of the non-fragile H∞ control problem with additive
uncertainty.

Theorem 1: Consider system (1). Let scalars γ > 0, δa > 0 and
gain matrix Ck be given. If there exist matrices FA, FB , S, N, P̄12

and P̄11 > 0, P̄22 > 0, such that the following LMIs hold:

M0(∆Ak, ∆Bk, ∆Ck) < 0, δaij , δbik, δclj ∈ {−δa, δa},
i, j = 1, · · · , n; k = 1, · · · , p; l = 1, · · · , q,

(20)
then controller (2) with additive uncertainty (3), Ck and

Ak = (NT )−1FA, Bk = (NT )−1FB , (21)

solves the non-fragile H∞ control problem for system (1).
Proof: Due to the limit of the space, it is omitted here. Contact

the authors for the detailed proof.
Remark 1: Theorem 1 presents a sufficient condition in terms

of solutions to a set of LMIs for the solvability of the non-fragile
H∞ control problem. By the proofs of Theorem 1 and Lemma 3,
Theorem 1 also shows that the non-fragile H∞ control problem
becomes a convex one when the gain matrix Ck is known and
the state-space realizations of the designed controllers with gain
variations admit the slack variable matrix G with structure (14).
However, for the non-fragile H∞ controller design method, it
should be noted that the number of LMIs involved in (20) is
2n2+np+nq , which results in the difficulty of implementing the
LMI constraints in computation. For example, when n = 6 and
p = q = 1, the number of LMIs involved in (20) is 248, which
already exceeds the capacity of the current LMI solver in Matlab.
To overcome the difficulty raising from implementing the design
condition given in Theorem 1, the following method is developed.
Denote

Fa1 = [fa11 fa12 · · · fa1la ], Fa2 = [fT
a21 fT

a22 · · · fT
a2la ]T ,

(22)

where la = n2 + np + nq, and

fak1 =
[
01×n (NT ei)

T 01×q 01×n 01×n 01×r

]T
,

fak2 =
[
01×n 01×n 01×q eT

j 01×n 01×r

]
,

for k = (i− 1)n + j, i, j = 1, · · · , n.

fa1k =
[
01×n (NT ei)

T 01×q 01×n 01×n 01×r

]T
,

fa2k =
[
01×n 01×n 01×q hT

j C2 hT
j C2 hT

j D21

]
,

for k = n2 + (i− 1)p + j, i = 1, · · · , n, j = 1, · · · , p.

fa1k =
[
Ω1 Ω2 (D12gi)

T 01×n 01×n 01×r

]T
,

fa2k =
[
01×n 01×n 01×q eT

j 01×n 01×r

]
,

for k = n2 + np + (i− 1)n + j, i = 1, · · · , q, j = 1, · · · , n,
where Ω1 = (ST B2gi)

T , Ω2 = [(S −N)T B2gi]
T .

Let k0, k1, · · · , ksa be integers satisfying k0 = 0 < k1 < · · · <
ksa = la and matrix Θ have the following structure

Θ =

[
diag[θ1

11 · · · θsa
11 ] diag[θ1

12 · · · θsa
12 ]

diag[θ1
12 · · · θsa

12 ]T diag[θ1
22 · · · θsa

22 ]

]
, (23)

where θi
11, θ

i
12, and θi

22 ∈ R(ki−ki−1)×(ki−ki−1), i = 1, · · · , sa.
Then, we have

Theorem 2: Consider system (1). Let scalars γ > 0, δa >
0 and gain matrix Ck be given. If there exist matrices
FA, FB , S, N, P̄12, P̄11 > 0, P̄22 > 0, and symmetric matrix Θ
with the structure described by (23) such that the following LMIs
hold: [

Q Fa1

F T
a1 0

]
+

[
Fa2 0
0 I

]T

Θ

[
Fa2 0
0 I

]
< 0, (24)

[
I

diag[δki−1+j · · · δki ]

]T [
θi
11 θi

12

(θi
12)

T θi
22

]

×
[

I
diag[δki−1+j · · · δki ]

]
≥ 0, for all δki−1+j ∈ {−δa, δa},

j = 1, · · · , ki − ki−1, i = 1, · · · , sa,
(25)

where

Q =




Ξ1 Ξ2 0 Ψ1 ST A ST B1

∗ Ξ3 0 Ψ2 Ψ3 Ψ4

∗ ∗ −I C1 + D12Ck C1 0
∗ ∗ ∗ −P̄11 −P̄12 0
∗ ∗ ∗ ∗ −P̄22 0
∗ ∗ ∗ ∗ ∗ −γ2I




(26)

with Ξ1, Ξ2, Ξ3 defined by (19) and

Ψ1 = ST A + ST B2Ck

Ψ2 = (S −N)T A + FBC2 + FA + (S −N)T B2Ck,
Ψ3 = (S −N)T A + FBC2,
Ψ4 = (S −N)T B1 + FBD21.

Then controller (2) with additive uncertainty (3) and the controller
gain parameters given by (21) solves the non-fragile H∞ control
problem for system (1).

Proof: Due to the limit of the space, it is omitted here. By
(18), we have

M0 = Q + ∆Q + ∆QT < 0, (27)

where

∆Q =




0 0 0 ∆Q1 0 0
0 0 0 ∆Q2 ∆Q3 ∆Q4

0 0 0 ∆Q5 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




with
∆Q1 = ST B2

∑q
i=1

∑n
j=1 δcijgie

T
j ,

∆Q3 =
∑n

i=1

∑p
j=1 δbijN

T eih
T
j C2,
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∆Q2 =
∑n

i,j=1 δaijN
T eie

T
j +

∑n
i=1

∑p
j=1 δbijN

T eih
T
j C2

+(S −N)T B2

∑q
i=1

∑n
j=1 δcijgie

T
j ,

∆Q4 =
∑n

i=1

∑p
j=1 δbijN

T eih
T
j D21,

∆Q5 = D12

∑q
i=1

∑n
j=1 δcijgje

T
j .

By (22) and (27), it follows that (20) is equivalent to

M0 = Q +
∑la

i=1 δifa1ifa2i + (
∑la

i=1 δifa1ifa2i)
T

= Q + Fa1∆̃aFa2 + (Fa1∆̃aFa2)
T < 0

(28)

holds for all |δi| ≤ δa, where ∆̃a = diag[δ1, · · · , δla ]. By Lemma
4, it follows that (28) is further equivalent to that there exists a
symmetric matrix Θ ∈ Rla×la such that (24) and

[
I

∆̃a

]T

Θ

[
I

∆̃a

]
≥ 0 (29)

hold for all δi ∈ {−δa, δa}, i = 1, · · · , la. Notice that the set of
Θ satisfying (23) is a subset of the set of Θ satisfying (29), hence
the conclusion follows.

Remark 2: From the proof of Theorem 2, it follows that when
sa = 1, the set of Θ satisfying (23) is equal to the set of Θ
satisfying (29), and the design conditions given in Theorem 2
and Theorem 1 are equivalent. Θ satisfying (24) and (29) (or
(25) with sa = 1) is said to be a vertex separator [5]. Notice
that the number of LMIs involved in (29) or (25) with sa = 1
still is 2n2+np+nq, so that the difficulty of implementing the LMI
constraints remains. To overcome the difficulty, Theorem 2 presents
a sufficient condition for the non-fragile H∞ controller design in
terms of separator Θ with the structure described by (23), where
the number of LMIs involved in (25) is

∑sa
i=1 2ki−ki−1 , which can

be controlled not to grow exponentially by reducing the value of
max ki − ki−1 : i = 1, · · · , sa. Compared with the Θ being of
full block in (24) and (29), Θ with the structure described by (23)
satisfying (24) and (25) is said to be a structured vertex separator.
However, it should be noted that the design condition given in
Theorem 2 may be more conservative than that given in Theorem
1 because of the structure constraint on Θ. But the smaller value
of sa is, the less conservativeness is introduced.

B. Comparison with the existing design method
In this part, the result of a non-fragile H∞ controller design with

norm-bounded gain variations is introduced, and the comparison
with our result is made.

Similar to [13] and [10] for non-fragile problem with norm-
bounded uncertainty, the norm-bounded type of gain variations
∆Ak, ∆Bk and ∆Ck can be overbounded [11] by the following
norm-bounded uncertainty:

∆Ak = MaF1(t)Ea, ∆Bk = MbF2(t)Eb,
∆Ck = McF3(t)Ec,

(30)

where

Ma = [Ma1 · · ·Man2 ], Ea = [ET
a1 · · ·ET

an2 ]
T ,

Mb = [Mb1 · · ·Mbnp], Eb = [ET
b1 · · ·ET

bnp]T ,

Mc = [Mc1 · · ·Mcnq], Ec = [ET
c1 · · ·ET

cnq]
T ,

with

Mak = ei, Eak = eT
j

for k = (i− 1)n + j, i, j = 1, · · · , n,

Mbk = ei, Ebk = hT
j

for k = n2 + (i− 1)p + j, i = 1, · · · , n, j = 1, · · · , p,

Mck = gi, Eck = eT
j

for k = n2 + np + (i− 1)n + j, i = 1, · · · , q, j = 1, · · · , n.

and F T
i (t)Fi(t) ≤ δ2

aI for i = 1, 2, 3, represent the uncertain
parameters, here δa is the same as before.
Noting that the problem of non-fragile dynamic output feedback
H∞ controller design with norm-bounded gain variations is also a
non-convex problem, and similar to Theorem 2, when the controller
gain Ck is known, it can be converted to a convex one.
To facilitate the presentation, we denote

F̄A = N̄Ak, F̄B = N̄Bk,

Ma1 =




0 S̄B2Mc 0
N̄Ma (S̄ − N̄)B2Mc N̄Mb

0 D12Mc 0
0 0 0
0 0 0
0 0 0




,

Ma2 =




0 0 0 Ea 0 0
0 0 0 Ec 0 0
0 0 0 EbC2 EbC2 EbD21


 .

Assume that Ck is known, by using the method in [13] and [10],
the non-fragile H∞ controller design with norm-bounded gain
variations is reduced to solve the following LMI:




Q̄ Ma1 δaεMT
a2

∗ −εI 0
∗ ∗ −εI


 < 0, (31)

with matrix variables S̄ > 0, N̄ < 0 and scalar ε > 0, where

Q̄ =




−S̄ −S̄ 0 S̄(A + B2Ck) S̄A S̄B1

∗ −S̄ + N̄ 0 Q1 Q2 Q3

∗ ∗ −I C1 + D12Ck C1 0
∗ ∗ ∗ −S̄ −S̄ 0
∗ ∗ ∗ ∗ −S̄ + N̄ 0
∗ ∗ ∗ ∗ ∗ −γ2I




,

with Q1 = (S̄−N̄)(A+B2Ck)+F̄A+F̄BC2, Q2 = (S̄−N̄)A+
F̄BC2, Q3 = (S̄ − N̄)B1 + F̄BD21.
The following Lemma will show the relationship between condition
(31) and the condition given in Theorem 2.

Lemma 6: Consider system (1), if condition (31) is feasible,
then the controllers design condition given in Theorem 2 is feasible.

Proof: Due to the limit of the space, it is omitted here.

Remark 3: From the proof of Lemma 6, it follows that condi-
tion (31) is more conservative than the non-fragile H∞ controller
existence condition in Theorem 2 with sa = la. However, as
indicated in Remark 3, the case of sa = la is the worst case of the
new proposed method. So the existing non-fragile H∞ controller
design method with the norm-bounded gain variations is more
conservative than the one given by Theorem 2.

C. Design an initial controller gain Ck

In this subsection, we focus on the problem of finding an initial
feasible solution Ck to the non-fragile H∞ control problem.
Consider the controller (2) with ∆Ak = 0 and ∆Bk = 0, which
is described by

ξ̇(k) = Akξ(k) + Bky(k),

u(k) = (Ck + ∆Ck)ξ(k). (32)

where ∆Ck is the same as in (30).
Combining controller (32) with system (1), we obtain the following
closed loop system :

ẋe(k) = Aedcxe(k) + Bedcω(k),

z(k) = Cexe(k), (33)
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where Aedc =

[
A B2(Ck + ∆Ck)

BkC2 Ak

]
, Bedc =

[
B1

BkD21

]
,

and Ce is the same as the one in (4).
Theorem 3: Consider system (1), γ > 0, and δa > 0 are

constants. If there exist matrices Â, B̂, Ĉ, X > 0, Y > 0, and
a constant εc > 0 such that the following LMI holds:




−X −I 0 AX + B2Ĉ A

∗ −Y 0 Â Y A + B̂C2

∗ ∗ −I C1X + D12Ĉ C1

∗ ∗ ∗ −X −I
∗ ∗ ∗ ∗ −Y
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

B1 B2Mc 0

Y B1 + B̂D21 Y B2Mc 0
0 D12Mc 0
0 0 εcδaXET

c

0 0 0
−γ2I 0 0
∗ −εcI 0
∗ ∗ −εcI




< 0.

(34)

Then controller (32) with

Ak = (X−1 − Y )−1(Â− Y AX − B̂C2X − Y B2Ĉ)X−1,

Bk = (X−1 − Y )−1B̂, Ck = ĈX−1 (35)

solves the non-fragile H∞ control problem for system (1).
Proof: Due to the limit of the space, it is omitted here.

Remark 4: Theorem 3 shows that the non-fragile controller
design problem with ∆Ak = 0, ∆Bk = 0 and ∆Ck in the norm-
bounded form defined by (30) can be converted into a convex one
depending a single parameter εc > 0.

D. Algorithm
Combining the results in Subsection A and Subsection C, a
two-step procedure is summarized as follows:

Algorithm 1: Step 1: Minimize γ subject to X > 0, Y > 0
and LMI (34). Denote the optimal solutions as X = Xopt and
Ĉ = Ĉopt. Then by (35), Ckopt = ĈoptX

−1
opt.

Step 2: Let Ck = Ckopt, minimize γ subject to
FA, FB , N, S, P̄12, P̄11 > 0, P̄22 > 0, and LMIs (24), (25).
Denote the optimal solutions as N = Nopt, FA = FAopt

and FB = FBopt. Then according to (21), we obtain
Ak = (NT )−1FAopt, Bk = (NT )−1FBopt. The resulting
Ak, Bk and Ck will form the non-fragile dynamic output feedback
H∞ controller gains.

E. Evaluation of H∞ performance index
In Theorem 2, we restrict the slack variable matrix G with the

structure (14) for obtaining the convex design condition, which may
result in more conservative evaluation of the H∞ performance index
bound. So, in this subsection, for a designed controller, the matrix
G without the restriction is exploited for obtaining less conservative
evaluation of the H∞ performance index bound.
When the controller parameter matrices Ak, Bk and Ck are known,
the problem of minimizing γ subject to (3) for a given δa > 0 and
‖ Gzω(z) ‖< γ can be converted into the one: minimize γ2 subject
to the following LMIs:




P −G−GT 0 GT Ae GT Be

∗ −I Ce 0
∗ ∗ −P 0
∗ ∗ ∗ −γ2I


 < 0,

δaij , δbik, δclj ∈ {−δa, δa},
i, j = 1, · · · , n; k = 1, · · · , p; l = 1, · · · , q,

(36)

where Ae, Be and Ce are defined as in (4).
Similar to the design condition given in Theorem 1, the above

method is also with the numerical computation problem. To solve
the problem, the following lemma provides a solution using the
structured vertex separator approach.
Denote

Ga1 = [ga11 ga12 · · · ga1la ], Ga2 = [gT
a21 gT

a22 · · · gT
a2la ]T .

(37)
where

ga1k =
[(

01×n eT
i

)
G 01×q 01×2n 01×r

]T
,

ga2k =
[
01×2n 01×q 01×n eT

j 01×n

]
,

for k = (i− 1)n + j, i, j = 1, · · · , n.

ga1k =
[(

01×n eT
i

)
G 01×q 01×2n 01×r

]T
,

ga2k =
[
01×2n 01×q hT

j C2 01×n hT
j D21

]
,

for k = n2 + (i− 1)p + j, i = 1, · · · , n, j = 1, · · · , p.

ga1k =
[(

(B2gi)
T 01×n

)
G (D12gi)

T 01×2n 01×r

]T
,

ga2k =
[
01×2n 01×q 01×n eT

j 01×n

]
,

for k = n2 + np + (i− 1)n + j, i = 1, · · · , q, j = 1, · · · , n.

Then we have
Lemma 7: Consider system (1). Let γ > 0, δa > 0 be

constants, and controller parameter matrices Ak, Bk, Ck be given.
Then ‖ Gzω ‖< γ holds for all δaij , δbit and δclj satisfying (3),
if there exist a matrix G, a positive definite matrix P > 0 and a
symmetric matrix Θ with the structure described by (23) such that
(25) and the following LMI hold:

[
Qs Ga1

GT
a1 0

]
+

[
Ga2 0
0 I

]T

Θ

[
Ga2 0
0 I

]
< 0 (38)

where

Qs =




P −G−GT 0 GT Ae0 GT Be0

∗ −I Ce0 0
∗ ∗ −P 0
∗ ∗ ∗ −γ2I




with Ae0, Be0 and Ce0 are defined by (7).
Proof: It is similar to the proof of Theorem 2, and omitted

here.
Remark 5: For evaluating the H∞ performance bound of the

transfer function from ω to z, the condition given in Lemma 7
usually is less conservative than that given in Theorem 2 because
no structure constraint on the slack variable matrix G in Lemma 7
is imposed.

IV. EXAMPLE

In the following, an example is given to illustrate the effective-
ness of the proposed method.

Consider a linear system of the form (1) with

A =




0 −1 0
0.5 −1 1
0.5 −1 1


 , B1 =



−0.5 0
−0.5 0
−1 0


 , B2 =




1
1
−1


 ,

C1 =

[
1 −1 −1
0 0 0

]
, C2 =

[−1 1 −3
]
,

D21 =
[
0 1

]
, D12 =

[
0
1

]
.

By the standard H∞ controller design method [?], we obtain the
optimal H∞ performance index for the system as γopt = 2.1622.
On the other hand, assume that the designed controller is with form
(32). Let δa = 0.05, by Theorem 3 with εc = 155.9999, we obtain

Ckini =
[
0.2573 −0.2351 0.3380

]
.

Here εc is obtained by searching such that the H∞ performance
index is optimal. δa is chosen large appropriately such that the
designed Ckini can guarantee Step 2 feasible.
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A. Existing method given by condition (31)
In this subsection, we design an H∞ controller by condition (31)

with Ck = Ckini .
Assume that the designed controller is with norm-bounded additive
uncertainties described by (30), by applying condition (31) with
δa = 0.006 to design a non-fragile controller, the obtained H∞
performance index of the obtained non-fragile controller is 2.8645.

B. New method given by Theorem 2
In the following, we design an H∞ controller by Theorem 2

with Ck = Ckini .
Assume that the designed controller is with the additive uncer-
tainties described by (3). For this case with Ck = Ckini , it is
difficult to apply Theorem 1 to design a non-fragile H∞ controller
because the number of the LMI constraints involved in (20) is 215.
However, Theorem 2 is applicable for solving this problem. By
applying Theorem 2 with δa = 0.006 and ki = i, i = 1, · · · , 15,
i.e., sa = 15 as well as ki = 3i, i = 1, · · · , 5, i.e., sa = 5 to design
a non-fragile H∞ controller, and the H∞ performance indexes of
the obtained non-fragile controllers are γ = 2.5204 (sa = 15) and
γ = 2.5099 (sa = 5), respectively.

C. Evaluation of H∞ performance index by Lemma 7
In this part, for the above designed controllers, Lemma 7 can

give better evaluations of the H∞ performance index bounds.
Firstly, to facilitate the presentation, denote the controller designed
by condition (31) as Knm while denote the controllers designed by
Theorem 2 as Kin15 (sa = 15) and Kin5 (sa = 5).
By Lemma 7, the H∞ performance indices of the controller Knm

are γ = 2.6507 (sa = 15) and γ = 2.6501 (sa = 5) while the
H∞ performance indices of the controllers Kin15 and Kin5 are
γ = 2.4934 (sa = 15) and γ = 2.4903 (sa = 5), respectively.

D. Comparison
Firstly, Table 1 shows the H∞ performance indices achieved

by the designs of the existing method (Condition (31)) and the
proposed method (Theorem 2).

TABLE I
PERFORMANCE INDEX BY DESIGN WITH δa = 0.006

Condition (31) Th.2 (sa = 15) Th.2 (sa = 5)
γ 2.8645 2.5204 2.5099

Secondly, for the designed non-fragile controllers, Lemma 7 gives
better performance indices shown in Table 2.

TABLE II
PERFORMANCE EVALUATION BY LEMMA 7 WITH δa = 0.006

Knm Kin15 Kin5

γ(sa = 15) 2.6507 2.4934 −−
γ(sa = 5) 2.6501 −− 2.4903

From this example, we can see that the worst case (sa = 15) of
Theorem 2 also is more effective than the non-fragile H∞ controller
existence condition (31).

V. CONCLUSION

In this paper, we have investigated the problem of non-fragile
dynamic output feedback H∞ controller design for linear discrete-
time systems. A notion of structured vertex separator is proposed
to approach this problem, and exploited to develop sufficient
conditions for the non-fragile H∞ controller design via a two-
step procedure. The resulting designs guarantee that the closed-loop
systems is asymptotically stable and the H∞ performance from the
disturbance to the regulated output is less than a prescribed level.
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