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Abstract

Rhythmic movements in animal locomotion appear to

exploit a resonance of the body-environment dynam-

ics to maintain high efficiency. To gain insights into

the locomotion mechanism, this paper studies a sim-

ple three-link undulatory locomotor model that swims

through a single joint torque actuator. We have found

that, when the locomotor is driven by a sinusoidal in-

put of a given amplitude, the resulting locomotion speed

is maximum when the driving frequency is close to the

anti-resonance of the link chain. We then show how the

anti-resonance can be exploited in the feedback control

based on central pattern generators.

1. Introduction

In locomotion of various animals, resonance ap-

pears to be exploited to increase efficiency. For in-

stance, the pace of human walking would be close to

a resonance frequency of the legs acting as pendulums.

The biological control system, directly achieving such

locomotion, is formed by a group of interconnected

neurons called the central pattern generator (CPG). The

CPG by itself is a nonlinear oscillator having an intrin-

sic phase pattern that resembles, but is slightly different

from, the gait observed during locomotion [1]. It is a

long standing problem in neuroscience to uncover how

the CPG works as a controller in a feedback loop to

generate an efficient gait.

Entrainment of CPGs to a resonance of a mechani-

cal body has been studied in the literature [2]–[7]. Many

of these results considered a one-degree-of-freedom

flexible system like a pendulum, driven by a simple

CPG called the reciprocal inhibition oscillator (RIO)

[8]. The closed-loop system was analyzed through nu-

merical simulations and the method of harmonic bal-

ance. It has been found [7] that the RIO is able to

entrain to the mechanical resonance under certain con-

ditions; either ωCPG ≪ ωRES with negative feedback, or

ωCPG ≫ωRES with positive feedback, where ωCPG and ωRES

are the intrinsic frequency of the RIO and the resonance

frequency of the mechanical system.

In this paper, we consider a more realistic mechani-

cal model for locomotion. Specifically, we study a sim-

ple locomotor that is formed as a chain of three rigid

links connected through flexible joints. The locomotor

swims in water by undulating its body through a torque

actuator placed at one of the two joints. We have found

that, when the locomotor is driven by a sinusoidal input

of a given amplitude, there exists a frequency at which

the resulting locomotion speed is maximum. More-

over, this frequency is close to the anti-resonance, rather

than a resonance, of the link chain. We then examine

whether an RIO can entrain to the anti-resonance, or

to one of the resonance frequencies. As expected from

the previous studies of a pendulum-RIO system [6], [7],

it turns out the RIO is able to entrain to a resonance,

but only to the second mode that results in poor swim-

ming. However, we further show that a phase-lag com-

pensator, placed in the feedback loop right before the

RIO, can achieve the phase balance appropriate for en-

trainment to the anti-resonance for efficient swimming.

2. An undulatory locomotor

Consider the chain of links depicted in Fig. 1,

which consists of n links connected through n−1 joints

(case n = 4 is shown). Each link is rigid with uni-

formly distributed mass. We consider only planar mo-
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tion, and the mechanical system has n + 2 degrees of

freedom (n− 1 for shape, 2 for position, and 1 for ori-

entation). The ith link is of mass mi, length 2li, and mo-

ment of inertia Ji(= mil
2
i /3). The joint between the ith

and (i + 1)th links has an actuator to generate torque ui

and a linear spring with stiffness ki. Let θi be the angle

between the link and the inertial x-axis, and denote by θ
the n-dimensional vectors whose ith entry is θi. For the

center of gravity (CG) of the whole chain, the velocity

is denoted by vector v having (x,y) components (vx,vy).
Following the development of robotic snake model

in [9], we consider the case where the ith link is subject

to the environmental forces and torque:

fti = −cti vti , fni
= −cni

vni
, τi = −(ℓ2

i /3)(cni
θ̇i)

where vti and vni
are the tangential and normal com-

ponents of the velocity of the link CG, and fti , fni
and

τi are the forces and torque generated by the interac-

tion of the link and environment, such as the friction

on the ground or the drag in fluid. The environmental

forces are directionally non-uniform and, typically, the

normal force is larger than the tangential force; cni
> cti .

For instance, the fluid force on undulatory swimmer like

leeches and lampreys may be modeled as [10]

cti := 5.4cT ℓi

√

ρµ v̄ndi, cni
= cNρ v̄ndiℓi,

where cT and cN are the drag coefficients in the tangen-

tial and normal directions, ρ and µ are fluid density and

viscosity, di is the width of the link, and v̄n is the RMS

value of the normal velocity.

Nonlinear equations of motion for the link chain

can be developed from the first principle as in [9]. The

model can be simplified by considering the case where

the locomotion is in the x direction so that vy is small

and the undulation amplitudes |θi| are small. Keeping

up to the second order terms in θ and vy, we have





D Λθ −FTCne

θ TΛT eTCte+θ TCoθ −θ TCoe

−eTCnF −eTCoθ eTCne









θ̇
vx

vy





+





Jθ̈
mv̇x

mv̇y



 =





Bu−CTKCθ
0

0



 (1)

J := LML/3+FTMF,
D := LCnL/3+FTCnF,
Λ := FTCo +diag(FTCte),
F := M−1CT(CM−1CT)−1AL,

Co := Cn −Ct , e :=
[

1 · · · 1
]

T

,

where m is the total mass (sum of mi), A (respectively

C) is the (n− 1)× n matrix such that the (i, i) entries

are one, (i, i+1) entries are one (negative one), and the
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Figure 1. A link chain model for locomotor

other entries are zero, and M, L, K, Ct , and Cn are diag-

onal matrices with entries mi, li, ki, cti , and cni
, respec-

tively. For later reference, let us define the relative angle

vector φ :=Cθ and body orientation angle θo := ∑θi/n.

We consider the 3-link model whose parameters are

determined from measurements of a typical leech:

n = 3, ko = 2×10−5Nm/rad,
m = 0.0013kg, do = 0.008m, ℓ = 0.1m,
ρ = 997.8kg/m3, µ = 0.001kg/(sm),
cT = 0.45, cN = 2.27, v̄n = 0.03m/s,

A :=

[

1 1 0

0 1 1

]

, C :=

[

1 −1 0

0 1 −1

]

,

B :=
[

1 −1 0
]

T

.

The body is approximated by a uniform chain with

(mi, li,di,ki) equal to the nominal values (mo, lo,do,ko),

where mo := m/n and lo := ℓ/(2n). We assume that

only the first joint is actuated, and the relative angle of

the first joint φ1 is available for feedback control.

3. Resonance analysis

We analyze resonance of the link chain with and

without fluid in terms of frequency responses. Specif-

ically, the link chain is driven by sinusoidal torque in-

put u(t) = asinωt, and the responses of relative angles

φi, body orientation angle θo, and the resulting velocity

(vx,vy) are examined. The input amplitude is fixed to

a = 30 µNm, which is chosen to yield reasonable am-

plitudes of φi. The (x,y) coordinates are chosen so that,

during the steady state locomotion, the average of vy

over one cycle is zero and that of vx is a negative value.

3.1. Verification of locomotion

Let us first verify that the link-chain locomotor can

swim by converting the sinusoidal torque input to a for-

ward velocity through the interaction with the surround-

ing fluid. The locomotor model (1) is simulated for a si-

nusoidal torque input u(t) = asinωt when it is initially

at rest with its body straight. The simulation result for a

typical case (ω = 2 Hz) is shown in Fig. 2.
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Within a few cycles, the locomotion reaches the

steady state where the average value of vy is zero, that

of vx is about −0.065 m/s, and both vx and vy oscillate

with small amplitudes. The amplitudes of φ1 and φ2 are

about 80o and 50o, respectively. The phase lag of φ2

with respect to φ1 is about 90o, indicating waves travel-

ing from head to tail. The body orientation angle θo is

also oscillating, but its amplitude is small.
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Figure 2. Time responses to u = 30sin(4πt) µNm

3.2. Frequency response

Anticipating that swimming of the link chain can

be made efficient by exploiting a resonance, let us first

study the frequency response of the body-fluid system.

We consider the steady state swimming where vx can be

approximated by a constant. Using the first row of (1),

the transfer function from u to φ1 can then be defined as

P(s) := BT(Js2 +Ds+K)−1B, (2)

K := vxcoFT + koCTC,

for each fixed swim speed vx, where we noted that

FTe = 0 under the uniformity assumption.

Figure 3 shows the Bode plots of P(s) for several

cases. The frequency response P( jω) is shown by the

red curve for the case without water (ct = cn = 0). The

gain plot is shown as the angle output amplitude when

the input torque amplitude is 30 µNm to make physical

sense. The transfer function has resonance frequencies

at 2.5 and 5.8 Hz, and an anti-resonance frequency at

3.2 Hz. With the fluid, the drag force adds damping and

the Bode plot becomes the blue curves where the swim

speed vx is varied from 0, −0.05, to −0.1 m/s (the ar-

rows indicate how the curves vary with vx in this order).

We see that the first resonance mode is damped by the

fluid drag and no peak exists in the gain plot around

2.5 Hz. The variations in the gain and phase due to

the speed change are relatively small. This insensitiv-

ity is observed for the transfer function from u to φ2 as

well, but not for that from u to θo. (The black and green

curves in the phase plot will be referred to later.)
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Figure 3. Frequency responses from u to φ1

3.3. Resonance in swimming

Next, we examine whether there is a resonance

phenomenon during swimming. We apply a sinusoidal

torque input to (1) and examine how the steady state

swim speed depends on the input frequency. To sim-

plify the analysis and gain insights, let us consider the

case where the velocity (vx,vy) varies slowly relative to

the change of θ . In this case, we may regard θ as a sinu-

soid and (vx,vy) as constant over each cycle. The swim

speed |vx| in the steady state, averaged over one cycle,

can then be analytically estimated as described below.

Taking the average of the second and third rows of

(1) over one cycle, we have

mαx +
1

T

∫ T

0
[(nct +co‖θ‖2)vx +coθ TF θ̇ ]dt = 0,

mαy +ncnvy = 0,

where we noted
∫ T

0 eTθdt = 0 by definition of the (x,y)
coordinates, T := 2π/ω is the period of oscillation, and
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(αx,αy) is the average acceleration. The second equa-

tion indicates that vy converges to zero in the steady

state. On the other hand, the first equation can be ex-

pressed in terms of the phasor vector θ̂ and solved for

αx as follows:

αx =
θ̂ ∗Qθ̂ − (2nct +co‖θ̂‖2)vx

2m
, (3)

where θ̂ is a constant complex vector such that |θ̂i| and

∠θ̂i are the amplitude and phase of θi(t), and

θ̂ = (K− Jω2 + jωD)−1Ba, Q := jωco

FT −F

2
.

With the input amplitude a := 30 µNm, the accelera-

tion αx is plotted as a function of the velocity vx in Fig.

4 for several values of the input frequency ω . The ve-

locity vx at which the acceleration αx becomes zero is

the equilibrium, where the negative slope of the vx-αx

curve indicates its stability. Thus we have

vx =
θ̂ ∗Qθ̂

2nct +co‖θ̂‖2
.

The right hand side depends on vx through θ̂ , and hence

this is an implicit equation. It turns out, however, that

one can solve for vx by the fixed point iteration.
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Figure 4. Acceleration-velocity relation

The swim speed |vx| thus estimated is plotted by

the red curve at the top of Fig. 5. Accuracy of this esti-

mate is confirmed by simulating the original equations

of motion in (1), where the simulated speed, averaged

over one cycle, is indicated by the blue curve which al-

most overlaps with the red curve. The amplitudes and

phases of the relative angles φ are also plotted in Fig. 5.

Clearly, there is a frequency at which the swim speed

is maximum, and the peak occurs around 3 Hz. At the

peak frequency, the amplitudes of φ1 and φ2 are about

the same, and their phase difference is around 120o.

The amplitudes are not balanced if ω < 3 Hz, while the

phase difference gets closer to 180o if ω > 3 Hz, and

both cases lead to inefficient swimming.
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Figure 5. Frequency response of swimming locomotor

The peak frequency is close to the anti-resonance

frequency ωa = 3.2 Hz of the body with (or without)

fluid (see Fig. 3). To confirm that this is not a coinci-

dence, we have considered perturbations of the masses

as follows:

m1 = (2r +1)mo, m2 = m3 = (1− r)mo,

where 0 ≤ r < 1. For each value of r in this interval, the

undamped resonance frequencies ω1 and ω2, undamped

anti-resonance frequency ωa, and the frequency ωpeak at

which the locomotion speed is maximum, are plotted in

Fig. 6. Clearly, the peak frequency ωpeak is close to the

anti-resonance frequency ωa when r ≤ 0.44. Further

calculations show that a local minimum corresponding

to the anti-resonance occurs in the gain plot under the

fluid damping (|vx| < 0.1) at a frequency near ωa when

r ≤ 0.44, and disappears when r > 0.44 due to the loss

of the second mode resonance peak. Thus, the peak fre-

quency ωpeak is close to the undamped anti-resonance

frequency ωa whenever the gain plot under the fluid

damping exhibits a corresponding local minimum.

At the anti-resonance without fluid, the first joint
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angle φ1 has no displacement, and the second joint

oscillates at the natural frequency of the constrained

two-link chain in which the first and second links are

straightened and glued together. This means that the

applied torque does no work on the body yet the sec-

ond joint makes the “tail” flip around. With fluid, the

drag adds damping and the work done by the input is no

longer zero, but still the amplitude of φ1 is small, mak-

ing a large part of the supplied energy transferred to the

tail. Thus, driving the system at the anti-resonance ap-

pears to be an efficient way to flip the tail. Even though

the resonance peak at the first mode disappeared due to

the fluid drag in Fig. 3, anti-resonance phenomena can

still be exploited for efficient swimming.
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Figure 6. The peak frequency is close to the anti-

resonance when it exists.

4. Feedback control by CPG

We now consider the design of feedback control

systems for the link chain locomotor. The basic control

unit we use is the reciprocal inhibition oscillator [6], [7]

described by

q = f (s)(Mφ(q)+Hy), u = Gφ(q),

f (s) :=
2ωos

(s+ωo)2
, φ(q) := tanh(q),

M := −µ

[

0 1

1 0

]

, l :=

[

1

−1

]

,
G := glT,
H := hl,

where ωo > 0 is the intrinsic RIO frequency, µ > 0 is

the synaptic strength, u and y are the activation input

to, and sensory output from the mechanical body, and g

and h are feedback gains, respectively. The locomotor

in (1) is driven by the RIO control unit with y := φ1. We

use the following parameter values

g = 10−5, h = ±103, µ = 1.2,

and ωo is varied within a range to see its effect on the

locomotion behavior.

We approximate all the signals by sinusoids and the

nonlinear function by φ(q)∼= κq where κ is the describ-

ing function (amplitude dependent linear gain). Then

the harmonic balance equation (HBE) is given by

P( jω)R( jω) = 1, R(s) :=
2ghκ f (s)

1−µκ f (s)
.

where R(s) is the transfer function from y to u in the

RIO control. The phase balance occurs when

∠P( jω) = ∠R( jω)−1,

∠R( jω)−1 = ∠[gh(1−µκ + jϖ)]

∼=
{

∠[1+ jϖ ] (gh > 0)

∠[1+ jϖ ]−π (gh < 0),

ϖ :=
1

2

(

ω

ωo

− ωo

ω

)

,

where κ is approximated as κ ∼= 0, which is valid when

|h| is large, making the amplitude of q large. Thus, un-

der a high gain feedback, the frequency of the closed-

loop oscillation is predicted by the intersection of the

phase curves of P( jω) and R( jω)−1. The swimming

behavior can then be predicted from the frequency re-

sponse curves in Fig. 3.

For the positive feedback case (Fig. 7, blue curves),

the closed-loop frequency is maintained near 5 Hz when

ωo is large. The resulting swim speed is relatively high,

but not always close to the peak velocity in Fig. 5. This

is explained by the fact that the velocity curve in Fig. 5

goes down as the input frequency increases from 4 to

6 Hz. The phase curve ∠(1 + jϖ) as a function of ω
passes through the point (ωo,0) and approaches −90o

as ω goes to zero. The curve for the case ωo = 12 Hz is

plotted in Fig. 3. The intersection with ∠P( jω) occurs

around ω = 4 Hz, accurately predicting the closed-loop

frequency seen in Fig. 7. As ωo gets larger, the phase

curve of R( jω)−1 becomes more and more flat at −90o,

and in the limit, the intersection occurs at ω = 5.7 Hz.

This explains how the entrainment near 5 Hz occurs in

Fig. 7. When ωo ≥ 12 Hz, the HBE prediction is found

accurate since the ripple in vx is small. But when 1 ≤
ωo ≤ 8, the ripple is large, and the effect of v̇x, neglected

in the HBE analysis, leads to the error in the prediction.

Moreover, when 9 ≤ ωo ≤ 11, bifurcations occur and

the solution does not seem even purely periodic.

For the negative feedback case (Fig. 7, black

curves), entrainment to 5.7 Hz occurs when ωo is small.

This is also explained by the HBE analysis. The phase

curve ∠(1 + jϖ)− π is plotted in Fig. 3 for the case

ωo = 0.1 Hz. The intersection with the blue curve

occurs a little below 6 Hz, accurately predicting the
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Figure 7. Steady state locomotion of the link chain

driven by RIO

closed-loop frequency. When ωo is sufficiently small,

we have ∠(1+ jϖ)−π ∼=−π/2, and the intersection is

around 5.7 Hz, explaining the entrainment.

For neither the positive nor negative feedback case,

is entrainment to the resonance peak velocity achieved,

as seen in Fig. 5. In view of the figure, the resonance en-

trainment occurs when the phase balance occurs around

3 Hz. Since the phase of P( jω) is about −50o at 3 Hz

(Fig. 3), the RIO frequency ωo should be chosen so that

the phase of R( jω)−1 is also −50o at 3 Hz. This can

be achieved, not by negative feedback, but by positive

feedback with ωo
∼= 8 Hz. However, if ωo is 8 Hz or a

little smaller, then the ripples in vx makes the HBE pre-

diction inaccurate and the peak speed (0.09 m/s) is not

attained. If ωo is slightly above 8 Hz, then stable oscil-

lations are not obtained. Thus, the RIO control cannot

achieve anti-resonance entrainment.

Entrainment to the anti-resonance can be induced

by inserting a low pass filter

W (s) :=
a

1+ τs
, τ =

1

7π
, a =

√
2.

in the sensory feedback path so that y = W (s)φ1. The

effect is to reduce the phase by 45o at ω = 1/τ = 3.5
Hz while keeping the same gain. As a result, the

phase of W ( jω)P( jω) becomes about −90o around

the anti-resonance frequency 3 Hz, and the RIO con-

trol with negative feedback achieves entrainment to the

anti-resonance when ωo is sufficiently small (Fig. 7, red

curves).

5. Conclusion

We have studied an underactuated three-link swim-

ming locomotor and obtained the following results.

Contrary to a common expectation, the most efficient

swimming is achieved when the input frequency is close

to the anti-resonance, rather than a resonance. Although

previous results indicated that the RIO can entrain to

the resonance of a simple pendulum, the RIO is not

able to entrain to the first mode resonance nor the anti-

resonance of the locomotor due to the additional effect

of the fluid force. However, the anti-resonance entrain-

ment can be achieved by inserting a phase-lag compen-

sator in the feedback loop.
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